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Motivation

 Interesting and important issues in particle processes
Outline

 Extend phase field method to model free-body solid particles

 Moving particles of arbitrary shapes and sizes in close 
distance: rigid-body translations and rotations

 Short-range forces: mechanical contact, friction, cohesion, steric 
repulsion, Stokes drag (particle shape matters)

 Long-range forces: electric charge, charge heterogeneity, 
electric double layer, electric/magnetic dipole, van der Waals 
(point-charge/point-dipole approximation inaccurate)

 External forces: electric/magnetic field, gravity (field-directed 
self-assembly)

 Multi-phase liquid: fluid interface evolution, capillary force on 
particles (surface tension, Laplace pressure via Gibbs-Duhem
relation)
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 Diffuse interface field description: arbitrary particle shape, 
continuous motion on discrete computational grids, as desired 
for dynamic simulation

Model Formulation
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 Short-range forces: mechanical contact, steric repulsion
Model Formulation

( ) ( ) ( ) ( ) ( )sr 3; ; ; ; ;d d r
α α

α κ η α η α η α η α
′≠

′ ′= ∇ −∇  ∑F r r r r r

( ) ( )sr sr ;
V

dα α= ∫F F r

( ) ( ) ( )sr c sr ;
V

dα α α = − × ∫T r r F r

soft-particle potential

action-reaction symmetry

Arbitrary particle shapes 
without tracking interfaces

torque
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( ) ( ) ( )sr fα α α= +F F ξ

( ) ( ) ( )sr tα α α= +T T ξ

 Total force and torque acting on individual particle
Model Formulation

 Particle dynamics in viscous liquid

thermal noise for Brownian motion

( ) ( ) ( )i ij jV M Fα α α=

( ) ( ) ( )i ij jΩ N Tα α α=
small Reynolds number Re<<1,
Stokes drag (friction), mobility

 Equation of motion
( ) ( )0

0, ; , ;t tη α η α=r r

( ) ( ) ( )0 c c
0; ; ;i ij j j ir Q t r r t r tα α α = − + 

( ) ( ) ( )c c; ; ;i i ir t dt r t V t dtα α α+ = +

( ) ( ) ( ); ; ;ij ik kjQ t dt R t Q tα α α+ =

( ) ( ); cos 1 cos sinij ij i j ijk kR t m m mα δ ω ω ε ω= + − −

mapping without
error accumulation

translation
rotation

incremental rotation
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 Particle sedimentation and stacking
Simulation
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 Particle sedimentation and stacking
Simulation
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Simulation
 Phase field model of solid-state sintering: rigid-body motions
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Model Formulation
 Long-range force: charged particles

( ) ( ), , ;t t
α

ρ ρ α=∑r r ( )
( )

( )3
ex

3
0 2

ii d k e
k

ρ
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⋅= − ∫ k rk
E r E n



( ) ( ) ( )el 3;
V

d rα ρ α= ∫F E r r ( ) ( ) ( ) ( )el c 3;
V

d rα α ρ α = − × ∫T r r E r r

( ) ( ) ( ), ; , ;t tρ α ρ α η α=r r

( ) ( ) ( ) ( ), ; , ; 1 , ;t t tρ α ρ α η α η α=  −  r r r
body charge
surface charge



Materials Science and EngineeringPFM2014, State College, PA

( ) ( ) ( ) ( )el sr fα α α α= + +F F F ξ

( ) ( ) ( ) ( )el sr tα α α α= + +T T T ξ

 Total force and torque acting on individual particle

Model Formulation
 Long-range force: charged particles
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body charge
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 Particles of same charge: repulsion
Simulation



Materials Science and EngineeringPFM2014, State College, PA

 Particles of opposite charges: attractive self-assembly
Simulation

dipolar stable

mutually induced dipoles
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Self-Assembly Mechanisms

(1) neutral & symmetric (2) induced dipole (3) attraction (4) repeated growth & dipolar

