SEDIMENT SYSTEM IN LARGE BASINS:
THE LATE QUATERNARY IN THE
NORTHERN NORTH ATLANTIC
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An Ocean General Circulation Model (OGCM) and two three—dimensional large—scale
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models, an ocean sediment transport (SENNA) and a semi-lagrangian trajectory—tracing
model (PATRINNA) are used for a better understanding of the North Atlantic ocean

circulation and complex interactions in the ocean-sediment system since the last glacial

maximum (LGM). @

Figure 1: Integration scheme
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Integration scheme and information flow from sedimentation rate [cm/kyr]

the OGCM to the SENNA and PATRINNA.
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ocean floor i1s simulated using a 3—D sub-model
of SENNA and PATRINNA. Sediment transport

in the near-bottom boundary layer, which
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follows the bottom topography, further is
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computed using a 2-D sub-model. Combination

of the 3-D and 2-D components of the two

models provides continuous simulation of
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Figure 3a—c: Diagrams of convection
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The heights of the bars are equal to the convection depth.

Meltwater Event

a) During the LGM the North Atlantic Deep Water production dropped by 30% from its

present intensity. Only in the upper 500 m of the glacial Norwegian—Greenland Seas (NGS)
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were ventilated. Compared to their present locations, the deep ventilation zones south of
depth [m] depth [m]

Greenland were shifted 10 degrees to the south—west; b) During the Meltwater Event (MWE)

sedimentation rate [cm/kyr]

deepwater formation stopped completely; ¢) Today’s convection ventilates the deep ocean
n 11 1508 3548 550 10314 aaaa

and even reaches the bottom at some sites 1n the NGS and northern North Atlantic. canvectian depth [m]

Figure da—c: Trajectories without convection

A cloud of 36 neutrally-buoyant particles deployed at a depth of 50 m south-east of @
Greenland. The trajectories are calculated using the velocity field from the OGCM, without

the impact of convection, and traced during the first 100 years after deployment. Particle

depths are indicated by colors from the color palette; as a particle descends or upwells the .

color of its trajectory changes. 2500
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Figure 5a—c: Trajectories with convection
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Similar to Figure 5a—c, but also including the direct impact of convection on the motion of

the particles. When a particle enters the convection zone, it may either be transported

downward or upward in the convection chimney. Both the velocity and the convection depths :

are taken as an output from the OGCM simulations. In addition to the color palette, the

convection depths are shown by different shades of gray.

Figure 6a—c:
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Sedimentation rate varies according to the different ocean circulation patterns. This rate also

differs depending on whether it 1s calculated with or without the influence of convection on
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the vicinity of Iceland in the Irminger Basin, along the Reykjanes Ridge at both the south and depthiim] depth [m]

the north sides of Iceland, at the Rockall Plateau, and in the NGS. The radical changes of the

ocean circulation during the MWE led to further changes of the sedimentation rates in the

sedimentation rate [cm/kyr]
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northern and eastern North Atlantic.



