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Lattice Parameters and Local Lattice Distortions in fcc-Ni
Solutions

TAO WANG, LONG-QING CHEN, and ZI-KUI LIU

The lattice parameters and the local lattice distortions around solute atoms in foc-Ni solutions
were studied using first-principles calculations. The solute atoms considered include Al, Co, Cr,
Hf, Mo, Nb, Re, Ru, Ta, Ti, and W. The calculations were performed using supercells with 1
solute atom and 107 solvent atoms. It is found that the atomic size difference, the electronic
interactions, and the magnetic spin relations between the solute and solvent atoms all contribute
to the lattice distortions. Based on the results from first-principles calculations, the linear
composition coefficients of fec Ni lattice parameter for different solutes were determined, and
the lattice parameters of multicomponent Ni-base superalloys as a function of solute compo-
sition were predicted. The results are compared with existing experimental measurements, and
good agreements are obtained for both the compositional dependence of lattice parameters and

the local lattice distortions.
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I. INTRODUCTION

THE magnitude and sign of the lattice mismatch
between the 7y (fcc) and the 7" (L1,) phases are important
parameters affecting the microstructure evolution and
creep strength of Ni-base superalloys. For example, the
sign of the lattice mismatch dictates the orientation of
the 7 precipitates under an external stress field, and the
magnitude of lattice mismatch has a strong effect on the
morphology of the }” particles. Lattice parameter data
are typically obtained experimentally by diffraction
measurements (X-ray, neutron, etc.). They are usually
scattered because of their sensitivity to the details of
alloy processing."! Those uncertainties may sometimes
even lead to a change in the sign of the lattice mismatch.

Recently, we''! proposed a phenomenological model
to describe the lattice parameter of an alloy as a function
of temperature and composition. In particular, it was
applied to Ni-Al binary alloys, and a self-consistent
lattice parameter database was constructed. The model
parameters were evaluated using a large amount of
experimental data. However, in general, the availability
of experimental data on lattice parameters of alloys is
very limited. Very often there are poor agreements
among experimental data from different sources. As a
result, extracting modeling parameters based on exper-
imental data alone can be difficult.

In the last decade, the quality of first-principles
calculations of electronic and structural properties has
improved considerably. For most cases, the reliable
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formation energy of alloys and compounds and band
structures can be calculated at 0 K. In this article, we
use the first-principles approach to fundamentally
understand local and macroscopic lattice distortions
caused by various solute additions in the y phase of Ni-
base superalloys, and the purpose of this work is to
establish a computational approach for predicting the
effect of alloying elements on lattice parameters. Ten
commonly used alloying elements in Ni-base alloys were
chosen, namely, Al, Co, Cr, Hf, Mo, Nb, Re, Ru, Ta, Ti,
and W. The goal is to predict the lattice parameter
changes in fcc-Ni binary and multicomponent alloys as
a function of temperature and composition. The results
will be compared with available experimental measure-
ments.

II. FIRST-PRINCIPLES CALCULATIONS

The first-principles calculations of the lattice param-
eter were performed using the Vienna ab initio simula-
tion packagg VASP (version 4.6),” which allows one to
minimize the total energy with respect to the volume and
shape of the cell and the positions of atoms within the
cell. In the present calculations, ultrasoft pseudopoten-
tials and the generalized gradient approximation
(GGA)™ are adopted. The GGA partially corrects the
overbinding problem of the local density approximation
(LDA) and thus imgroves the predictions for the
equilibrium volumes.*® Supercells were employed to
study the lattice distortions caused by solute atoms. A
test by Sandberg ef al.[”) indicated that a supercell of 80
atoms was needed to achieve a convergency for the
formation energy of a single defect to be within 0.01 eV.
We employ 108-atom supercells, a 3x3x3 cubic repre-
sentation of the fcc structure, with one solute atom in
each supercell. The magnetism was taken into account
for Ni, Co, and Cr during the calculations. To simulate
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the antiferromagnetic property of Cr, at least two Cr
atoms are required in the supercell, and thus a much
larger supercell and several configurations need to be
considered. Instead of performing such demanding
calculations, two calculations were preformed, both
with 107 Ni atoms and 1 Cr atom. In the first case, the
Cr possesses the same spin direction as the surrounding
Ni atoms, which is named as “Cr,,”. In the second
case, the spin direction of the Cr atom is opposite to that
of Ni atoms, which is denoted by “Cr_,”. The set of &
points is adapted to the size of the primitive cell, and a
4x4x4 k-point mesh is selected for the supercell used in
the present calculations. The energy cutoff is determined
by the choice of “high accuracy” in the VASP, ie.,
314.1 eV for alloys in this work, which guarantees that
the absolute energies are converged to a few meV.1¥! For
a detailed description of the technical features and the
computational procedure of the VASP calculations, we
refer to the VASP manual.[*)

