Meteo 532 -- Atmospheric Chemistry -- Fall, 2003

 

Instructor:  William H. Brune

                    504 Walker Building

                    865-3286

                    brune@essc.psu.edu

 

Office Hours:     Monday, Wednesday: 1:10 - 2:00, and by appointment (You can come by.  If I can see you at that moment, I will.  If not, we can schedule an appointment.)

 

 Lectures:   Monday, Wednesday, Friday

                    12:20 – 1:10

          110 Walker Building

 

Internet access to the course:

 

The course syllabus, the class lecture notes, copies of exams, problem sets and solutions will all be posted on the Web in ANGEL.

 

Course Objectives:

 

to develop the tools necessary to think about atmospheric chemistry

 

to learn the atmospheric chemistry behind well-known phenomena such as smog, acid rain, and stratospheric ozone depletion

 

Course Approach:

 

This course will be a combination of lectures, class discussions, and case studies.  Preparation for class will be essential. Please bring a calculator if you are not facile with estimations.

 

Grading:

 

problem sets

20%

in-class participation

5%

mid-term take-home exam

20%

final take-home exam

30%

case studies

25%

 

Academic Integrity:

 

I am required by the university to remind you to be honest and do your own work and that there are penalties for cheating.  You may work together on the homework, but please work alone on the take-home exams.

 

You should familiarize yourself with the College of Earth and Mineral Sciences Statement on Academic Integrity at: http://www.ems.psu.edu/students/integrity/statement.html

 

 

Course Notes:

 

Because of the high cost of textbooks, the main material and problems will be posted on the website.  You can access the different main sections by clicking on them in the course outline below.  I tried this last semester in the course The Middle Atmosphere.  I think that it worked for the students, so I am trying it again.  In the notes will be links to useful websites. 

 

Course Outline:

 

1.     Introduction                                                         (viewgraphs for Ch. 1)

1.1. A timeline of atmospheric chemistry

1.2. Lifecycles of atmospheric constituents

1.3. Units and Conversions

1.3.1.   Units

1.3.2.   Conversions

2.     The atmosphere                                                   (viewgraphs for Ch. 2)

2.1. General Composition

2.2. Important meteorological concepts

2.2.1.   Overall structure – troposphere, stratosphere

2.2.1.1.        Temperature

2.2.1.2.        Pressure

2.2.1.3.        Potential Temperature

2.2.1.4.        Stability

2.2.2.   Winds

2.2.3.   Planetary boundary layer

2.2.4.   Dispersion and turbulence

2.2.5.   Transport

2.3. Trace chemicals –

2.3.1.   Families

2.3.2.   Sources

2.3.3.   Typical values

2.3.4.   Changes since pre-industrial times

3.     Atmospheric photochemistry

3.1. Actinic flux

3.1.1.   Solar spectrum

3.1.2.   Energetics

3.1.3.   Photolysis frequencies

3.2. Simplified spectroscopy

3.2.1.   Atomic spectra

3.2.2.   Diatomic spectra

3.2.3.   Polyatomic spectra

3.3. Absorption

3.3.1.   Beer’s Law

3.3.2.   Relation to spectra

3.4. Chemical kinetics

3.4.1.   Reactions

3.4.2.   Reaction energetics

3.4.3.   Rate equations

3.4.4.   Bimolecular reactions

3.4.4.1.        Reaction coordinates

3.4.4.2.        Arrehnius expression

3.4.4.3.         

