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Phase field simulations are conducted to investigate the micro-structural signature and the

macro-response of a ferroelectric single crystal with domain pinning and depinning phenomena by

dislocation arrays. It is shown that due to the presence of the dislocation arrays, a domain with

polarizations antiparallel to an applied field can survive under the small amplitude of applied field.

The residual domain serves as a pre-existing nucleus during the following macroscopic switching via

only domain wall motion. The pinned domain will be depinned when the external electric field

amplitude exceeds a critical value, which highly depends on the dislocation spacing in the dislocation

array. Due to the pinning and depinning effect, an asymmetric hysteresis loop of polarization versus

electric field might appear when a bias field is applied. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4826532]

I. INTRODUCTION

Ferroelectric materials have attracted much attention

due to their distinguished electromechanical coupling prop-

erties and wide application in industry.1,2 An important char-

acteristics of ferroelectric materials is the hysteresis loop of

polarization versus applied electric field, which stems from

the switching of spontaneous polarization. The polarization

switching is directly related to the performance of ferroelec-

tric nonvolatile memories. The hysteresis loops are charac-

terized by the remanent polarization and the coercive field,

which are highly dependent on the domain structure, the

nucleation of domains with reversed polarization, and do-

main wall mobility. Defects such as space charges,3,4

dislocations,5–9 grain boundaries,10,11 and crack tips12,13 are

potential nucleation sites of new domains during polarization

switching. An in-depth understanding of the role of different

defects in polarization switching is urgently necessary to

improve the ferroelectric properties and to prevent the degra-

dation of ferroelectric devices, including fatigue fracture,

imprint, and aging effect.14–18

Dislocations are one of the most common defects, which

can be introduced into ferroelectric bulk and thin films5–8

during the fabrication at high temperature. The pre-existed

dislocations play important roles in the ferroelectric switch-

ing, acting as nucleation sites of new domains or/and pinning

the domain wall motion. For example, the in situ transmis-

sion electron microscopy (TEM) observations show that a

pinning force is exerted on the domain wall by dislocations

during the nucleation and growth of new domains in a tetrag-

onal PbZr0.2Ti0.8O3 thin film subjected to an applied electric

field.9 Due to the effect of dislocation wall, the ferroelectric

properties can be greatly improved by reducing the coercive

field and meanwhile enhancing the remanent polarization if

an appropriate density of dislocations is introduced at high

temperature.25

Although it is known that dislocations alter the ferroelec-

tric properties, it is quite difficult in experiments to identify

the role played by dislocations in the domain switching, espe-

cially in the new domain nucleation and domain wall pinning.

Few theoretical works have investigated the role of disloca-

tions. By using the phase field model, the effect of interfacial

dislocations on the paraelectric (PE) loop and the domain

structure of ferroelectric thin film was investigated.19–22 With

pre-existed bi-domain structures of 180�/90� domain walls,

Kontsos and Landis22 investigated the interactions between

domain walls and an array of dislocations and the pinning

strength of the dislocations on domain wall in ferroelectric

single crystals by using finite element based phase field

approach.

In phase field simulations of a finite ferroelectric repre-

sentative cell with periodic boundary conditions, the stress

field induced by polarizations is calculated usually in Fourier

space, because the calculation is fast and convenient.

However, if the stress field of a dislocation in a finite repre-

sentative cell with periodic boundary conditions was solved

in Fourier space with Mura’s dislocation eigenstrain

approach, the stress field exhibited a significant oscillation.23

This is because Mura’s dislocation eigenstrain method24 is

valid for an infinite domain, rather than for a finite representa-

tive cell. To get rid of the oscillation, the Burgers vector was

replaced by a Gaussian function of Burgers vector distribu-

tion. Since analytic solution of the stress field in real space is

available for a 2D periodic dislocation array,25 in the present

work, we shall use the analytic solution in real space for
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dislocation stress field and solve the stress field of polariza-

tions in Fourier space. This hybrid approach takes both

advantages of the analytic solution and the Fourier transfor-

mation, thereby enhancing the simulation efficiency.