Table I. Total Energies and Lattice Parameters for Nij7X;
fee Solutions from First-Principles Calculations; the Lattice
Parameters are One Third of the Size Dimensions of Those

Supercells

Lattice Parameter (A)
X Total Energy (eV) a Aa
Ni ~592.090 3.5321 —
Al ~591.859 3.5335 0.00147
Co ~593.699 3.5322 0.00012
Cryy ~595.920 3.5338 0.00168
Cr_; —-595.694 3.5320 —-0.00008
Hf —597.830 3.5398 0.00775
Mo —597.299 3.5358 0.00375
Nb ~597.401 3.5377 0.00567
Re —598.553 3.5357 0.00361
Ru —595.273 3.5357 0.00362
Ta —599.390 3.5375 0.00543
Ti —595.827 3.5352 0.00314
w -599.508 3.5359 0.00379

III. LATTICE DISTORTIONS

Introduction of solute atoms leads to redistribution of
electron density and lattice distortions. The total lattice
distortions can be separated into two contributions. One
is the macroscopic lattice distortion represented by the
overall lattice parameter change of an alloy. The other is
local lattice distortion. The average lattice parameter
change, Aa, can be determined by

Aa= ag— Qpure [l]

where dpyr is the lattice parameter of pure solvent and
dgo is that of the solution containing solution atoms.
Although Aa is generally a nonlinear function of
composition,"! a linear approximation is reasonable
for dilute solutions; i.e.,

Aa=>"xik 2]

)

Usol = dpyre + E xik;
i

where x; is the mole fraction of solute atom /, and &; is
the linear regression coefficient. In this work, we
determine k; by first-principles calculations using super-
cells by the following equation:

ki = N(a; — ao) [4]

where «, is the calculated lattice parameter of the cell
containing one solute atom /, N is the number of atoms
in the supercell, and o denotes the calculated lattice
parameter for the pure solvent. The results from first-
principles calculations are shown in Table I, and the
linear regression coefficients for the ten solute atoms are
listed in Table II.

Table II. Atomic Radii and Linear Regression Coefficients of Solute Atoms in fec Ni

Linear Regression Coefficients (A/Al, Pct)

Solute Atom Atomic Radius, (A)! 45 46 23 47 Present Work

Ni 1.24 — — - — —

Al 1.43 0.183 0.185 0.194 0.100 0.1587

Co 1.25 0.024 0.020 0.020 0.081 0.0132

Cr 1.30 0.130 0.120 0.112 0.133 0.181(Cr )
~0.008(Cr_)
0.0865(Crayy)

Hf 1.67 0.700 0.990 — 0.8365

Mo 139 0.421 0435 0.480 0.357 0.4053

Nb 1.46 0.645 0.697 3.673 0.6123

Re 1.37 - - 0.3903

Ru 1.34 — — — 0.3912

Ta 1.49 — 0.630 0.697 0.593 0.5859

Ti 145 0.360 0.340 0.424 -1.222 0.3390

w 141 0.421 0.412 0.448 0215 0.4088
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Empirically, for a known crystal structure, the lattice
parameter is related to the atomic radius, so the
dependence of an alloy lattice parameter on the solute
composition is typically explained by the atomic radius
of solute atoms. For example, the lattice parameter of a
solvent is expected to increase when solute atoms of
larger atomic radius are added. In Table II, the atomic
radii of the solute atoms are compared with their effects
on the lattice parameter of fcc Ni. All ten solute
elements have larger atomic size than Ni, and they all
increase the Ni lattice parameter, as expected. In
general, the amount of lattice parameter increases with
the size of the atomic radius of the solute atom.
However, this empirical relation is not always observed.
For example, the atomic radius of Al (1.43 A) is larger
than that of Re (1.37 A),””! while the lattice parameter
increase due to the addition of Al atoms (ks = 0.1587)
is considerably smaller than that caused by Re
(kre = 0.3903). This may not be surprising because it
is commonly known that the radius of an atom depends
on the environment. The atomic radius is typically
defined as one half of the internuclear distance between
two adjacent atoms at equilibrium. Such a definition is
not scientifically rigorous and the values are at best
approximate. A more accurate prediction of atomic
radius must take into account the interactions between
the solute and solvent atoms during alloying, i.e., local
charge transfer and local distortion. One thus must
differentiate the classic atomic radii measured in pure
elements and those in alloys.

