
A QUANTITATIVE MULTISCALE APPROACH
FOR THE CLIMB OF JOGGED DISLOCATIONS

P.-A. GESLIN (pageslin@gmail.com), B. APPOLAIRE, A. FINEL
LEM, ONERA/CNRS, CHÂTILLON, FRANCE

INTRODUCTION

Mesoscopic approaches to dislocation climb such as dislocation
dynamics [1, 2] or crystal plasticity approaches [3] are based on
several assumptions:

(i) Elastic interactions between dislocations and vacancies are
neglected.

(ii) Transient regime is neglected.
(iii) The dislocation is assumed to act as a perfect source/sink

of vacancies (local equilibrium assumption).
(iv) Diffusion is considered to take place in a hollow cylinder.
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Solving the diffusion equation in
cylindrical coordinate and integrat-
ing the flux arriving at rc, we obtain
the dislocation climb rate [1]:
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Objective: Discuss theoretically assumptions (iii) and (iv)

ANALYTICAL SOLUTION FOR A JOGGED DISLOCATION

1. Assumptions:
• Jogs separated by dj are at local equilibrium with vacancies.
• Different formation energies and diffusion coefficients in the dis-

location core and in the bulk.
• Energy barriers between the core and the bulk.

rc

R ∞d j

z

r

vacancy in the bulkvacancy in the core 

E

E f
c

E m
v

E m
c

E 
v-c

E f
v

E 
c-v

a 

2. Stationary diffusion equations in the bulk and in the core:
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3. We solve Eqs. (1-2) with ξ = Dvτv−c/a. The climb rate is obtained by
integrating the incoming flux:
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UPSCALING TO A CONTINUOUS PHASE FIELD MODEL [4]

1. Free energy F =
∫
dr{fch + fcore + fel}with:
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2. Dynamic equations obtained after writing a Cahn-Hilliard dynamics
on the total vacancy population ψ = c+ c∗φ:
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3. An asymptotic analysis in the sharp interface limit gives:
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4. We then identify with Eq. (3) and choose the kinetic coefficient L to
reproduce the climb behavior of a jogged dislocation.
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5. Collective climb of dislocations:
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CONCLUSION

• Thorough analytical solution for the climb of a jogged dislocation.
• Assumption (iii) is shown to be valid only for high jog concentrations.
• Brings insights on the activation energy of climb.
• Quantitative upscaling to a phase-field model enabling large scale

simulations.
• Collective climb simulations show that the cylindrical assumption

(iv) systematically overestimates the climb rate.

PERSPECTIVES

• Investigate the influence of elastic interactions between vacancies and
dislocations.
• Choose L for a regime limited by jog nucleation (higher stresses).
• Couple with a phase-field model for dislocation glide.
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