In a previous work,25 phase field simulations are per-

formed to investigate the effect of dislocation arrays on the

nonlinear electromechanical properties of ferroelectric single

crystal. Following the previous work, this paper aims at a

better understanding on the complex role of dislocations in

domain pinning and depinning in ferroelectrics subjected to

different amplitude of external electric fields. More attention

will be paid to the relationship between micro-structural sig-

nature and the macro-response due to domain pinning and

depinning.

II. NUMERICAL METHODOLOGY

A. General approach

The paraelectric to ferroelectric phase transition occurs

in a ferroelectric material when temperature is lower than the

Curie point. The polarization, P ¼ ðP1;P2;P3Þ, is usually

used as the order parameter in phase field simulations of fer-

roelectrics, although other variants can also be used as the

order parameter.26 The domain configuration and polariza-

tion switching are a direct consequence of the minimization

process of the total free energy of a whole simulated system,

which is a function of the polarization, polarization gradient,

strain, and electric field. The temporal evolution of polariza-

tion is described by the time dependent Ginzburg-Landau

(TDGL) equation

@Piðx;tÞ
@t

¼ �L
dF

dPiðx;tÞ
; ði ¼ 1; 2; 3Þ; (1)

where L is the kinetic coefficient, F is the total energy of the

system, dF=dPiðx; tÞ is the thermodynamic driving force

for the spatial and temporal evolution of Piðx; tÞ, and

x ¼ ðx1; x2; x3Þ denotes the spatial vector. The total free

energy can be expressed as

F ¼
ð
V

½ fLandðPiÞ þ felasðPi; eijÞ þ fgradðPi;jÞ þ felecðPi;E
ex
i Þ�dV:

(2)

In Eq. (2), the Landau free energy density fLand is given by

fLandðPiÞ ¼ a1ðP2
1 þ P2

2 þ P2
3Þ þ a11ðP4

1 þ P4
2 þ P4

3Þ
þ a12ðP2

1P2
2 þ P2

2P2
3 þ P2

1P2
3Þ

þ a111ðP6
1 þ P6

2 þ P6
3Þ þ a112½P4

1ðP2
2 þ P2

3Þ
þ P4

2ðP2
1 þ P2

3Þ þ P4
3ðP2

1 þ P2
2Þ� þ a123P2

1P2
2P2

3;

(3)

where a1 ¼ ðT � T0Þ=2j0C0, a12, a111, a112, and a123 are

constant coefficients, T and T0 denote the temperature and

Curie-Weiss temperature, respectively, C0 is the Curie con-

stant, and j0 is the dielectric constant of vacuum. The elastic

energy density takes the form of

felas ¼
1

2
cijkle

elas
ij eelas

kl ; (4)

where cijkl are the elastic constants and eelas
ij are the elastic

strains, which includes two parts. The first part of the

elastic strains are induced by polarizations and is given

by ep;elas
ij ¼ ðep

ij � e0
ijÞ, where ep

ij are the total strains pro-

duced by polarizations only and e0
ij are the spontaneous

strains or the eigenstrains of polarizations. The spontane-

ous strains have the form as e0
ij ¼ QijklPkPl, where Qijkl are

the electrostrictive coefficients. The spontaneous strains

are similar to the thermal expansion strains in thermal

stress analysis. The other part of the elastic strains, ed
ij, is

produced by dislocations. Thus, the elastic strains are

given by

eelas
ij ¼ ep

ij � e0
ij þ ed

ij: (5)