All solutes considered except Al are transition ele-
ments, and their outermost electron structures consist of
s and d electrons. In Figure 1, the differences of atomic
radii between solute atoms and solvent atom (Ni) are
plotted with the linear regression coefficients of lattice
parameters according to their periods (Figure 1(a)) and
groups (Figure 1(b)) in the periodic table. It is shown
that for solutes within the same period, the lattice
parameter increases with the increase in the solute atom
radius, although the relation is not linear. Figure 2
shows the electronic charge density of Nb, Mo, and Ru
on the (001) planes of the Ni host lattice. All three
elements belong to period 5. The following observations
can be made: (1) the charge density of Nb shows a clear
interaction along the < 110> directions with the nearest
neighbor Ni atoms; (2) the Mo d electrons are highly
localized and less chemically active due to their half-
filled d shell; and (3) the more outermost electrons of Ru
has a higher and wider distribution of charge density,
which represents a stronger interaction between Ru and
neighboring Ni. Comparing with Nb and Ru, Mo has a
much weaker interaction with neighboring atoms, indi-
cating an easier compression. As a result, the data point
for Mo deviates from the line connecting the Nb and Ru
data points in Figure 2. In a given group, the outermost
electron structures are usually similar for all elements, so
the interactions between those elements (solute) and Ni
(solvent) are expected to be similar. In this case, the
lattice parameter change is expected to have a close
correlation with the atomic radius of the solute element.
Indeed, it is found that the effect of solute atoms in
group 4 (Ti and Hf) and group 6 (Cr, Mo, and W) on
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Fig. | —Atomic radius difference between solute and solve (Ni)
atoms vs linear Regression coefficient.

lattice parameters can be explained by their correspond-
ing radii. However, for group 5 (Nb and Ta), such a
correlation is not observed. According to Table II, the
atomic radius of Nb (1.46 A) is slightly smaller than that
of Ta (1.49 A),”” but the lattice expansion caused by Nb
solute (kny = 0.6123) is a little bit larger than that
caused by Ta (kt, = 0.5859). This anomaly can be
explained by the difference in the valance electronic
structures between Nb (4d* 55') and Ta (54° 6s9).°] The
electronic charge densities of Nb and Ta solutes are
shown in Figure 3. The charge density of Nb exhibits a
much stronger interaction with neighboring Ni atoms
than that between Ta and neighboring Ni atoms.
Therefore, Nb atoms are much harder to be compressed,
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Fig. 3—Electronic charge density (in units of e/A?) of (¢) Nb and (b)

leading to a larger lattice extension than Ta in the Ni
host lattice.

In addition to the electron density redistributions, the
interactions between magnetic spins also contribute to
lattice distortions. Repulsion is expected between spins
with the same direction, and attraction will occur with
opposite directions. For example, for the case of Cr
substitution in fce Ni, the atomic size difference between
Cr and Ni is very small. However, there is a significant
effect of Cr addition on the fec Ni lattice parameters as a
result of magnetism. When the spin direction of a Cr
atom is the same as a neighboring Ni atom (Cr ), the
linear regression coefficient is positive; i.e., the lattice
parameter increases as a result of repulsive interactions
between the magnetic spins. Therefore, it is expected
that if a Cr atom of opposite spin direction (Cr_)) is
introduced, the attractive force between magnetic spins
decreases the lattice parameter, and the linear regression
coefficient becomes negative.

Near a solute atom, the local distortion is generally
different from the macroscopic lattice parameter change
of a solid solution in magnitude and even in sign in some
cases.'” Experimentally, the local distortions are
described by the shifts in the nearest-neighbor distances
around a solute atom. They can also be readily obtained
using first-principles calculations by relaxing both the
supercell dimensions and internal atomic positions.

Using the X-ray absorption fine structure (XAFS)
technique, Scheuer and Lehgeler!'! systematically stud-
ied the lattice distortions around impurity atoms in
dilute metal alloys (the solute concentrations are
between I and 2 at. pct). In particular, they reported

METALLURGICAL AND MATERIALS TRANSACTIONS A

(b)

Ta solutes in the (001) plane of the fcc Ni lattice in group 5.

the shifts in nearest-neighbor distances of Cr, Co, Mo,
Nb, and Ti in fcc Ni. We compare the experimentally
measured values with those from our calculations in
Table III. It is found that the calculated data agree with
the experimental results within the experimental uncer-
tainties. Among them, Co is a good example exhibiting
the difference between the macroscopic lattice parameter
change and the local lattice distortion. Macroscopically,
Co atoms expand the fcc Ni (Table I1) while locally they
decrease the nearest-neighbor distances (Table II1). A
comparison of the calculated results for Cr,, and Cr_,
indeed show that the spin direction has a strong effect on
the local lattice distortions; i.e., Cr_, atoms decrease the
nearest-neighbor distance and Cr | increases it.

