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The experimental work presented focuses on transient growth, morphological transitions, and control of
xenon dendrites. Dendritic free growth is perturbed by two different mechanisms: Shaking and heating up to
the melting temperature. Spontaneous and metastable multitip configurations are stabilized, coarsening is
reduced, leading to a denser sidebranch growth, and a periodic tip splitting is found during perturbation by
shaking. On the other hand, heating leads to controlled sidebranching and characteristic transitions of the tip
shape. A deterministic behavior is found besides the random-noise-driven growth. The existence of a limit
cycle is supported by the findings. Together the two perturbation mechanisms allow a “dendrite engineering”—
i.e., a reproducible controlling of the crystal shape during its growth. The tip splitting for dendritic free growth
is found not to be a splitting of the tip in two; rather, the respective growth velocities of the main tip and the
fins change. The latter then surpass the main tip and develop into new tips. The occurrence of three- and
four-tip configurations is explained with this mechanism. Finite-element calculations of the heat flow and the
convective flow in the growth vessel show that the idea of a single axisymmetric toroidal convection roll across
the whole growth vessel has to be dropped. The main effect of convection under Earth’s gravity is the
compression of the diffusive temperature field around the downward-growing tip. A model to explain the
symmetry of dendritic crystals—e.g., snow crystals—is developed, based on the interaction of crystal shape
and heat flow in the crystal.
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I. INTRODUCTION

The growth of crystals into undercooled melt is a non-
equilibrium process. It can lead to dendritic patterns as an
archetype for pattern formation in natural processes far from
equilibrium !see Fig. 1". Well-known examples of these pat-
terns are snow crystals. Although they all look similar, two
snow crystals have never an identical shape #1$. Every snow-
flake is a postcard with information about the atmospheric
conditions in the environment of its growth.

The appearance of dendrites in cast metals has attracted
strong interest in this topic: The microscopic dendritic struc-
ture arising when a solid grows from its undercooled melt
influences the bulk properties of metals like strength, elastic-
ity, ductility, etc.

Research in dendritic growth in the last decades has led to
a considerable theoretical understanding of several aspects.
In most theoretical models, the dendrite is assumed to grow
unperturbed in an undercooled melt. Prominent experiments
to prevent any perturbations were performed by Glicksman
and co-workers #2,3$ aboard the Space Shuttle. For the test-
ing of steady-state theories, a microgravity environment is
probably the best suited. Good agreement with the theories
was found in experiments on different aspects like growth
rate !e.g., Refs. #4,5$", tip shape !e.g., Refs. #6,7$", or side-
branching !e.g., Refs. #8–10$".

Two possibilities have been discussed about the onset of
sidebranches: On the one hand, there is the widely accepted
idea of thermal noise fluctuations !see Ref. #11$" that give
rise to the initiation of sidebranches. On the other hand, there
is another idea put forward by Holzmann #12$ proposing a

limit cycle model for growing dendrite as a dynamical system
with an oscillating tip velocity. In the last years most theo-
retical work has been focused on the first idea and experi-
ments were performed in this light.

Only a few experiments have been performed up to now
under the aspect of transient growth conditions, and most of
them have been done in a !quasi-"two-dimensional environ-
ment.

The influence of convective flow on the growth has been
investigated experimentally and numerically. It has been
shown in Ref. #13$ that with convective flow the sidebranch-
ing occurs at a higher spatial frequency than without convec-
tion. The selection parameter !* #see Eq. !4"$ was deter-
mined by Lee et al. #14$ to be up to 50% higher.