3.4.5.   Termolecular reactions

3.4.5.1.        Reaction coordinates

3.4.5.2.        Temperature dependence

3.4.5.3.        High and low pressure limits

3.4.5.4.        Useful form of the equations

3.4.6.   Equilibrium reactions

3.4.7.   Steady state

4.     Tropospheric gas-phase chemistry

4.1. NOx photochemistry

4.1.1.   NOx photostationary state

4.1.2.   NOy species

4.2.  Chemistry of the clean troposphere

4.3.  Atmospheric organic chemistry

4.3.1.   Alkanes

4.3.2.   Alkenes

4.3.3.   Aromatics

4.3.4.   Oxygenates

4.4. VOCs and NOx in ozone formation

4.4.1.   Generalized oxidation sequence

4.4.2.   EKMA diagram

4.4.3.   NOx or VOC sensitivity

4.5. Regulatory strategies

4.5.1.   The US Clean Air Act

4.5.1.1.        History

4.5.1.2.        Structure and standards

4.5.1.3.        Health effects

4.5.1.4.        Successes and failures

4.5.2.   Designing strategies for air quality improvement

4.6. Halogen chemistry

5.     Aqueous phase chemistry

5.1. Atmospheric liquid water

5.2. Chemical equlibria and Henry’s Law

5.3. Sulfur chemistry and acid rain

5.4. Nitrogen chemistry

5.5. Organic acids

5.6. Ecological and structural damage

5.7. Successes and failures

6.     Atmospheric particles

6.1. Physical properties and distributions

6.2. Particle formation and growth

6.3. Particle chemical composition

6.4. Semi-volatile organics

6.5. Health and visibility effects

7.     Stratospheric chemistry

7.1. Dynamics revisited in a little more detail

7.2. Sources of stratospheric constituents

7.2.1.   Emissions

7.2.2.   Trends

7.3. Sources, reservoir and reactive species

7.4. Ozone-destroying catalytic cycles

7.5. The ozone hole

7.5.1.   Meteorological conditions

7.5.2.   Polar stratospheric clouds

7.5.3.   Heterogeneous chemistry

7.5.4.   Ozone-destroying catalytic cycles

7.6. The Montreal Protocol

7.6.1.   History

7.6.2.   Structure and standards

7.6.3.   Successes and failures

8.     Atmospheric chemistry and climate

8.1. Atmospheric constituents that link chemistry and climate

8.2. Radiative forcing

8.2.1.   Direct effects

8.2.2.   Indirect effects

. 

References:

 

Fundamental physical constants and atmospheric properties.

 

Some useful texts are the following. 

 

Chemistry of the Upper and Lower Atmosphere, Barbara Finlayson-Pitts, James Pitts, 99-63218, 2000.     Recommended text.

Atmospheric Chemistry and Physics , John Seinfeld and Spiros Pandis, QC879.6.S45 1997. Recommended text.

Chemistry of the Atmospheres , Wayne, QC879.6.W39  1991.

Aeronomy of the Middle Atmosphere , Brassuer and Solomon, QC881.2.S8B73    1986.

Atmospheric Chemistry and Global Change , Guy Brasseur, John Orlando, and Geoffrey Tyndall, eds., QC879.6.A85 1999.

Introduction to atmospheric chemistry , Daniel Jacob, QC879.6.J33 1999.

 

References on chemical kinetics:

 

Chemical kinetics, Laidler, QD501.L17      1987.

Kinetics and dynamics of elementary gas reactions , IWM Smith, QD501  1980.

Thermochemical kinetics , Benson, QD511.B48  1976.

any physical chemistry and many chemistry texts

 

References on radiation and molecules:

 

Photochemistry of Small Molecules , Okabe, QD708.2.033  1978.

Spectra of Diatomic Molecules , Herzberg, 1950.

any of a number of atomic and molecular spectroscopy books

 

General references:

 

Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling , Demore et al., JPL Publication 94-26    1994.

U.S. Standard Atmosphere , 1976, NOAA, 1976.

 

Useful journals:

 

Aerosol Science; Atmospheric Chemistry; Atmospheric Environment; Environmental Science Technology; Geophysical Research Letters; Journal of Atmospheric Science; Journal of Geophysical Research; Nature; Science

Useful websites:

 

JPL rate coefficients, absorption coefficients, and enthalpy data:

                    http://jpldataeval.jpl.nasa.gov/pdf/JPL_02-25_rev02.pdf

 

Atmospheric chemistry glossary:  http://www.shsu.edu/~chemistry/Glossary/glos.html

 

NIST chemical kinetics data base: http://kinetics.nist.gov/index.php

 

Atmospheric chemistry courses are other universities:

  UC Irvine – Sergey Nizkorodov: http://eee.uci.edu/02f/41090/

  Harvard University – Daniel Jacob: http://www.courses.fas.harvard.edu/~eps133/

 

NASA electronic textbook on stratospheric chemistry:

http://see.gsfc.nasa.gov/edu/SEES/strat/class/S_class.htm

 

 


 

 

Case Studies.  Case studies will be presented at the end of the semester.  Each group should consist of 2 to 3 people, with a total of 4-6 groups.  Presentations will be 25 minutes long.  

A few suggestions for case studies

 


 

Exams.

 


Midterm exam -- 20 October 2003

 


Final exam -- 01 December 2003
      
>>> due noon, Wednesday, 17 December <<<