Table III. Local Lattice Distortion in fec Ni (in pm)

Element Reference 10 Present- Work
Al —i 1.5

Co -0.4+0.6 -0.61

Cr -1.1£07 1.06 (Cr ., y)

—1.4 (Cr_y)

Hf — 7.37

Mo 24+03 1.92

Nb 5407 4.5

40 + 09

Re — 1.53

Ru — 2.74

Ta = 4.14

Ti 2204 248

w = 1.97
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1IV. COMPOSITION DEPENDENCE OF LATTICE
PARAMETERS

Using the data shown in Tables I and II, the lattice
parameters and the lattice parameter changes in the fcc-
Ni solution can be predicted using Egs. [2] and [3],
respectively. The predicted results can be compared with
the experimentally measured compositional dependence
of lattice parameters in Ni-X binary alloys. The lattice
parameter measurements were often carried out by
diffraction methods. The results are usually sensitive to
the experimental details and lead to significant discrep-
ancies among data from different measurements. For
example, both Taylor and Floyd!"" and Pearson and
Thompson!'? measured the lattice parameters of Ni-Cr
alloys. The results by Pearson and Thompson are
0.013 A smaller than those by Taylor and Floyd. Such
a discrepancy is significant because it is equivalent to the
lattice parameter change by adding as much as 10 at. pct
Cr. To reduce the systematic error within a particular
measurement, we compare the measured lattice param-
eter changes with our calculations. In extracting the
lattice parameter changes, the lattice parameter of pure
Ni from the same investigation is taken as the reference.
In the cases in which the data for pure Ni were not
available, the linearly extrapolated value for pure Ni is
used. The experimental data for binary Ni solid solutions
containing ALIFI Co 1217191 "¢ (1111220237 23]

03328 Np2329-B] Re 283 R 3537, P18
Ti, 23242 ynd W2 are used for comparison.

The calculated lattice parameter changes in Ni-Al, Ni-
Co, Ni-Hf, Ni-Mo, Ni-Nb, Ni-Re, Ni-Ru, Ni-Ta, Ni-Ti,
and Ni-W, together with the related experimental data,
are shown in a series of plots in Figures 4 through 10.
The differences are demonstrated by the standard
deviations Sy, calculated as the square root of the
sample variance of a set of values. 4] Most of the
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experimental data are well reproduced by the calculated
results shown in solid lines. It is well known that both
LDA and GGA lead to errors in the calculated lattice
parameters as compared to experimentally measured
values. However, it is also well known that the errors are
systematic. Therefore, because our main interest is in the
lattice parameter differences rather than the absolute
values of lattice parameters, the accuracy should be
much better, which is confirmed by comparisons in
Figures 4 through 10. The standard deviations for Ni-
Al and Ni-Ru alloys are slightly higher than others. For
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Ni-Al, the main reason is that the available experimental
data are much more scattered than other systems
(Figure 4). In the case of Ni-Ru, in Figure 9, the
agreement between experimental data and our predic-
tions is reasonable at low Ru concentrations (< 10 at.
pet), while the large deviations are observed at high
concentrations where the linear approximation (Eq. [2])
may no longer be valid. The results of calculations for
“Cry,” and “Cr_;" are shown in Table II and Fig-
ure 11. The linear regression coefficient for Cr, is
positive, while that for Cr_, is negative, because the
magnetism has a significant effect on lattice distortion,
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as discussed in Section III. If the system is large enough
and the interaction between the two kinds of Cr atoms
can be ignored, the real case can then be taken as a
weighted average of the preceding two cases, which is
supported by the comparison of evaluated and experi-
mental lattice parameter changes shown in Figure 11,
where all experimental data lie between the Cr,; and
Cr_; lines. The Ca,q line indicates the half-half average
of the Cr,, and Cr_; lines and is close to but a little
lower than the experimental data, which means the Cr .,
case might have a higher possibility to occur in the real
system. Our energy calculations also show that the total
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energy of the Cr | system is a little bit lower (200 J/mol)
than the Cr_, system (Table I).