An increasing number of numerical simulations in two
and three dimensions have been performed in computational
domains large enough to be comparable with experiments
and theories. Phase-field models agree with observations of
doublons !e.g., Refs. #15–17$" and theoretically predicted

*Electronic address: mfell@phys.ethz.ch
†
Electronic address: bilgram@solid.phys.ethz.ch

FIG. 1. A typical dendritic tip of a xenon crystal grown free
from melt. The sidebranches grow on four sides !two of them point
into and out of the picture plane", but they are not symmetric.
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Transport equation in the bulk (diffusion equation)

+ boundary conditions at the interfaces : 

- energy/mass conservation

- local equilibrium

Diffusional growth and kinetic effects

 + kinetic effects
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Phase field models for diffusional growth

:  non-conserved fieldφ

C :  conserved field Ċ +∇ · J = 0

thermodynamic coupling between phase field and diffusion field

classical phase field model :

2 velocity scales :  W/τ , D/W

−δF

δφ
= τ φ̇

−∇δF

δC
=

J

D(φ)

F =

�

V
dV

�
f(φ) +W 2|∇φ|2 + g(φ, C)

�
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Diffusion equation in the bulk :

Conservation of mass at the interface : 

grand potential:

Macroscopic approach (sharp-interface description) of 
diffusional transformations in binary alloys A1-CBC

Interface kinetics :

Ċ = Di∇2C

Φ2 − Φ1 = AV + BJB

µ2 − µ1 = BV + CJB chemical potential:

µi = f �
i(Ci)

n

D1 D2

C2
C1

3 velocity scales describing interface kinetics 

Φi = fi(Ci)− Ciµi

total number of atoms number of solute atoms

κ

+ d0κ

D1(∇C1 · n) + V C1 = D2(∇C2 · n) + V C2 = JB
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−∇δF
δC

= 0 +
J

D(φ)

−δF
δφ

= τ φ̇+ 0

Non diagonal model (1)

classical diagonal model :

non diagonal model : 3 velocity scales : 

W/τ , D/W , 1/M

−∇δF
δC

= (MW∇φ)φ̇

(MW∇φ) · J−δF
δφ

= τ φ̇ +

+
J

D(φ)

M2 <
τ

max[D(φ)W 2(∇φ)2]
positiveness of the Onsager matrix:

Phys. Rev. E 86, 60601(R) (2012)
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�
1− D(φ)(MW∇φ)2

τ

�
φ̇ = −1

τ

δF
δφ

+
MWD(φ)

τ
∇φ ·∇δF

δC

Ċ = ∇ ·
�
D(φ)∇δF

δC
+MWD(φ)φ̇∇φ

�

determinant > 0} Non diagonal model (2)
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�
1− D(φ)(MW∇φ)2

τ

�
φ̇ = −1

τ

δF
δφ

+
MWD(φ)

τ
∇φ ·∇δF

δC

Ċ = ∇ ·
�
D(φ)∇δF

δC
+MWD(φ)φ̇∇φ

�

determinant > 0} Non diagonal model (2)

same structure as anti-trapping current

}
Tuesday, August 26, 2014



�
1− D(φ)(MW∇φ)2

τ

�
φ̇ = −1

τ

δF
δφ

+
MWD(φ)

τ
∇φ ·∇δF

δC

Ċ = ∇ ·
�
D(φ)∇δF

δC
+MWD(φ)φ̇∇φ

�

determinant > 0} Non diagonal model (2)

same structure as anti-trapping current

}
one-sided model: D1 � D2

D1(∇C1 · n) + V C1 = JB = D2(∇C2 · n) + V C2

JB = V Ceq
1 no requirement concerning Onsager symmetry
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Thin interface limit

A =

� ∞

−∞
dx [τ − 2MWCeq(x)][φ

�
eq(x)]

2 +

� ∞

−∞
dx

�
C2

eq(x)

D(φeq)
− (Ceq

1 )2

2D1
− (Ceq

2 )2

2D2

�

B =

� ∞

−∞
dx MW [φ�

eq(x)]
2 −

� ∞

−∞
dx

�
Ceq(x)

D(φeq)
− Ceq

1

2D1
− Ceq

2

2D2

�

C =

� ∞

−∞
dx

�
1

D(φeq)
− 1

2D1
− 1

2D2

�

p(φ) =
15

8

�
φ− 2φ3/3 + φ5/5

�

{ φeq(x) = tanh

�
x√
2W

�

Equilibrium profiles :

