Mathematical model (binary mixture)

Numerical results

References

[1] C. Ramirez, C. Beckermann, A. Karma, H.-J. Diepers, Physical Review E 69 (051607) (2004) 1–16. [2] A. Younsi, A. Cartalade, M. Quintard, Proceeding IHTC-15 (2014). And other references.

Numerical method

Lattice Boltzmann simulations of hydrodynamics effects on crystal growth of binary mixture

Amina Younsi^a, Alain Cartalade^a, Mathis Plapp^b

a CEA-Saclay, DEN, DM2S, STMF, 91191 Gif-sur-Yvette, France, amina.younsi@cea.fr **bEcole Polytechnique, CNRS, LPMC, 91128 Palaiseau cedex, France, mathis.plapp@polytechnique.fr**

Phase field model [1] solved by using a Lattice Boltzmann method. The scheme is based on BGK approximations.

Details of numerical method are given in [2].

Equilibrium distribution functions

$$
f_i^{(0)}(\mathbf{x}, t) = A_i U(\mathbf{x}, t) + B_i \left(\frac{Dq(\phi)}{\eta(\phi)} U(\mathbf{x}, t) + \frac{1}{e^2} \mathbf{e}_i \cdot \mathbf{J}_{tot} \frac{\delta t}{\delta \mathbf{x}} \right)
$$

$$
\mathbf{J}_{tot}(\mathbf{x}, t) = \left[\nabla \left(\frac{Dq(\phi)}{\eta(\phi)} \right) + Dq(\phi) \nabla \left(\frac{1}{\eta(\phi)} \right) \right] U(\mathbf{x}, t) + \frac{\mathbf{J}_{at}(\mathbf{x}, t)}{\eta(\phi)}
$$

Collision and Streaming steps

$$
f_i(\mathbf{x} + \mathbf{e}_i \delta \mathbf{x}, t + \delta t) = f_i(\mathbf{x}, t) - \frac{1}{\zeta_U} (f_i(\mathbf{x}, t) - f_i^{(0)}(\mathbf{x}, t)) + w_i \left[E(\mathbf{x}, t) + \frac{Q(\mathbf{x}, t)}{\eta(\phi)} \right]
$$

Moment of order 0

 $U(\mathbf{x}, t) = \sum f_i(\mathbf{x}, t)$

Work in progress :

1. Extension of the model with two different specific heat in the two phases.

2. Coupling with flow: development of the

model to include a density change between solid and liquid.

Phase-Field	\n $\tau(\mathbf{n}) \frac{\partial \phi}{\partial t} = W_0^2 \nabla \cdot (a_s^2(\mathbf{n}) \nabla \phi) + W_0^2 \sum_{\alpha = x, y, z} \frac{\partial}{\partial \alpha} \left(\nabla \phi ^2 a_s(\mathbf{n}) \frac{\partial a_s(\mathbf{n})}{\partial (\partial \alpha \phi)} \right) + (\phi - \phi^3) - \lambda (Mc_{\infty}U + \theta) (1 - \phi^2)$ \n
Model	\n $\frac{\left(1 + k}{2} - \frac{1 - k}{2} \phi\right) \frac{\partial U}{\partial t} + \left(\frac{1 - \phi}{2}\right) \nabla \cdot \nabla U = \nabla \cdot (Dq(\phi) \nabla U - \mathbf{J}_{at}) + \left[1 + (1 - k) U\right] \frac{1}{2} \frac{\partial \phi}{\partial t}$ \n
\n $\frac{\partial \theta}{\partial t} + \left(\frac{1 - \phi}{2}\right) \nabla \cdot \nabla \theta = \kappa \nabla^2 \theta + \frac{1}{2} \frac{\partial \phi}{\partial t}$ \n	

$$
\text{Anisotropic function: } \begin{array}{|l|l|}\n\hline\n\end{array}\n\qquad\n\begin{array}{|l|l|}\n\hline\na_s(n) = 1 + \varepsilon_s \left(\sum_{\alpha = x, y, z} n_\alpha^4 - \frac{3}{5} \right) + \delta \left(3Q + 66 n_x^2 n_y^2 n_z^2 - \frac{17}{7} \right)\n\end{array}
$$