With the periodic boundary condition, the general solu-

tion of the total displacement field induced by polarizations

is given in Fourier space by27,28

up
i ðnÞ ¼ XjNijðnÞ=DðnÞ; (6)

where Xi ¼ �icijkle0
klnj, i ¼

ffiffiffiffiffiffiffi
�1
p

, NijðnÞ are cofactors of a

3 � 3 matrix KðnÞ

KðnÞ ¼
K11 K12 K13

K21 K22 K23

K31 K32 K33

2
4

3
5; (7)

and DðnÞ is the determinant of matrix KðnÞ. Note that

KkiðnÞ ¼ ckjilnjnl, in which ni are the coordinates in Fourier

space. The corresponding strains are obtained from

ep
ij ¼

1

2

@up
i

@xj
þ
@up

j

@xi

( )
: (8)

The dislocation-induced displacement ud is obtained from

the Stroh formalism33 for the pure dislocation problem

without any polarizations, which is given in Sec. II B.

The elastic strain induced by dislocations, ed
ij, is obtained

from

ed
ij ¼

1

2

@ud
i

@xj
þ
@ud

j

@xi

( )
: (9)

Both the polarization-induced strains, ep
ij, and the

elastic strain induced by dislocations, ed
ij, are calculated

from the corresponding displacements. Because the

strains and stresses produced by polarizations and disloca-

tions are both calculated based on linear elasticity, the

superposition principle is valid, and the polarization-

induced elastic strains and dislocation-induced strains are

compatible.

The gradient energy density can be expressed as

fgrad ¼
1

2
gijkl

@Pi

@xj

@Pk

@xl
; (10)
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where gijkl are the gradient energy coefficients. The gradient

energy gives the energy penalty for spatially inhomogeneous

polarization. The electrical energy density includes the self-

electrostatic energy density and the energy induced by the

external electric field, which can be expressed as

felec ¼ �
1

2
EiPi � Eex

i Pi; (11)

where Ei and Eex
i are the self-electrostatic electric field

and external applied electric field, respectively. The self-

electrostatic field is the negative gradient of the electro-

static potential /, i.e., Ei ¼ �@/=@xi. The electrostatic

potential is obtained by solving the following electrostatic

equilibrium:

j0

j11@
2/

@x2
1

þ j22@
2/

@x2
2

þ j33@
2/

@x2
3

 !
¼ @P1

@x1

þ @P2

@x2

þ @P3

@x3

;

(12)

where jij are the background dielectric constants of the

material.29–32 With the periodic boundary condition, Eq. (12)

is analytically solved in Fourier space, which is similar to

the method used in solving the mechanical equilibrium

equation.

B. The stress/strain field of dislocation arrays

In two-dimensional anisotropic linear elasticity, Stroh’s

formalism33 gives the general solution

ud ¼ AfðzaÞ þ AfðzaÞ; (13a)

w ¼ BfðzaÞ þ BfðzaÞ; (13b)

where ud and w are the displacement and stress function vec-

tors, respectively, A and B are the eigenvector matrices

determined by the elastic constants and orientation of the fer-

roelectric crystal, fðzaÞ ¼ ½f1ðz1Þf2ðz2Þf3ðz3Þ�T is an analytic

vector of za ¼ x1 þ pax2 (a ¼ 1; 2; 3), and pa with ImðpaÞ is

the eigenvalue of the eigen-equation

Ng ¼ pag: (14a)

In Eq. (14a),

g ¼ A
B

� �
(14b)

is the eigenvector with A and B being the column vectors of

A and B, respectively, and the matrix N is given by

N ¼ N1 N2

N3 NT
1

 !
; (14c)

with

N1¼�T�1RT ; N2¼T�1¼NT
2 ; N3¼RT�1RT�Q¼NT

3 ;

(14d)

where

Qik ¼ ci1k1;Rik ¼ ci1k2; Tik ¼ ci2k2: (14e)

Matrices A and B have the following properties:

AAT þ AAT ¼ BBT þ BBT ¼ 0; (15a)

BAT þ BAT ¼ ABT þ ABT ¼ I; (15b)

where I is the identity matrix. The stress field is calculated

from the stress function vector w as

ri2 ¼ wi;1; ri1 ¼ �wi;2: (16)

For a straight line dislocation located at zd
a in an infinite

body, the two dimensional solution is given with the analytic

vector in the form of

fðzaÞ ¼ lnðza � zd
aÞ

1

2pi
BTb; (17)

where the angle bracket denotes a diagonal matrix and

b¼ (b1, b2, b3)T is the burgers vector of the dislocation.

