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INTRODUCTION

Mesoscopic approaches to dislocation climb such as dislocation
dynamics [1, 2] or crystal plasticity approaches [3] are based on
several assumptions:
(i) Elastic interactions between dislocations and vacancies are
neglected.
(i1) Transient regime is neglected.
(iii)) The dislocation is assumed to act as a perfect source/sink
of vacancies (local equilibrium assumption).
(iv) Diffusion is considered to take place in a hollow cylinder.

Solving the diffusion equation in
cylindrical coordinate and integrat-
ing the flux arriving at ., we obtain
the dislocation climb rate [1]:
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Objective: Discuss theoretically assumptions (iii) and (iv)

ANALYTICAL SOLUTION FOR A JOGGED DISLOCATION UPSCALING TO A CONTINUOUS PHASE FIELD MODEL [4]
1. Assumptions: 1. Free energy F = [ dr{fech + feore + fer} with:
e Jogs separated by d; are at local equilibrium with vacancies. ==
o Different formation energies and ditfusion coefficients in the dis- o
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" o 2. Dynamic equations obtained after writing a Cahn-Hilliard dynamics
vacancy in the core vacancy in the bulk on the total vacancy population w — ¢4+ c* ¢:
2. Stationary diffusion equations in the bulk and in the core:
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3. An asymptotic analysis in the sharp interface limit gives:
3. We solve Egs. (1-2) with ¢ = D,7,_./a. The climb rate is obtained by
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reproduce the climb behavior of a jogged dislocation.
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5. Collective climb of dislocations:
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CONCLUSION
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Thorough analytical solution for the climb of a jogged dislocation.
Assumption (iii) is shown to be valid only for high jog concentrations. /
Brings insights on the activation energy of climb.
Quantitative upscaling to a phase-field model enabling large scale _
simulations. . o]

e Collective climb simulations show that the cylindrical assumption ol BSOS S 5 0) s\ e
(iv) systematically overestimates the climb rate. dislocation density p (m ™) T e T

—_
)
w

b—\
S
N

1500}

=
y(nm

1000 F

strain rate £11 (s 1)
—
<

—_
@)
J

—_
=
co

REFERENCES

PERSPECTIVES
1] D. Mordehai et al. Phi.Mag. 88, p.899, 2008

2] S. Kelavarma et al. PRL 109, p.265504, 2012

o Investigate the influence of elastic interactions between vacancies and
dislocations.

e Choose L for a regime limited by jog nucleation (higher stresses). 3] M. Geers et al. JMPS 70, p.136, 2014

e Couple with a phase-field model for dislocation glide. 4] P-A. Geslin, B. Appolaire, A. Finel. APL 104, p.011903, 2014




