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An Ocean General Circulation Model (OGCM) and two three—dimensional large—scale
models, an ocean sediment transport (SENNA) and a semi-lagrangian trajectory—tracing

model (PATRINNA) are used for a better understanding of the North Atlantic ocean

circulation and complex interactions in the ocean—-sediment system since the last glacial

maximum (LGM).
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Figure 1: Integration scheme

Integration scheme and information flow from

the OGCM to the SENNA and PATRINNA.
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Figure 2: Coupling of the sub-components in
SENNA /PATRINNA
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The transport of sediment before it reaches the
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Figure 3a—c: Diagsrams of convection

The heights of the bars are equal to the convection depth.

a) During the LGM the North Atlantic Deep Water production dropped by 30% from its
present intensity. Only in the upper 500 m of the glacial Norwegian—Greenland Seas (NGS)
were ventilated. Compared to their present locations, the deep ventilation zones south of
Greenland were shifted 10 degrees to the south—west; b) During the Meltwater Event
(MWE) deepwater formation stopped completely; ¢) Today’s convection ventilates the deep

ocean and even reaches the bottom at some sites in the NGS and northern North Atlantic.

Figure da—-c: Trajectories without convection

A cloud of neutrally-buoyant particles (36 particles in the cloud) deployed at a depth of 50
m south—east of Greenland. The trajectories are calculated using the velocity field from the
OGCM, without the impact of convection, and traced during the first 100 years after
deployment. Particle depth are indicated by colors from the color palette; as particle

descends or upwells the color of its trajectory changes.

Figure 5a—c: Trajectories with convection

Similar to Figure 5a—c, but also including the direct impact of convection on the motion of
the particles. When a particle enters the convection zone, it may either be transported
downward or upward in the convection chimney. Both the velocity and the convection
depths are taken as an output from the OGCM simulations. In addition to the color palette,

the convection depths are shown by different shades of gray.

Figure 6a—c:

Sedimentation rate varies according to the different ocean circulation patters. This rate also
differs depending on whether it is calculated with or without the influence of convection on
the sediment transport by 3—D flows. The models give a higher glacial sedimentation rate in
the vicinity of Iceland in the Irminger Basin, along the Reykjanes Ridge at both the south
and the north sides of Iceland, at the Rockall Plateau and in the NGS. The radical changes
of the ocean circulation during the MWE led to further changes of the sedimentation rates in

the northern and eastern North Atlantic.
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