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I.  Introduction to the Modeling Process with STELLA 

In order to illustrate some fundamental aspects of modeling with STELLA, we begin with 

a very simple system — a tub of water with a faucet and drain.  

 

1. From Real World to Conceptual Model to Computer Model 

The first step in modeling is to define and consider the system as it exists in the real 

world.  This involves identifying the components of the system, the material or entity that 

is moving through the system, the major processes involved in moving this material or 

entity, and the other quantities that these processes depend on.  This step necessarily 

involves simplifying the real world because it is obviously impossible to model the full 

complexity of nature.  Drawing a cartoon of the system, as shown in Figure 1, is an 

important part of this process.  
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The purpose of a schematic diagram like this is to clarify what we are modeling, the 

components of the system, and the relationships between these components.  In this case, 

we are modeling the volume of water in the tub, which is a function of the amount added 

by the faucet and the amount removed through the drain.  Here, we see that the faucet 

does not depend on anything else in the system — we can make it a constant, or we can 

make it something that changes over time in a specified manner.  The flow of water out 

the drain, however, is dependent on the other parts of the system; namely the size of the 

drain (its area), and the depth of the water in the tub, which in turn depends on the 

volume of water divided by the area of the tub base. 

A more precise description of this dependence of the drain flow on the water depth is 

provided by Torricelli's Law, which states that the velocity of water flowing out of a 

drain is given by: 

  v = 2gh       (1) 

where v is velocity, g is gravity, and h is the depth.  The velocity is then multiplied by the 

area of the drain opening to give a discharge in volume of water per unit of time. 
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Figure 2 shows how this system is represented in STELLA using the four building 

blocks of systems — reservoirs, flows, connectors, and converters.   

 

Figure 2. The water tub system as represented in STELLA. The reservoir, flows, and 
converters all have numerical values associated with them;  hidden in this view, they can 
be seen and changed by double-clicking on each symbol.  If no numerical value or 
expression is associated with a symbol, the program shows a question mark in that 
symbol.  The numerical values and expressions used in this model are given in the box 
(INIT stands for the initial amount in the reservoir; comments enclosed in {} brackets are 
used to help keep track of units; note that the time units here are seconds. 
 

The connector arrows represent dependence; the depth of water is dependent on the 

amount of water in the tub and the area of the tub base, so connector arrows go from the 

water tub reservoir (the box) and the tub area converter (a circle).  The converters 

represent either constants or variables defined by equations or graphs. Note that the two 

flows have cloud symbols at the ends away from the tub, indicating that this is an open 

system, drawing water from some unspecified source, and sending it to an unspecified 

sink at the other end. 

 

2. Units 
The next step is to figure out the units of the various system components.  This is a very 

important step to take before we add numbers and make the model run — if we don’t 

have the units figured out, we don’t really know what is being calculated when the model 

is run.  We start with the reservoir, which is a volume of water, which will have units of 

cubic meters [m3].  This means that the flows both have to be expressed as cubic meters 
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per unit of time, and we’ll use seconds here [m3/s] or [ m3s-1].  Next, we have the 

converters to think about.  The area of the tub base will have units of sqaure meters [m2], 

and since the water depth is the volume [m3] divided by the area [m2], it will have units 

of meters [m].  Next, we have gravity, which is an acceleration with units of meters per 

second squared [m/s2] or [ms-2].  The velocity is calculated using the equation above, in 

which we take the square root of 2 times the gravity times the water depth, so the units 

here will be ([m/s2] x [m])-2, which is [m2/s2]-2, which reduces to [m/s], the appropriate 

units for velocity.  Next we have the area of the drain opening, which is in square meters 

[m2], and when multiplied by the velocity [m/s], we have [m3/s], the same units as the 

faucet.  Thus we see that the units all work out, and we know we are dealing with cubic 

meters of water added to and removed from the tub on a timescale measured in seconds. 

 

3.  The Mathematics 

To consider the mathematics, we will simplify the above model so that it looks like this: 
 

 
 
 
The inflow, b, represents the faucet, while aW represents the drain.  The faucet flow is a 
constant, while the drain flow is defined as the volume of water in the tub (W) times a 
rate constant. This system can be described by the following differential equation: 
 

  
 
We also know the starting value, W0, the amount of water in the tub at time = 0. 

w

b aW

a

! 

dW

dt
= b " aW ,where b = faucet rate,and aW = drain rate.
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We then solve the integrals above to give:  
 
 ln(b-aW) = -at + C. 
 