If there is only a dislocation of Burgers vector bi located

at x1;i and x2;i in the representative cell, we use superposition

and have the analytic vector33

FIG. 1. Schematic diagram of the

simulated cell with a dislocation wall

(left) and the initial stable domain

structure with DLD¼ 21 (right).
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fi ¼
* X1

m¼�1

X1
n¼�1

lnfðx1 þ pax2Þ � ½ðmLx1 þ panLx2
Þ

þ ðx1;i þ pax2;iÞ�g
+
� 1

2pi
BTbi; (18)

where Lx1
and Lx2

are the dimensions of the representative

cell in the x1 and x2 directions, respectively. The analytical

vector f for n dislocations in the representative cell is thus

given by

f ¼
Xn

i¼1

f i: (19)

Substituting Eq. (19) into Eq. (13a) yields the displacements

generated by the dislocations. Then, using the strain-

displacement equation of Eq. (9), we have the dislocation

induced strain field.

C. Simulation model

For convenience, the following normalized variables

and coefficients are employed in the present study:27

x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja1j=G110

p
x; t� ¼ ja1jLt;P� ¼ P=P0; j

�
0 ¼ j0ja1j; a�1 ¼ a1=ja1j; a�11 ¼ a11P2

0=ja1j;

a�12 ¼ a12P2
0=ja1j; a�111 ¼ a111P4

0=ja1j; a�112 ¼ a112P4
0=ja1j; a�123 ¼ a123P4

0=ja1j;Q�11 ¼ Q11P2
0;

Q�12 ¼ Q12P2
0;Q

�
44 ¼ Q44P2

0; c
�
11 ¼ c11=ðja1jP2

0Þ; c�12 ¼ c12=ðja1jP2
0Þ; c�44 ¼ c44=ðja1jP2

0Þ;

G�11 ¼ G11=G110;G
�
12 ¼ G12=G110;G

�
44 ¼ G44=G110;G

0�
44 ¼ G

0

44=G110;E
ex;� ¼ Eex=ðja1jP0Þ;

where P0 ¼ jP0j ¼ 0:757C=m2 is the magnitude of the

spontaneous polarization at room temperature, a1 ¼ T�T0

2e0C0

¼ ð25 � 479Þ � 3:8� 105 m2 N/C2 and G110 ¼ 1:73

�10�10 m4 N/C2 is a reference value of the gradient energy

coefficients. The Voigt notations are used for the elastic

stiffness tensors. The values of the normalized material coef-

ficients of PbTiO3 used in the simulations can be found in

the previous papers.27,28

With the dimensionless variables and Eq. (2), the time-

dependent Ginzburg-Landau equation (1) can be expressed as

@P�i ðx�; t�Þ
@t�

¼ �
d
ð
½ flandðP�i Þ þ felasðP�i ; e�klÞ þ felecðP�i ;E�i ;E

ex;�
i Þ�dV�

dP�i
�

d
ð

fgradðP�i;jÞdV�

dP�i
: (20)

In Fourier space, Eq. (20) takes the form

@

@t�
P̂iðn; t�Þ ¼ �ff̂ ðP�i Þgn � GiP̂iðn; t�Þ; (21)

where P̂iðn; t�Þ and ff̂ ðP�i Þgn are the Fourier transformations

of P�i ðx�; t�Þ and
d
Ð
½fLandðP�i Þþ felasðP�i ; e�klÞþ felecðP�i ;Eex�

i Þ�dV�

dP�i
, respec-

tively, Gi are the gradient operators correspond to the ith-

component of the polarization field, which are defined as

follows:

