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The domain dynamics of a quenched system with many nonconserved order parameters was investi-
gated by using the time-dependent Ginzburg-Landau kinetic equations. Our computer simulation of a
model two-dimensional system produced microstructures remarkably similar to experimental observa-
tions of normal grain growth. After a short transient, the average domain or grain radius was found to

increase with time as ¢'/?

Q-state Potts model Monte Carlo simulations.

Understanding the temporal and spatial evolution of
the morphology or microstructure of a quenched system
is not only of fundamental interest to physicists, materi-
als scientists, and applied mathematicians but is also im-
portant in the processing of technologically advanced
materials. The highly nonlinear and nonequilibrium dy-
namics of quenched systems have been extensively stud-
ied by employing continuum Ginzburg-Landau- or
Cahn-Hilliard-type kinetic equations.! Most of the previ-
ous works are, however, performed for systems which
can be described using just one or two conserved or non-
conserved order parameters. Systems characterized by a
single order parameter include spinodal decomposition
(described by a conserved order parameter—the devia-
tion from average composition) and order-disorder trans-
formation (described by a nonconserved order
parameter—the long-range order parameter). There is
strong evidence that a long-time scaling regime exists in
which the domain-size distribution does not change with
time, but the average domain size scales with time as ",
where n is called the domain-growth exponent. It has
been generally agreed that for a conserved order parame-
ter, the domain-growth exponent is %,2’3 and for a non-
conserved order parameter, it is %.4’5 A recent computer
simulation study has also predicted that for a conserved
vector order parameter with two components, the aver-
age domain size increases with time as ¢!/4.® During the
last decade, the interesting ordering kinetics of the Q-
state Potts model have been extensively investigated us-
ing Monte Carlo simulations. It was shown that the
growth exponent, n, decreases linearly in the range
2=<Q =30. For Q =30, the exponent is a constant close
to 0.41.7 However, recent Monte Carlo simulations on
very large systems and for very long simulation times re-
vealed that the growth exponent in the Q-state Potts
model is actually § for 2<Q =< «.® More recently, the
dynamics of domain growth in a system with multiply de-
generate ordered states was modeled by Enomoto and
Kato using a nonconserved complex scalar order parame-
ter.” They also showed that the average size of ordered
domains grows with time ¢ as 7!/? independently of the
degeneracy.

In this paper we report computer simulation results on
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, in agreement with most of previous mean-field predictions and more recent

domain-growth kinetics of a quenched system with many
nonconserved order parameters (7,7, ...,7,) by em-
ploying the continuum time-dependent Ginzburg-Landau
model. For very large p, the model describes grain
growth, with each order-parameter field representing
grains of a given crystallographic orientation. A key
feature of this model for studying grain growth is that the
grain boundaries are diffuse, whereas essentially all previ-
ous mean-field and statistical theories and Monte Carlo
simulations of normal grain growth assumed that they
were sharp. Unlike the Monte Carlo simulations based
on the Q-state Potts model in which grain boundaries are
made up of kinks, grain boundaries in our continuum
model are smooth. The grain-boundary energy can be
determined in a fashion similar to the procedure de-
scribed by Cahn and Hilliard for interphase interfacial
energies.'© A distinct difference between the present
model and that of Enomoto and Kato’ is in the fact that
in the model of Enomoto and Kato, there exist only grain
boundaries between two adjacent orientations corre-
sponding two adjacent free-energy potential wells in the
coordinate of a complex order parameter, whereas in the
present model, grain boundaries between any two
different orientations can appear. We found convincing
evidence that the average grain radius grows as ¢!/2 after
a short transient following the quench, in agreement with
most mean-field and statistical theories for normal grain
growth!! and more recent Monte Carlo simulations using
the Q-state Potts model.?

We employed the following simple free-energy density
functional,
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where 17); are order parameters, and «, 3, and y are phe-
nomenological parameters. It can be easily shown that
the above simple free-energy model gives a second-order
phase transition whereas crystallization is always first or-
der. However, since we are mainly interested in the
long-time kinetics of a quenched system well below the
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crystallization temperature, the free-energy model is not
important as long as it gives rise to an infinite number of
potential wells which describe the equilibrium free ener-
gies of crystalline grains in different orientations.
The total free energy of an inhomogeneous system is
given by
F=Fy+ [
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where «; are the gradient energy coefficients.