Applying the natural exponential function to both sides helps us get closer to our goal of 
isolating W on one side of the equation. 
 
   

€ 

e ln(b−aW ) = e−at+C   which can be simplified to :  b − aW = e−at+C  
 
From here, if we recall that ex+y = exey, and since eC is a constant, which we’ll designate 
K, we can rewrite the right hand side of the last equation as Ke-at.  Next we need to find 
out what K is, and we get help if we look at the initial condition, at t=0, when W = W0.  
Our basic equation then at t=0 would be: 
 

  

€ 

b − aW0 = Ke−a0  and since e0 =1,
b − aW0 = K   then if we substitute this into the general equation,

b − aW = (b − aW0)e
−at   this can be rearranged to isolate W :

W (t) =
b
a
−
b
a
−W0
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This is our final equation for the water tub system — we sometimes cll this the analytical 
solution — it can be used to calculate the amount in the tub at any point in time.  This 
analytical solution, done the old-fashioned way was not too hard to arrive at, but 
remember that this is a very simple system.  As systems become more complex, the 
analytical solutions are increasingly difficult, and often impossible; this is when a 
computer is needed. 
 
One more point about this system — we can just look at the equations that describe it and 

This is a classic type of first-order, linear differential equation and the general strategy

for solving this is to separate the variables W and t  and then integrate both sides — this

will allow us to figure out W at any time t.  If we do this separating of variables and

integrate, the first equation we get is:

dW

b ! aW"  =  dt"  (2)

The problem with this is that you can't solve these integrals, so we use a trick, which is to

multiply both sides by -a, giving us:

!adW

b ! aW"  =  -adt" (3).

This is a good trick because now the left-hand side of the equation has the form of:

du

u
"  ,  where u = b - aW and du = -adW
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figure out what it will look like at steady state, when the inflow is equal to the outflow.  
In other words: 

  

€ 

b = aWss  or  Wss =
b
a

 

  

4.  How STELLA Solves the Equations 
 
Consider now an even simpler model, one of global population growth, which looks like 
this: 

 
 
In terms of an equation, this system is represented as: 

 
Now let’s look at what STELLA does to solve this equation over time.  It uses what is 
called a finite difference approach, in which it calculates the change over a short interval 
of time and then adds/subtracts the change from the previous value of the reservoir 
quantity.  The reservoir quantity is thus a sum, or an integral over time.  For the global 
population model, here is the basic information that STELLA has, and how it relates to 
the equations described above: 
 
INIT Population = 6.7e9 
 Here we just specify the starting amount in the reservoir (units here are people) — 
we’ll refer to this as P0 in what follows. 
 
CONVERTER: 
r = .0121 {constant annual growth rate = birth rate - death rate; units are per year or 1/t}	  

INFLOW: 
dPdt = Population*r {units here are people/yr} 
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Population(t) = Population(t - dt) + (dP/dt) * dt 
 This says that the population at any time, t, is equal to the population in the 
previous time (dt is the increment of time or time step between each calculation) plus the 
rate of change in the population (people/yr) times the increment of time (some fraction of 
a year).  This is the finite difference equation that gets solved again and again over the 
duration of the model. In reality, this finite difference equation is just the first two terms 
in a Taylor series expansion.  The other terms in the expansion are ignored, and this gives 
rise to errors in this mode of estimation, but those errors can be reduced by making the 
time step, dt, very small. 
 
STELLA uses a variety of strategies, or algorithms, to solve this basic equation.  The 
simplest one is called Euler’s Method, and can be visualized in the figure below. 
 

 
Here, the red line is the analytical solution to the equation, while the blue line is what 
gets calculated by Euler’s Method, in which the computer approximates the exact 
solution by calculating the slope at the points in time indicated by the blue dots; these 
slopes are extrapolated for discrete units of time given by dt.  As you can see, if dt is 
large, Euler’s Method results in errors that tend to get bigger as time goes on. Below, we 
can see the actual calculation for the simple global population model described above, 
with a very large time step — dt = 10 years. 
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For comparison, see what happens as we make the time step much smaller — dt = 0.25 
years.  Now, the Euler’s Method solution gives us a much better approximation to the 
exact solution. 