G1 ¼ G�11n
2
1 þ ðG�44 þ G

0�
44Þðn2

2 þ n2
3Þ;

G2 ¼ G�11n
2
2 þ ðG�44 þ G

0�
44Þðn2

1 þ n2
3Þ;

G3 ¼ G�11n
2
3 þ ðG�44 þ G

0�
44Þðn2

2 þ n2
1Þ:

(22)

The semi-implicit Fourier-spectral method is employed to

solve the partial differential equation (21) in the present

work.34

In the present study, two dimensional (2D) phase field

simulation were conducted under plane strain condition. Fig. 1

(Left) is a schematic drawing of the simulated cell with 64 �
64 discrete grids. The normalized size of grid is

Dx�1 ¼ Dx�2 ¼ 0:8, where the x1 and x2 axes are set along the

pseudo cubic crystallographic [100] and [010] directions, respec-

tively. A dislocation array composed of periodically distributed

dislocations with the same Burgers vector of
Dx�

1

2
[100] is allocated

at the middle of the simulated cell. The dislocation spacing and

the simulated cell dimension are denoted by D and L, respec-

tively, giving the Dislocation Linear Density (DLD) of L/D. For

the maximum DLD studied, the dislocation spacing is 2.4 nm,

which is close to the experimentally observed value of 2.7 nm.6

The periodic boundary condition is adopted in both x1 and x2

directions, implying that the simulated cell is within an infinitely

large 2D single crystal with periodically distributed dislocation

arrays. The normalized formula and the material constants of

PbTiO3 single crystal at room temperature are given in the previ-

ous paper.25 A random distribution of initial polarizations with

the maximum magnitude less than 0.0005 is assigned to the

simulated system to trig the polarization evolution, which leads

to the initial domain structure after 20 000-steps-evolution with a

time step of Dt� ¼ 0:04 as shown in the right plot of Fig. 1.
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As mentioned above, the simulations were conducted at

fixed dimensions. Thus, macroscopically average strains

should remain zero or pre-described values during the evolu-

tion calculations. However, fixed dimensions cause macro-

scopically average stresses to change during domain structure

evolution. To present the simulation results in a conventional

manner, we convert macroscopically average stresses to mac-

roscopically average strains via Hook’s law. Without any

applied mechanical loads, from Eq. (5) and Hook’s law, we

have the stresses

rðsÞkl ¼ cijkle
ela
ij ¼ cijklðep

ij � e0
ij þ ed

ijÞ: (23)

Since we fixed the dimensions in the simulations, the average

strains, hep
iji, were all zero. The average strains, he0

ij � ed
iji,

were then determined from the average stresses, hrðsÞij i

he0
ij � ed

iji ¼ �SijklhrðsÞkl i: (24)

Eq. (24) indicates that the average strains, he0
ij � ed

iji, repre-

sent the average stresses hrðsÞkl i induced by domain structure

evolution under the condition of fixed dimensions. We may

imagine that after the evolution, the average strains,

he0
ij � ed

iji, will be produced if we release the average

stresses hrðsÞkl i. In the present study, we use the average

strain, he0
22 � ed

22i, to represent the relative change in the

dimension of a ferroelectric along the x2 direction, i.e.,

along the applied field direction. The average strain,

he0
22 � ed

22i, could be obtained by using e0
ij ¼ QijklPkPl to

calculate the value of he0
22i at each point on the grid and

then averaging he0
22i over the simulated region, and hed

22i is

a constant during the polarization switching for the station-

ary nature of the dislocations at room temperature.

Alternatively, the average strain, he0
22 � ed

22i, could be

obtained from the average stresses, hrðsÞkl i, which were cal-

culated by taking the average of the polarization-linked

stresses, hrðsÞkl i, at each point of the grid.

