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A phase-field model for investigating the surface morphological evolution of a film is developed,
taking into account the surface energies of film and substrate, the interfacial energy between the film
and substrate, and the elastic energy associated with the lattice mismatch between the film and
substrate. Using the lattice mismatch and the surface energies for the Ge/Si heteroepitaxial system,
the morphology of islands and the formation of a wetting layer are investigated using
two-dimensional simulations. The results show that the wetting angle increases continuously with
the increase in the lattice mismatch, and the surface angle of the island on wetting layer varies with
the island size. It is demonstrated that the anisotropy of elastic interactions alone is not sufficient to
cause surface angle discontinuity or faceting that is observed in experiments. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1996856�

I. INTRODUCTION

A nonhydrostatically stressed solid in contact with its
own vapor phase can develop morphological instabilities to
partially release its elastic energy, leading to a surface rough-
ening and the formation of a three-dimensional �3D� array of
islands or quantum dot structures.1–3 Several analytical ap-
proaches have been proposed based on a surface evolution
equation, taking into account the mass transport, surface, and
elastic energy.4–7 There have also been a number of phase-
field models developed for predicting the morphological evo-
lution of a stressed solid in contact with its melt,8 the surface
instability of heteroepitaxial films,9,10 and the effect of mis-
fitting dislocations on surface morphologies.11 Numerical
simulations by coupling a kinetic equation with the finite
element method �FEM� have also been employed to model
the formation of quantum dot structures in heteroepitaxial
thin films,12,13 where they assume a priori the shape of is-
lands or the existence of a wetting layer. Recently, Green’s
function-based Fourier spectral method has been proposed to
study the effect of growth kinetics on surface morphology.14

The proposed numerical models describe the surface insta-
bilities with two competing factors, the elastic and surface
energy. However, the island morphology is strongly depen-
dent on the relative values of the surface energies of the film
and substrate, the interfacial energy between the film and
substrate as well as the elastic energy associated with the
lattice-mismatch strain.

The main purpose of the current study is to present a

phase-field model to describe the surface evolution of a
stressed thin film in contact with its vapor phase taking into
account the elastic energy, the surface energies, and the in-
terfacial energy. The elastic solution is obtained by consider-
ing a multiphase system with different elastic constants in
different phases. Our approach does not make any a priori
assumptions with regard to the final island shape, the ratio of
the height to the base length of an island, the distance be-
tween islands, and the possible existence of a wetting layer.
It is able to predict the formation dynamics, shape, and spa-
tial distribution of island structures with or without a wetting
layer from an initially flat film constrained by a substrate
through a mismatch strain.

II. PHASE-FIELD MODEL

We consider a cubic thin film grown heteroepitaxially on
a cubic substrate. The film undergoes lattice-mismatch-
induced surface evolution forming an island structure with or
without a wetting layer. We introduce three conserved order
parameters, �1, �2, and �3, to represent the volume fractions
of gas, film, and substrate phases, respectively �see Fig. 1�.
The coarse-grained Ginzburg–Landau free energy of the
multiphase system, including bulk free energies, surface en-
ergies, interfacial energy, and elastic energy, is modeled us-
ing the following free-energy functional:

F =� �− �
i�j

2

��ij
2 � �i · � � j + �ij�i

2� j
2� + fel�dV,

i, j = 1,2,3, �1�

with �ij =� ji , �ij =� ji, and the constraint �i=1
3 �i=1.0, where
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�ij is the gradient energy coefficient, �ij is the height of
double-well potential, and fel is the elastic energy density.
We define the elastic constants and eigenstrains as a function
of order parameters15
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where �ijkl
0 is the elastic constants of a reference phase, �ij

0,�p

is the eigenstrain of p phase, and ��ijkl
�p =�ijkl

�p −�ijkl
0 . Me-

chanical equilibrium is satisfied when �ij,j =0, where �ij are
the stress components in the film and are given by �ij

=�ijkl��kl−�kl
0 �. The total strain �kl�r� is separated into homo-

geneous strain ��ij� and heterogeneous strain ���ij�, i.e.,
�ij�r�=�ij +��ij�r�. The homogeneous strain represents the
uniform macroscopic strain characterizing the macroscopic
shape and the volume change. Thus, the heterogeneous strain
satisfies 	V��ij�r�d3r=0. To solve the heterogeneous strain,
we introduce a set of displacement ui�r� through ��ij�r�
= 1

2 �ui,j +uj,i�. The equation of mechanical equilibrium can be
written as
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The elastic solution for Eq. �4� can be obtained by the itera-
tion method in which the zeroth-order solution in the Fourier
space is given by16

uk
0�g� = − iGik�g�gj�

p
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where gj is the jth component of a reciprocal lattice vector
g , Gik�g� is the inverse tensor to �G−1�g�� jk=g2�ijkl
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0,�q. The nth order
solution in the Fourier space is given by
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where ��ij
�p =��ijkl

�p �kl and ��lj
�p�q =��ijkl

�p �kl
0,�q. The stress

and strain fields, and thus, the elastic energy density fel can
be calculated from the displacement field in terms of the
order parameters.