Switching function :

Ceq(x) = C̄ +∆C
p[φeq(x)]

2

C̄ =
Ceq

1 + Ceq
2

2

∆C = Ceq
1 − Ceq

2

Phys. Rev. E 88, 22406 (2013)
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1

D̄
=

1

2D1
+

1

2D2

1

∆D
=

1

2D1
− 1

2D2

Contrast of diffusivity

with
;

;
{

A =
ατ

W

�
1− β∆C2W

2

D̄τ

�
− 2C̄B

C = 0

α = W

� ∞

−∞
dx

�
φ�
eq(x)

�2

β =
1

α

� ∞

−∞

dx

4W

�
1− p2(φeq)

�

B = αM − γ∆C
W

∆D

1

D(φ)
=

1

D̄
+

1

∆D
q(φ)

q(φ) = −q(−φ) q(±1) = ±1

γ =

� ∞

−∞

dx

2W
[p(φeq)q(φeq)− 1]
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Contrast of diffusivity
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W
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1− β∆C2W
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D̄τ

�
− 2C̄B
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α = W
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−∞
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�
φ�
eq(x)

�2

β =
1

α

� ∞
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dx

4W

�
1− p2(φeq)

�

B = αM − γ∆C
W
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1

D(φ)
=

1

D̄
+

1

∆D
q(φ)

q(φ) = −q(−φ) q(±1) = ±1

γ =

� ∞

−∞

dx

2W
[p(φeq)q(φeq)− 1]

Karma-Rappel: 1/∆D = 0

➔ B = C = 0 M = 0if

} µ2 − µ1 = BV + CJB = 0Almgren: 

A =
ατ

W

�
1− β∆C2W

2

D̄τ

�
with

if B = 0 i.e. M =
γ∆C

α

W

∆D

then Φ2 − Φ1 = AV + d0κ

Phys. Rev. E 89, 60402(R) (2014)
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Conclusion

 - The kinetic cross coupling is necessary to fully describe interface kinetics.

➔ allows to have the same number of degrees of freedom in phase field model 
and sharp-interface description

➔ solves problems:

- elimination of temperature jump when finite contrast of diffusivity

- introduce the Ehrlich-Schwoebel effect in MBE

- tuning the solute trapping effect in alloys

➔ open question:
introduction of kinetic cross coupling for multi-
phase systems (treatment of the triple junction ?)

G. BOUSSINOT AND EFIM A. BRENER PHYSICAL REVIEW E 88, 022406 (2013)

(especially due to the length 2L of the simulation box). We will
therefore compare the rate resulting from phase-field simula-
tions with a semianalytical one computed numerically using
the procedure described in the Appendix A. However, it is very
insightful to analyze the structure of Eq. (49) because it pro-
vides, as we will see below, the qualitative behavior of λ in the
regime that was investigated with phase-field simulations. The
first term on the r.h.s. of Eq. (49) describes the kinetic effects. It
is obtained in the static approximation where ċ is neglected in
Eq. (29). It is proportional to the driving force F τv − ceq and to
Mg

D
. Therefore the ES effect (ν+ − ν−)$, proportional to M ,

is not the sole ingredient for the instability to occur. A diffu-
sional resistance [coefficient C̄ proportional to g

D
; see Eq. (44)]

of the step is also required. The second term on the r.h.s. of
Eq. (49) does not contain kinetic coefficients and is present in
the case of equilibrium boundary conditions. It accounts for the
convective correction to the concentration field on the terraces
due to ċ. See Appendix A for more details. It is proportional
to (F τv − ceq)2, is negative and promotes the stability of the
step-flow regime. For the instability to occur, the magnitude of
Mg

D
should therefore be large enough in order for the kinetic

effects to overcome this stabilizing convective effect.
We made simulations with F τv − ceq = 0.025, L = 20W ,

Dτ/W 2 = 20, and τv/τ = 20 leading to σ = 1. At t = 0, we
set ε(t = 0) = 0.2. As an illustration of the influence on the
stability of the vicinal surface of the ES effect (ν+ "= ν−),
we present, in Fig. 3, ε(t) for g

D
= 5 and MW/τ = ±0.4.