III. RESULTS AND DISCUSSION

A. The electromechanical response with different
amplitudes of electric field

To investigate the polarization switching of the ferro-

electric single crystal, the polarization response to external

electric field is simulated at room temperature. A dimension-

less external electric field Eex;�
2 ¼ E�0 sinð4:5pi=180 000Þ is

applied along the x2 direction, where i denotes the time step

and E�0 is the field amplitude. At each dimensionless time

step of Dt� ¼ 0:04, the simulated system evolves once, and

180 000 time steps complete two and a quarter cycles of the

switching. The average polarization along the electric field

direction is taken as the macroscopic response of the simu-

lated ferroelectric single crystal. The simulated hysteresis

loops are quasistatic due to the large number of electric field

varying steps in each cycle or the small change in electric

field of each varying step.

Fig. 2(A) give the simulated hysteresis loops when the

amplitude of dimensionless electric field is less than 0.7. The

remanent polarization and coercive field are 0.085 and

0.097, respectively, quite small and correspondingly compa-

rable to those of ferroelectric thin films constrained by the

substrate.35 When the amplitude of electric field decreases

from 0.7 to 0.4, both remanent polarization and coercive

field decrease to 0.039 and 0.058, respectively. On the other

hand, when the amplitude of electric field exceeds a critical

level of 0.8, the remanent polarization and coercive field

increase abruptly to 0.45 and 0.23, respectively, as shown in

FIG. 2. PE loops (A) and (C) corre-

sponding curves of average strain ver-

sus the electric field (B) and (D) for

the ferroelectrics with the dislocation

density of DLD¼ 21; where E�0 ¼ 0.4

and 0.7 in (A) and (B) and E�0 ¼ 0.8

and 1.0 in (C) and (D).
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Fig. 2(C). When the amplitude of electric field increases

from 0.8 to 1.0, the remanent polarization and coercive field

change to 0.45 and 0.22, respectively. Obviously these

changes are small again. Figs. 2(B) and 2(D) show the corre-

sponding curves of average strain versus electric field, indi-

cating also the significant difference between the strain

versus electric field curves under E�0¼ 0.7 and E�0¼ 0.8.

Fig. 3 illustrates the polarization distributions at points

(a1)–(a4) in the curve under E�0 ¼ 0:7 in Fig. 2(A) and points

(b1)–(b4) in the curve under E�0¼ 0.8 in Fig. 2(C). The

region below the dislocation array is almost a single domain

with most polarizations along the horizontal direction, as

shown in Figs. 3(a1)–(a4) and (b1)–(b4). This domain struc-

ture below the dislocation array makes a limited contribution

to the macroscopic responses of the PE loops and the strain

versus field curves. The limited contribution is through

polarization rotation, as shown in Fig. 3. Above the disloca-

tion array, most polarizations are along the vertical direction

but form a multi-domain structure, which is responsible for

the different hysteresis PE loops in Figs. 2(A) and 2(C). The

strain mismatch between the vertical and horizontal domains

at the dislocation array is accommodated by the strain

induced by dislocations, which makes the below domain sta-

ble. Fig. 3(a1) shows that there is a domain antiparallel to

the external electric field, indicating that the domain is

pinned by the dislocation array. The domain pinning differs

from the classical domain wall pinning, in which dislocations

are allocated on a domain wall such that the domain wall

cannot move. The domain pinning just means that a domain

with polarizations antiparallel to an applied field can exist

due to the presence of the dislocation array. Since the anti-

parallel domain exists, no domain nucleation is needed in the

microscopic polarization switching. When the electric field

decreases to zero, the antiparallel domain grows by domain

wall motion, as shown in Fig. 3(a2). When the opposite elec-

tric field increases to the coercive field, the domain structure

shown in Fig. 3(a3) remains almost the same as that in

Fig. 3(a2). When the opposite electric field increases to the

maximum value, most polarizations above the dislocation

array are along the electric field direction, in which there is a

domain with polarizations antiparallel to the electric field.

Again, the domain is pinned by the dislocation array, which

will serve as a seed domain for the next macroscopic switch.