To simplify the evolution equation, we assume that the
phase field ��3� describing the substrate is static, i.e., it does
not evolve with time. Since �1+�2+�3=1, we choose �2 as
the independent phase field and its evolution follows the
Cahn–Hilliard equation

��2

�t
= � · �M �

�F

��2
� , �7�

where the mobility is given by M =�1�1−�1�M , M is the
average mobility, and F is the total free energy given in �1�.

In the numerical simulations, we rescale the length and
time using r*=r / l0 and t*= tMf0 / l0

2 where l0 is a character-
istic length scale and f0 is an energy scale. The evolution
equation in the reduced variables is given by

��2

�t* = �* · �1�1 − �1��*�− 4�12
*2�*2�2 + 2��23

*2 − �12
*2

− �31
*2��*2�3 + 2�12

* �1�2��1 − �2� + 2�23
* �2�3

2

− 2�31
* �3

2�1 + f�2

*el� , �8�

where �*= l0�, �ij
* =�ij

2 / f0l0
2, �ij

* =�ij / f0, and f*el= fel / f0. For
numerical stability and efficiency, we employed the semi-
implicit Fourier-spectral method for solving the Cahn–
Hilliard equation with a variable mobility.17

III. RESULTS AND DISCUSSION

The surface and/or interfacial energy are related to the
gradient energy coefficient and the height of double-well po-
tential as 
ij =�ij

�2�ij /3, which is determined from the sta-
tionary profile of the phase-field parameter. The effects of
surface energies and interfacial energy on the morphology of
the island near equilibrium are shown in Fig. 2. The light
gray, gray, and dark gray represent the gas, substrate, and the
film, respectively. The mismatch strain across the film/

FIG. 1. Schematic illustration of a stressed heteroepitaxial film.

FIG. 2. Morphology of an island near equilibrium and the corresponding
surface and interfacial energies.
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substrate interface is assumed to be zero and the gravity
force is not considered here. Using different ratios of the
surface energies, 
12 and 
13 for film and substrate, and the
interfacial energy 
23 between the film and the substrate, as
listed in the table, the film is shown to evolve from an initial
hemisphere to various shapes. The simulated contact angles
measured from the final shapes for each case agree with the
analytical solutions from Young equation, 
13=
23

+
12cos �, within an error range of �5°.
As the mismatch strain between film and substrate in-

creases, the elastic energy is found to affect the wetting angle
of island. Figures 3�a� and 3�b� are magnified plots around
the triple points with the contours of field variables �1 and
�2 at the values given on the legends, 0.5, 0.45, 0.4, and
0.33. The gray region corresponds to the substrate where
�3�0.33. The measured contact angle is the angle between
x1 axis and the line connecting the triple point �1=�2=�3

=1/3 and the point where �1=�2=0.5. Other points marked
by circles where �1=�2 are approximately on the line. Fig-
ure 3�c� shows the change in the equilibrium contact angle as
a function of the mismatch strain. The surface energies and
interfacial energy are chosen to be 1.0/1.0/0.293 for

12/
13/
23, respectively, as the case �b� in Fig. 2, thus ��
=�measured−45°. It is shown that the lattice-mismatch strain
significantly changes the contact angle of the island. This
result is contradictory to the sharp interface analysis which
compared elastic energy with interfacial energy within a
circle of radius R* centered at the triple point and concluded
that the singularity associated with the elastic fields is
weaker than that due to the interfacial energy and hence can-
not modify the wetting angle in the limit that R*→0.18 Mi-

croscopically, however, the radius should at least be larger
than the lattice constant. In our simulations, the elastic en-
ergy Eelas

* and the interfacial energy Eint
* within the circle of

R* of nanometer size from the triple point are calculated and
plotted versus R* in Fig. 4. We can see that Eelas

* and Eint
* are

comparable, and the ratio Eelas
* /Eint

* increases with the de-
crease of R*, which implies a stress concentration around the
triple point. As a consequence, the contact angle increases
with the increase of the mismatch strain.