The kinetics of a quenched system and the relaxation
of the p order-parameter fields are described by the usual
Langevin equations (Ginzburg-Landau plus a noise
term), !
dn(nt) __ oF

=—L; +&;(r,t), i=12,...,p,
dt " 8m;(r,t) UL P

(3)

where L; are the kinetic coefficients. The noise term
§(r,t) satisfies for the following correlation-dissipation re-
lationships,

(&i(r,1))=0 4)
and
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where { - - - ) represents average over space and time and

6 is the Kronecker delta function. Substituting the free-
energy functional F (2) into the kinetic Eq. (3) gives
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Using the free-energy model (1), we arrive at the final set
of kinetic equations,

dn; _ 3 L 2
— =~ Li | —am+Bn}+2yn; 3 mi—wi VP, | +¢;

JFi

i=12,...,p. (1
For p=1, the above set of equations describes the order-
ing and subsequent antiphase domain coarsening kinetics;
for p=2, it describes the ordering and interface migration
kinetics which produces two different orientation variants
for adsorbed atoms on a surface; when p goes to infinity,
the infinite set of equations describes the grain-growth
kinetics in a polycrystalline material. In reality, however,
a finite but large number for p is sufficient for realistically
modeling the grain-growth kinetics.

In our computer simulation, the set of kinetic equa-
tions were discretized with respect to space and time.
The results reported below were obtained using 400 X 400
square lattice points. The Laplacian is approximated by
the following equation:

1
2, =
i (Ax)?

1 1
5§(nj~n,-)+z§(nj'—m) , (8)

where Ax is the grid size, j represents the set of first-
nearest neighbors of 7, and j' is the set of second-nearest
neighbors of i. It has been shown previously that the
two-neighbor model approximation for the Laplacian can
improve the numerical stability over the one-neighbor
model.'> The set of kinetic equations is solved using the
simple Euler technique,
_ dn;
7,(t +At)=mn;(t)+—— XAt ,
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FIG. 1. Temporal evolution of the domain
morphology for the case of p=4. (a) time step
200; (b) time step 1000; (c) time step 2000; and
(d) time step 4000.
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where At is the time step for integration.

All the results reported in this paper were obtained by
assuming, a=1.0, f=1.0, y=1.0, «x;=2.0 for all i
Ax=2.0, At=0.1, L;=1.0 for all i and §;=0.0. As
shown in many other studies with one or two order pa-
rameters, the noise term does not alter the later stage
domain-growth kinetics in any significant way.® The ini-
tial condition is generated by assigning small random
values to all the order parameters, simulating a liquid or
disordered phase at a very high temperature. Different
initial conditions are generated using different sets of ran-
dom numbers.

The temporal evolution of a system with p=4 and 36 is
shown in Figs. 1 and 2, respectively. In Figs. 1 and 2, the
microstructures are obtained by defining the following
function:

P
e(r=n*r= 3 nir) . (10)

i=1

The values of ¢(r) are displayed by gray levels with low
and high values represented by dark and bright colors,
respectively. Since the values within the domains are
close to 1.0, while those at the boundaries are
significantly less (~0.6), the bright regions are domains
and the dark lines are grain boundaries.

By visually comparing the microstructure evolution in
Figs. 1 and 2, it is clear that the domains or grains grow
much faster in the case of four order parameters,
reflecting the fact that there is a much larger chance for
coalescence, than the case of 36 order parameters. For
the case of p=4, there is a high fraction of antiphase
domain boundaries and domain structures are partially
similar to the domain structures in ordering alloys and
partially similar to grain structures in normal grain
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FIG. 3. Average grain area as a function of time steps.
Crosses: p=4; and open circles: p=36.

growth. However, the microstructure in Fig. 2 for p=36
is remarkably similar to experimentally observed micros-
tructures of normal grain growth in many single-phase
polycrystalline metals and ceramics. Since each order pa-
rameter can have values close to 1 or —1 and some inter-
mediate values in between at grain boundaries, 36 order
parameters produce 72 different orientations of grains.
After coarsening for a short period of time following the
quench, most boundaries become straight and meet at tri-
junctions. It is also observed that shrinking and disap-
pearance of small grains creates four-grain junctions
which quickly split into two trijunctions due to their in-
stability.

We calculated the grain size as a function of time by a
brute-force counting of the size of each individual grain

FIG. 2. Temporal evolution of the domain
morphology for the case of p=36. (a) time
step 200; (b) time step 1000; (c) time step 4000;
and (d) time step 10 000.
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at a given time, and obtained the average grain size from
the size of each individual grain and the total number of
grains. The average grain area in our two-dimensional
system as a function of time for both p=4 and 36 is
shown in Fig. 3. For the case of p=4, the data were ob-
tained by averaging over five simulation runs starting
with different initial conditions; and for the case of p=136,
the data are the averages over ten simulation runs. The
time dependence of average grain size is fit to the mod-

or
A" —Ar=ct, (11

where R is average grain radius and 4 is average grain
area, C and C’ are proportionality constants. If R and 4
are much larger than R, and 4, the equations may be
approximated by R=Ct" and 4 =C’t" =C't>" where n
is usually referred to as grain-growth exponent. As
shown in Fig. 3, for both cases, the time dependence of
the average grain area is almost perfectly linear, and
hence the growth exponent, n, for both cases was found
to be almost exactly 1.