However, when the amplitude of electric field increases to

E�0 ¼ 0:8, the driven force provided by the external electric

field is large enough to completely align all polarizations

above the dislocation array into a domain, as shown in Figs.

3(b1) and 3(b4). In this case, the antiparallel domain under

E�0 ¼ 0:7 disappears totally under E�0 ¼ 0:8. We call this phe-

nomenon the domain depinning by following the classical

domain wall depinning. The present phase field simulations

show that the dislocation array may pin some antiparallel do-

main if the applied field is low and the domain depinning

occurs when the applied field is high. See movies 1 and 2 for

the temporal evolution of the polarization switching proc-

esses for the cases of E�0 ¼ 0:8 and E�0 ¼ 0:7, in which the

domain pinning and depinning process are clearly shown.

It is the domain pining and depinning that causes the great

change in the macroscopic PE and strain versus field curves.

Obviously, the domain pinning effect will be stronger if

the DLD is higher. Fig. 4 shows the dependence of critical

depinning electric field on the DLDs. When the DLD is

lower than 10, the critical depinning electric field is almost

the same as 0.2. This is because when the DLD is lower than

10, the collective action of dislocations in the array is negli-

gible and each dislocation interacts with polarizations alone.

FIG. 3. Domain structures of (a1)–(a4) corresponding to points (a1)–(a4) on the curve of E0
* ¼ 0.7 in Fig. 2(A); domain structures of (b1)–(b4) corresponding

to points (b1)–(b4) on the curve of E0
* ¼ 0.8 in Fig. 2(C). The domains antiparallel to external electric field in (a1) and (a4) are pinned by the dislocation

array. In (b1) and (b4), the pinned domains are depinned due to the large electric field (enhanced online). [URL: http://dx.doi.org/10.1063/1.4826532.1] [URL:

http://dx.doi.org/10.1063/1.4826532.2]
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When the DLD exceeds 10, the dislocations exhibit the col-

lective action and thus the critical depinning electric field

increases with the DLD. In such a situation, due to the ex-

istence of the dislocation array, as long as the applied elec-

tric field is lower than the critical depinning electric field,

the domain switching will be firmly lagged or pinned by

the stress/ strain field of dislocations, as described above,

and the lagged domain switching leads to both low rema-

nent polarization and coercive field. However, once the

applied electric field is higher than the critical electric field,

the energy barrier brought by the dislocation array will be

overcome and the polarization switching behavior will be

greatly changed.

B. The electromechanical response with a bias field

In the present work, a bias field is applied by adding a

constant field to the sinusoidal field and the applied electric

field becomes

Eex;� ¼ E�0 sinð4:5pi=180 000Þ60:1;

where 60:1 denotes that the bias field is applied along the

6x2 axis with the dimensionless magnitude 0.1.

Fig. 5 shows the simulation results with DLD¼ 21.

When the value of E�0þ 0.1 or j�E�0�0.1j is smaller than

the critical depinning electric field, the dislocations pin the

antiparallel domain and the PE curves do not exhibit too

much hysteresis, as shown in Fig. 5(A). When the value of

E�0þ 0.1 or j�E�0�0.1j equals 0.8, however, asymmetry

hysteresis loops show up in the PE curves (Figs. 5(B) and

5(C)). If the bias the bias field is applied along the þx2

axis, the asymmetry hysteresis loops will be bigger in the

upper half part of the PE curves. When the bias field inver-

ses its direction, the asymmetry hysteresis loops will be

bigger in the lower half part. These results indicate again

the domain pinning and depinning effect and the role of the

critical depinning field. Asymmetry hysteresis loops were

observed in real experiment and attributed to the built-in

voltages effect.36 The simulation results provide an alterna-

tive explanation for the observed asymmetry hysteresis

loop, i.e., the pinning and depinning of domains. As

expected, the hysteresis loops will become almost symme-

try if the value of jE�0 6 0.1j is larger than 0.8, as shown in

Fig. 5(D).