 

In STELLA, you have the option of choosing two other methods of integration called 
Runge-Kutta 2 and Runge-Kutta 4; these methods both involve doing calculations at 
fractions of the time step (dt), as a way to avoid straying from the true solution.  If you 
select one of the Runge-Kutta methods, the computation takes a bit longer, but you can 
get away with a longer time step. 

 

5. Choosing the Right Time Step (dt) 

You can clearly see the importance of picking the right time step in figures above, but it 
can get much worse.  Take this example, which is from a climate model of an imaginary 
planet populated by daisies (Daisyworld), which we explore in more detail in a separate 
module. 

!"#$%
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The blue curve, with the time step of 1 million years is a good result, which we verify by 
reducing the time step to 0.5 and comparing the model output with that where the dt was 
1; the model output in both cases is identical, and so we know that a time step of 1 is fine.  
But as we increase the time step, the model output begins to change, and as shown by the 
green curve, the model output begins to differ greatly from the shorter dt version.  As a 
general rule, if the model output is full of abrupt, dramatic swings, then your time step is 
probably too large, so you need to reduce it by half until you stop seeing changes in the 
model output.  But even if you don’t see wild fluctuations in your model results, it is a 
good idea to experiment with shorter time steps just to be sure that you are not looking at 
some artifact of an inappropriately large time step.   
 

 

 

II. Using the Model to Illustrate Systems Concepts 

 

There are a number of important concepts connected to dynamic systems that can easily 

be illustrated with our model of the water tub. 

 

1. Steady State 
If we run the model for 100 seconds (see figure), we see some interesting changes take 

place as the system evolves towards a steady state, where the amount of water in the tub 

stays constant.  
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The inflow (faucet) stays constant over time, but the outflow (drain) undergoes a type of 

exponential change, increasing until it approaches the same value as the inflow.  Initially, 

the inflow is greater than the outflow, and so the amount of water, and therefore the depth 

of the water in the tub increase, thus increasing the drain velocity and the outflow; this 

continues until the inflow and outflow match, at which point water continues to move 

through the system, but the amount of water in the tub remains the same.  

 

2. Residence Time 
When the system is in the steady state, we can define another concept — the residence 

time.  The residence time is effectively the average length of time that an entity — in this 

case a water molecule — remains in a reservoir.  It is really only meaningful for a 

reservoir that is at or near a steady state condition.  By definition, the residence time is 

the amount of material in the reservoir, divided by either the inflow or the outflow (they 

are equal when the reservoir is at steady state).  If there are multiple inflows or outflows, 

then we use the sum of the outflows or inflows to determine the residence time.  For the 

water tub system shown here, the residence time is: 
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€ 

tresidence =
amount in tub

outflow
=

10.16 m3

1 m3sec−1 =10.16 sec     

 

If we increase the flow rates, the water moves through the reservoir faster, so the 

residence time decreases.  It is possible then, to calculate any of the above three 

parameters (residence time, reservoir amount, and inflow or outflow) if the other two are 

known and if we assume the system is in a steady state.  For instance, if we assume that 

the human population is in a steady state, and if we know the average residence time, also 

known as the life span, we can calculate the number of births and deaths in a year.  The 

population is close to 6 billion, so if we assume an average life span of 70 years, then we 

can say that 85 million people are born each year and 85 million people die each year, 

assuming a steady state (which of course is wishful thinking).  Residence time is an 

important concept in problems of pollutants in ground water or surface water reservoirs, 

and also in understanding the long-term effects of greenhouse gases added to the 

atmosphere. 