An initially flat film may evolve to an island structure
when the strain energy relaxation overcomes the surface en-
ergy increase, as observed in many heteroepitaxial films su-
chas Si1−xGex on a Si substrate.19 In order to simulate the
morphological evolution of multiple island structure, we use
the parameters that correspond to the Ge/Si system. The
lattice-mismatch strain is 4% between pure Ge and Si. The
surface energies and interfacial energy for �001� epitaxial
growth are 
12=1.0 N m−1, 
13=1.5 N m−1,20 and 
23

=0.01 N m−1.21 The elastic constants are C11=166

109 N m−2, C12=64.0
109 N m−2, and C44=79.6

109 N m−2 for Si, and C11=126
109 N m−2, C12=44

109 N m−2, and C44=67.7
109 N m−2 for Ge,
respectively.13,22 We define the energy scale following Ref.
15, i.e., f0=NVkBT, where NV is the number of atoms per unit
volume, kB is the Boltzmann constant, and T is the tempera-
ture in K, thus f0 is �109 N m−2 at 1000 K. We used 256

64 discrete grid points and applied periodic boundary con-
ditions along x1 and x2 axes. The grid spacing in real space is

FIG. 3. Change of contact angle with mismatch strain for the case with

12/
13/
23=1.0/1.0/0.293. Line contours are drawn of field variables �1

and �2 at the values given by the legends, 0.5, 0.45, 0.4, and 0.33. The gray
region corresponds to the substrate.

FIG. 4. Variation of �a� interfacial and elastic energies and �b� their ratio
within a circle of radius R* from the triple point.
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chosen to be �x1 / l0=�x2 / l0=1.0 with the length scale l0 of
1.0 nm. The time step for integration is �t*=4
10−3; The
initial perturbation of the surface is described by the film
thickness h�x1� using a superposition of p static plane waves
with the amplitudes am and wave numbers km , h�x1�=h0

+�m=1
p am sin�kmx+�m�, where h0 is the average film thick-

ness, �m the initial phase of the mth wave within the range
�m� �0,2��, and the index m the number of the
wavemodes.9 The wave number is km=2�m /L, where L is
the domain length in the x1 direction. We used 32 waves with
h0=6l0 and am=0.25l0 for all waves to describe the initial
thickness profile. Figures 5�a�–5�d� show the temporal evo-
lution of a stressed Ge film on a Si substrate, and the corre-
sponding energy changes, �E*=Et* −Et*=0, are plotted in Fig.
5�e�. It can be seen that the surface perturbations with high
frequencies decay rapidly at the initial stage, driven by the
decrease in the surface energy �Esurf

* . Islands form gradually
to relax the elastic energy. The base lengths of the islands
observed in Fig. 5�d� are about 43–55 nm, which, despite the
two-dimensional nature of simulations, are surprisingly simi-
lar to the experimentally measured values of Ge islands on Si
before the coarsening stage begins.23 The ratio of the height
to the length of islands is 0.17–0.19 which is similar to the
limiting value of 0.18 observed in chemical-vapor
deposition.24 However, it is much larger than that of hut
structures,25 but is smaller than equilibrium values which can
be as large as 0.3.26

Since there exists a wetting layer, the surface angle is
defined as the angle that the extrapolated surface line where
�1=�2=0.5 makes with the substrate, as indicated by � in
Fig. 6. Considering the fact that the elastic energy is propor-
tional to the island volume, the island size is likely to affect
the surface angle for a given lattice mismatch. To study the
effect of island size on the surface angle, we simulated the
time evolution of a single island with various sizes. An initial
hemisphere with the radius R* on the substrate evolves to
form the wetting layer quickly to reduce the interfacial en-
ergy, and the surface maintains a certain angle with the sub-
strate where the total energy of the system is minimized. The
measured surface angles are plotted in Fig. 6 with respect to
R* along with the morphologies. It is found that the surface
angle increases with the increase in R*. From the dependence
of wetting angles and surface angles on the elastic energy, we
can conclude that the anisotropy in elastic interactions alone
is not sufficient to produce the faceting of islands which is
observed in experiments. To understand the formation of the
specific facet angles, the phase-field model needs to be ex-
tended to include the anisotropy in surface energies and sur-
face stresses that are believed to be responsible for
faceting.27–32

IV. CONCLUSIONS

A phase-field model is developed for predicting the
stress-induced instabilities of a solid film in contact with a
gas phase and constrained by a substrate. It solves the elas-
ticity equation using an efficient iterative method and allows
different relative values of surface energies and interfacial
energy. The model can be employed to predict the island
shape, spatial distribution as well as their temporal evolution
with or without a wetting layer. It is shown that the lattice
mismatch has a significant effect on the wetting angle of
islands on a substrate, and the surface angle of the island on
wetting layer depends on the island size for a given lattice
mismatch. The results demonstrate that the elastic energy
results in continuous changes in wetting angles and surface
angles. The model will be extended to include the surface

FIG. 5. Temporal evolution of epitaxial Ge film on Si substrate ��a�–�d�� and
the corresponding energy changes �e�.

FIG. 6. The variation of surface angles of a single Ge island with size.
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energy anisotropy and the surface stress anisotropy for study-
ing the faceting of island surfaces in the future.
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