ρsurf = -2.0

ρsurf = +1.0

N-:N+ = 1:2

neutral chain formation

growth 
stopper
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(1) charged & dipole (2) alignment (3) attraction (4) repeated growth & charged

charged chain formation, 
mutually repulsive,

as straight as possible

repel at long distance
attract at short distance

ρsurf = -2.0

ρsurf = +1.0

N-:N+ = 1:1

Self-Assembly Mechanisms
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 Particles of opposite charges: non-spherical shapes
Simulation
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 Stacking of charged particles under external fields
Simulation

g
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Model Formulation
 Long-range force: dipolar particles
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Model Formulation
 Long-range force: dipolar particles
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 Long-range force: magnetic particles
( ) ( ) ( ), ; , ;t t t

α

α η α=∑M r M r ( )
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Simulation
 Dipolar particles: agglomeration
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles



Materials Science and EngineeringPFM2014, State College, PA

Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles



Materials Science and EngineeringPFM2014, State College, PA

Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles



Materials Science and EngineeringPFM2014, State College, PA

Self-Assembly of Arbitrary-Shaped Dipolar Particles



Materials Science and EngineeringPFM2014, State College, PA

Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Self-Assembly of Arbitrary-Shaped Dipolar Particles
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Simulation
 Dipolar particles: field-directed self-assembly
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Self-Assembly of Arbitrary-Shaped Dipolar Particles

E
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Self-Assembly of Arbitrary-Shaped Dipolar Particles

E
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Self-Assembly of Arbitrary-Shaped Dipolar Particles

E
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Processing-Microstructure Relationship
 Mechanisms of Filler Particle Self-Assembly

attraction repulsion

 Strongly anisotropic force that can be tuned by external field

 Rigid-body motion (translation and rotation) of colloidal particles in 
liquids (water, organic solvent, polymer melt, etc.)
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Simulation
 Phase field model of dielectric/magnetic composites
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Dielectric: PZT fillers Electro-Optic: PbTiO3 nanoparticles
Magnetostrictive: Terfenol-D particles

 Alignment of irregular-shaped functional filler particles

Or et al, J. Appl. Phys., 93, 8510, 2003.Duenas et al, J. Appl. Phys., 90, 2433, 2001.

Shanmugham et al, J. Mater. Res., 19, 795, 2004.Or et al, J. Magn. Magn. Mater., 262, L181, 2003.

equiaxed
irregular

needle-shaped
irregular

random aligned

Particle-Filled Polymer-Matrix Composites
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 Particles in multi-phase liquid: capillary forces
Model Formulation

{ } { }( ) 21,
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F f c c dVα β α α
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{ } { }( ) ( ) ( )
2 2

4 3 4 3 2 2 2 2
1 2

1 1
, 3 4 3 4 6f c A c c c c cα β α α β β α α β

α β β α

η η η χ λ η
= =

  
= − + − + +  

   
∑ ∑ ∑∑

c FM
t c
α

α
α

δ
δ

 ∂
= ∇ ⋅ ∇ ∂  

A A B Bdp c d c dµ µ= +
0

1 1 2 2p p c cµ µ− = +

Cahn-Hilliard

Landau polynomial

Gibbs-Duhem

Young-Laplacep
R
γ

∆ =

f cα αµ = ∂ ∂
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 Particles in multi-phase liquid: capillary forces
Model Formulation

( )1 2 1 2c c c c c∇ = ∇ −∇

LP
P( , ) ( , ) ( )d p dVβ κ η β= ∇F r r r

IT
T

2
T

( ) [ ( )]

[( ) ]

d c c dV

c c c dV

β

β β

β κ η

κ η η

= ∇ × ∇ ×∇

= ∇ ⋅∇ ∇ − ∇ ∇

F

Laplace pressure

interfacial tension
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 Irregular-shaped particle at curved fluid interface
Simulation
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 Particle self-assembly directed by fluid interface: encapsulation
Simulation

negative pressure

positive pressure

zero pressure
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 Bijel: bicontinuous interfacially jammed emulsion gels
Simulation
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 Bijel: bicontinuous interfacially jammed emulsion gels
Simulation
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 Capillary bridges for in-situ firming of colloidal crystals
Simulation

100 nm, 10,000 Pa
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 Capillary bridges for in-situ firming of colloidal crystals
Simulation
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