There are a number of previous investigations
in the literature evaluating the linear regression coeffi-
cients of some solute atoms in fcc-Ni by fitting to the
experimental data. Mishima er al®¥ evaluated the
linear regression coefficients from experimentally deter-
mined lattice parameters in Ni-X binary systems, and
the other three investigations!*>***") are based on the
data from multicomponent nicke] alloys. Harada and
Yamazakit*® assumed the coefficients of the correspond-
ing alloying elements to be the same for both the y and
the 7’ phases, while Watanabe and Kuno!*"! treated them
as different. Svetlov er al*” introduced some higher
order parameters in their model to describe the interac-
tion of different solute elements. Their linear regression
coefficients are summarized in Table II. As shown in
Table II, the linear regression coefficients determined by
the present work are very close to those given by the

[23,45-47]

three earlier investigations.>**% Syetlov’s results!*”!

are somewhat different from others, even being incon-
sistent with some experimental information. For exam-
ple, their strong negative linear regression coefficient for
Ti indicates a significant decrease in lattice parameter,
but the experiments show that adding Ti atoms will
expand the fcc Ni lattice (Figure 10).

Lattice parameters of several Ni-Al-Cr-Co-Mo-Nb-
Re-Ta-Ti-W alloys are calculated by Eq. [3], and two
sets of linear regression coefficients (Mishima’s® and
ours) are used in the calculation. Because the linear
regression coefficient for Re was not determined by
Mishima e al.* a value of 0.413 is given by fitting the
experimental data shown in Figure 8. The calculated
results are compared with the experimental data**>% in
Table IV, and the standard deviations Sy are also given.
The standard deviations for two different sets of
coefficients are almost the same (~0.02 A), which con-
firms again the validity of our first-principles approach
in the analysis of lattice parameter change caused by
solute additions. The lattice ]parameter data reported by
Li and Wahi®! and Volk1*" cannot be well reproduced
by present calculations, and some possible reasons are as
follows: (1) the measurement uncertainty due to the
experimental details, (2) the invalidation of the linear
relationship, and (3) the interaction between different
solute atoms. The last two reasons are caused by solute
high concentrations.

V. SUMMARY

In this paper, we present a first-principles approach to
study both the macroscopic and local lattice distortions
caused by the solute atoms and apply it to the fee-Ni
lattice with Cr, Co, Mo, W, Ta, Re, Ru, Nb, Al, Ti, and
Hf as solutes. The effects of atomic size, electronic
interaction, and magnetic spin direction on the lattice
distortions were analyzed by examining electronic
charge density distributions. The calculated lattice
parameter changes and the local distortions in Ni-X
alloys agree well with the available experimental data in
the literature, which demonstrated the validity of the
approach. Using the linear regression coefficients from

Table IV. Comparison of Calculated and Experimental Lattice Parameter in Ni-Base Superalloys

Composition (At. pct)

Lattice Parameter (A)

Al Cr Co Mo Nb Re Ta Ti w Ni Ref. Exp. 23 Present Work
9.00 17.83 10.80 1.55 0.00 205 043 0.64 1.58  56.12 48 3579 3.5923 3.5806
9.41 17.23 1072 154 000 231 050 063 1.81 55.85 3584  3.5949 3.5830
4.62 2858 11.09 179 058 0.00 0.54 1.24 077 50.79 49 3.556  3.5923 3.5788
6.55 2490 9.27 1.79  0.82 000 098 1.99 046 5324 3.553 3.5981 3.5838
7.36  24.83 9.40 1.67 056 0.00 0.40 194 058  53.26 3.553  3.5935 3.5799
779 2425 9.28 1.79 082 000 090 225 051 52.41 3.554  3.6005 3.5858
737 2376 9.49 167 077 000 065 2.04 074 5351 3.554  3.5967 3.5827
6.80  24.85 9.08 1.74  0.67 000 0.58 1.96 087 5345 3.558  3.5961 3.5822
5.21 2578 2126 0.55  0.00 129 006 024 1.02 4458 50 3.600  3.5812 3.5700
2.58 8.05 935 056 000 872 036 0.08 260 67.70 51 3.583 3.5931 3.5856
3.50 19.80 1840 070 000 270 030 030 270 51.60 52 3.588  3.5866 3.5763
Sy 0.0221 0.0205
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the first-principles calculations, the lattice parameters in
multicomponent Ni-base superalloys are predicted and
compared with available experimental observations, and
good agreements are observed when the concentrations
of individual solutes are not too high. The proposed
computational approach can be employed to predict the
lattice parameter changes of Ni-base alloys as a result of
adding new elements, and thus can potentially be used
to guide alloy development.
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