Figs. 6(a1)–(a4) and 6(b1)–(b4), respectively, show

the domain structures corresponding to macroscopic PE

points (a1)–(a4) and (b1)–(b4) in Fig. 5(C), illustrating the

depinning and pinning phenomena with the positive and

negative electric fields. At point (a1) in Fig. 5(C), the pos-

itive electric field is larger than the critical depinning

electric field, all polarizations above the dislocation array

are along the direction of electric field and form a single

domain, as shown in Fig. 6(a1), indicating the depinning

of domain. However, there is a pinning effect of domain

when the electric field is smaller than the critical depin-

ning electric field at point (a4) in Fig. 5(C). Fig. 6(a4)

FIG. 5. The effect of a bias field

(60.1) on the hysteresis loops of the

ferroelectric with DLD¼ 21 and the

electric field amplitudes of (A)

E�0 ¼ 0.6, (B) E�0 ¼ 0.7, (C) E�0¼ 0.8,

and (D) E�0 ¼ 0.9.

FIG. 4. The critical de-pinning electric field versus the DLD.
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shows there are two domains above the dislocation array

with polarization antiparallel to electric field, indicating

the domain pinning. When the electric field decreases

from points (a1) to (a3) in Fig. 5(C), the domain struc-

tures above the dislocation array all change from the single

domain state to a multi-domain state as shown in Figs.

6(a1)–6(a3), which are similar to those in Figs. 3(b1)–3(b3).

The same microstructure evolution results in the same

macro-responses of average polarization for the curve (b1),

(b2), and (b3) in Fig. 2(C) and the curve (a1), (a2), and (a3)

in Fig. 5(C). Similar domain structure evolution occurs

under a negative bias field, where the pinning of domain

takes place at the positive side of electric field as shown by

Fig. 6(b1). When the electric field decreases to zero, the

domains with polarizations antiparallel to the field grow and

the domains with polarizations parallel to the field shrink, as

shown in Fig. 6(b2). When the opposite electric field

increases to the coercive field, the polarizations above the

dislocation array form a multi-domain state, as shown in

Fig. 6(b3). When the opposite electric field exceeds the criti-

cal depinning electric field at point (b4) in Fig. 5(C), the

multi-domain state converts to a single domain state, as

shown in Fig. 6(b4). See Movies 3 and 4 for temporal evolu-

tion of the polarization switching process of Fig. 6. For the

asymmetry hysteresis loops shown in Figs. 5(B) and 5(C),

the coercive field and remanent polarization on one side is

much larger than those on other side, which might have

potential application in microelectronic and electric indus-

tries. Form the discussion, we can see that due to the stress/-

strain field of the dislocation array, the pinning and

depinning phenomena can be further proved by the inten-

tionally applied bias electric field, while for the case without

any dislocation array, even with the external applied bias

electric field, both of the remanent polarization and the coer-

cive field will not be affected.

IV. CONCLUSIONS

In summary, the domain pinning and depinning phe-

nomena in a ferroelectric single crystal with dislocation

arrays under different external electric fields are investi-

gated by using a phase field model. The domain pinning is

different from the conventional domain wall pinning. In do-

main pinning, domains with polarization direction antipar-

allel to an applied field can survive under the small applied

field amplitude so that no new domain nucleation is needed

in the following switching. The present simulations show

how domains are pinned by dislocation arrays when the

applied electric field amplitude is smaller than a critical

level, beyond which domain depinning occurs, antiparallel

domain disappear, and new domain nucleation will be

needed in the following switching. The critical depinning

electric field depends highly on the dislocation spacing in

the dislocation arrays. Due to the domain pinning and

depinning, asymmetry hysteresis loops could happen when

a bias field is applied. The present phase field simulations

provide the micro-structural signature and macro-response

on the domain pinning and depinning phenomena and

mechanism in a ferroelectric single crystal with the disloca-

tion arrays.
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