In many other studies, the domain- or grain-growth ex-
ponent was obtained from the slope of InR or In4 vs Int
plot. The corresponding data for p=4 and 36 were plot-
ted in Fig. 4. It is shown that there are curves in the ini-
tial stage of grain growth for both cases. Even if we dis-
carded the data in the curved regions and then linearly fit
the data to straight lines, the obtained exponent for both
cases was ~0.45. However, if we took into account of
the average area at =0, Zo, obtained from the linear fits
to the A vs t data, and plotted the data as In( 4 — 4,) vs
Int shown in Fig. 5, the growth exponent obtained by
linearly fitting to the data in Fig. 5 is almost exactly 1 for
both cases. Therefore, it is important to subtract the
average area at t=0 from the average area data in order
to obtain accurate estimate of the growth exponent using
linear fitting to a In4 vs Inz plot. The importance of tak-
ing into account of the initial average grain size has also
been emphasized by Kurtz and Carpay. 3
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FIG. 4. The logarithm of average grain area as a function of
the logarithm of time step. Crosses: p=4; and open circles:
p=36.
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FIG. 5. The logarithm of average grain area subtracted by
the initial average grain area as a function of the logarithm of
time steps. Crosses: p=4; and open circles: p=36.

To check if the obtained exponent is in the scaling re-
gion, we also calculated the grain-size distribution. We
plotted the probability of a grain having grain area A4
against log,,( 4 /4,) in Fig. 6 for the case of p=36. The
grain-size distributions obtained at time step 3000, 6000,
and 10000 appear very similar, indicating that the data
that we used to fit the growth exponent were obtained in
the scaling region.

In conclusion, we investigated the domain dynamics of
a quenched system with more than one nonconserved or-
der parameters by using the time-dependent Ginzburg-
Landau model. Using a large number of order parame-
ters, the model is ideal for computer simulation of grain-
growth kinetics in polycrystalline materials. We fcund
that, after a short transient, the time dependence of aver-
age domain or grain radius follows almost perfectly as
t!'72 independent of the number of order parameters.
This model, with proper additional equations, can simu-
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FIG. 6. Grain-size distributions for the case of p=36 at three
different time steps. Open triangles: time step 3000; filled
squares: time step 6000; and crosses: time step 10 000.
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late a wide variety of problems concerning microstruc-
ture evolution such as solidification, solute segregation
into grain boundaries, second phase formation at grain
boundaries, and their effects on the domain-growth kinet-
ics.

We thank Dr. A. G. Khachaturyan, Dr. J. W. Cahn,
Dr. W. C. Carter, Dr. G. L. Messing, and Danan Fan for

LONG-QING CHEN AND WEI YANG 50

useful discussions on many occasions. We are also grate-
ful to Ramakrishna Poduri for careful reading of the
manuscript. This work is supported by NSF under Grant
No. DMR93-11898 and by the Petroleum Research Fund
administrated by the American Chemical Society. The
computing time was provided by the Pittsburgh Super-
computing Center under the Grant No. DMR 900022P.

13. D. Gunton, M. San Miguel, and P. Sahni, in Phase Transi-
tions and Critical Phenomena, edited by C. Domb and J. L.
Lebowitz (Academic, London, 1983), Vol. 8, p. 267, and,
references therein.

2I. M. Lifshitz and V. V. Slyosov, J. Phys. Chem. Solids 19, 35
(1961).

3T. M. Rogers, K. R. Elder, and Tashmi C. Desai, Phys. Rev. B
37, 9638 (1988).

41. M. Lifshitz, Sov. Phys. JETP 15, 939 (1962).

5S. M. Allen and J. W. Cahn, Acta Metall. 27, 1085 (1979).

6M. Seigert and M. Rao, Phys. Rev. Lett. 70, 1956 (1993).

M. P. Anderson, D. J. Srolovitz, G. S. Grest, and P. S. Sahni,

Acta Metall. 32, 783 (1984).

8G. S. Grest, M. P. Anderson, and D. J. Srolovitz, Phys. Rev. B
38, 3752 (1988).

%Y. Enomoto and R. Kato, Phys. Lett. A 142, 256 (1989); J.
Phys. Condens. Matter 2, 9215 (1990).

10y, W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

IIH, V. Atkinson, Acta Metall. 36, 469 (1988), and references
therein.

12y, Oono and S. Puri, Phys. Rev. Lett. 58, 836 (1987).

135, K. Kurtz and F. M. A. Carpay, J. Appl. Phys. 51, 4745
(1980).



FIG. 2. Temporal evolution of the domain
morphology for the case of p=36. (a) time
step 200; (b) time step 1000; (c) time step 4000;
/N~ - and (d) time step 10000.




FIG. 2. Temporal evolution of the domain
morphology for the case of p=36. (a) time
step 200; (b) time step 1000; (c) time step 4000;
and (d) time step 10 000.




