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Velocity maps of the upper ocean currents show increased zonality of the North Atlantic 2 E n I i . & 53 o
Current at the LGM and MWE. The Norwegian—Greenland Seas (NGS) circulation changed - canvestian depth [m]
radically at the MWE showing a reversed circulation pattern in the eastern part of this basin.

Figure 2a—-c: Velocity vectors at z=2000 m.

Velocity maps show the changes in the return routes of the deep—ocean currents which have
a far weaker western boundary current at the LGM and MWE than at the HM. Different

circulation regimes led to distinctly different sedimentation transport patterns (see poster by

Haupt, Seidov and Stattegger).
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Figure 3a-c: Diagsrams of convection

The heights of the bars are equal to the convection depth.
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a) During the LGM the North Atlantic Deep Water production dropped by 30% from its
present intensity. Only in the upper 500 m of the glacial NGS were ventilated. Compared to

their present locations, the deep ventilation zones south of Greenland were shifted 10

degrees to the south—west; b) During the MWE deepwater formation stopped completely; ¢)
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in the subtropics during both LGM and MWE when compared to the weak exchanged

between these two basins at present time.