For MW/τ = 0.4, the vicinal surface is unstable and ε(t)
increases exponentially, leading eventually to a collision of
the paired steps for ε = 1. In opposition, for MW/τ = −0.4,
the vicinal surface is stable and ε(t) decreases exponentially
towards ε = 0 and the step-flow regime. Here F τv − ceq > 0
corresponds to the growth of the crystal, and the vicinal surface
is unstable for ν+ < ν− (M > 0). The opposite case where
ν+ > ν− (M < 0) is often considered [17,23] to be more
realistic, the instability therefore occurring for sublimation,
i.e., F τv − ceq < 0. We numerically checked, however, that
changing simultaneously the sign of F τv − ceq and M leaves
all observables unchanged up to the presently desired accuracy
(it is not excluded that higher order calculations may exhibit
odd powers of M multiplied by the square of F τv − ceq).

For the comparisons of phase-field simulations with the
macroscopic approach, our aim is to focus on kinetic effects

0.2

0.4

0

MW/τ = 0.4

MW/τ = −0.4

(t)

10−4 t/τv

0.1 0.2

FIG. 3. Time evolution of ε in the case g
D

= 5 and for
MW/τ = ±0.4. For MW/τ = 0.4, the vicinal surface is unstable,
i.e., ε increases exponentially. For MW/τ = −0.4, the vicinal surface
is stable, i.e., ε decreases exponentially towards 0.

and the related instability due to the ES effect. For that purpose,
we define

λ̃(M,g
D

) = λ(M,g
D

) − λ(−M,g
D

). (50)

According to Eq. (49), λ̃ represents the first term on the r.h.s.
in Eq. (49) that vanishes for M = 0 or g

D
= 0. We then

compare λ and λ̃ resulting from the phase-field simulations
to the semianalytical ones computed numerically using the
procedure presented in Appendix A as mentioned above.

We first present the investigation of the dependence on g
D

of
λ and λ̃ resulting from phase-field simulations together with
the corresponding result within the macroscopic approach.
We fix |MW/τ | = 0.1 and vary g

D
= −1, 0, 1, 3, 5. In

Fig. 4(a) we present λτv for MW/τ = ±0.1, and in Fig. 4(b)
we present λ̃τv only for MW/τ = 0.1 since by definition
λ̃(−M,g

D
) = −λ̃(M,g

D
). In both cases the simulation results

are in good quantitative agreement with the macroscopic
approach. Moreover, as expected qualitatively from Eq. (49),
the instability (λ > 0) occurs for sufficiently large g

D
when

M > 0, and λ̃ vanishes when g
D

= 0. For g
D

> 0.2, the
determinant $ of the macroscopic Onsager matrix in Eq. (47)
is positive. In those cases, one may use the kinetic coefficients
given by Eqs. (45) and (46) to perform time-dependent
calculations within the macroscopic approach and compare
them to phase-field simulations or to the semianalytical

(a)

(b)

MW/τ = 0.1
MW/τ = −0.1

0.8

−0.8

−1.6

2 4 6
gD−2 0

∆ > 0∆ < 0

104λτv

0.8

1.6

2.4

gD2 4 60

∆ > 0∆ < 0

−2

104λ̃τv

−0.8

FIG. 4. (a) Dimensionless rate λτv resulting from phase-
field simulations for Mτ/W = 0.1 (crosses) and Mτ/W = −0.1
(circles) and corresponding dimensionless rate within the macro-
scopic approach (line) as a function of g

D
. (b) Dimensionless rate λ̃

resulting from phase-field simulations for Mτ/W = 0.1 (crosses) and
corresponding dimensionless rate within the macroscopic approach
(line) as a function of g

D
. In (a) and (b), the vertical dashed line

separates the regions where the matrix of kinetic coefficients within
the macroscopic approach is positive definite ($ > 0) and where it is
not ($ < 0).
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