 

3. Response Time 
A closely related concept is that of the response time of a system, which measures how 

quickly a system recovers and returns to its steady state after some perturbation. We can 

illustrate this concept by running several simulations, where we vary the starting amount 

of water in the reservoir and pay attention to how quickly the system gets to its steady 

state.  The results, shown below, are somewhat surprising; regardless of how great the 

initial departure from the ending steady state, this system gets to the steady state at about 

the same time. 
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In an even simpler system, where the outflow (D) is defined as a simple fraction (k) of the 

amount in the reservoir (W) such that at each instant in time,  

D = kW       (4)   

In this case, the response time is defined as 1/k — this turns out to be the time needed for 

the system to accomplish 63% of the return to its steady state.  Also note that in a very 

simple system, the residence time and the response time are numerically the same even 

though they are conceptually different.  The response time is a very useful concept 

because if it is known (or hypothesized), we can make some predictions about how 

quickly the system will respond to a change in a reservoir.  Alternatively, if we change 

one of the inflow or outflow processes, we can predict how that will affect the response 

time of the system.  The concept of response time is important in understanding the future 

of the global carbon cycle — if we halt the anthropogenic alterations to the carbon cycle, 

the response time of the system tells us how long it would take for the carbon cycle to 

return to a more natural state. 
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Another important observation to be made here is that the system evolves to the same 

steady state in each case, so the steady state of a system (along with the response time) is 

primarily determined by the nature of the inflows and outflows.  

 

4. Feedback Mechanisms 
This particular system returns to a steady state because it contains a negative feedback 

mechanism in the connection between the drain flow rate and the amount of water in the 

tub.  A negative feedback mechanism is a controlling mechanism, one that tends to 

counteract some kind of initial imbalance or perturbation.  A familiar example of 

another negative feedback mechanism is a simple thermostat in a home that responds to 

changes from the steady state, returning the home to a specified temperature. Note that 

the word negative, as used here, does not mean that this is bad feedback; it just means 

that this feedback mechanism acts to reverse the change that set the feedback mechanism 

into operation.  If our tub is in its steady state, knocking the system out of its steady state 

by suddenly dumping in more water will cause a response — the drain will increase its 

flow rate, thus decreasing the amount of water in the tub, bringing back towards the 

steady state value.  If we instead decrease the amount in the tub, the negative feedback 

associated with the drain forces the amount of water in the tub to increase until the steady 

state is returned.  The important thing to remember is that negative feedback mechanisms 

tend to have stabilizing effects on systems. 

 

In contrast, a positive feedback mechanism is one that exacerbates some initial change 

from the steady state, leading to a runaway condition — it acts to promote an 

enhancement or amplification of the initial change.  A simple way to modify the simple 

water tub system in order to create a positive feedback system is to alter the system as 

shown below.  
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Figure 5.  Modified water tub system to illustrate a positive feedback mechanism.  In this 
case, the faucet is defined such that its rate of inflow increases as the amount in the tub 
increases, while the drain is defined as a constant (physically unreal, of course).  The 
model was run 3 times with different initial amounts of water; initial values greater than 
5.0 trigger the positive feedback mechanism, leading to runaway behavior that follows an 
exponential curve. Comparing the reservoir values at 50 seconds and 100 seconds shows 
the impressive increases that result from exponential growth — 38 million m3 of water in 
the case where the initial value is 5.2 m3. 
 

This system has one possible steady state, where the initial amount in the water tub is 5 

m3; any departure from this value, however slight, leads to runaway behavior and the 

amount of water in the tub follows an exponential curve of the form: 

  W t( ) =
d
k

+ W0 −
d
k

" 
# 

$ 
% e

kt ,     

where W(t) is the amount of water in the tub at any time, d is the drain constant (1 in our 

case), k is the faucet rate constant (0.2), W0 is the initial amount of water in the tub 

(variable in the 3 model runs shown in Fig. 5), and t is time. A useful thing to remember 

with exponential growth is that the doubling time can be easily calculated (after some 

manipulations of the above equation): 

  tdoubling =
.693
k

.       
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Here, the doubling time works out to be about 3.5 seconds. 

 

If you run this model with an initial water tub value of less than 5, you learn another 

important lesson, which is that in the real world, there are limits to exponential change, 

regardless of whether that change leads to growth or decline. In this case, the limit is 

reached when there is no more water left in the tub. In the case of population growth, the 

limit to exponential growth is reached when the carrying capacity of the ecosystem is 

approached — then the population growth decelerates and gradually approaches the 

carrying capacity (with reference to the human population, see Cohen, 1995, and 

Meadows et al., 1992 for detailed discussions). 

 

Positive feedback mechanisms, like negative feedback mechanisms are not necessarily 

good or bad. Epidemics and infections have positive feedback mechanisms associated 

with them, but so does the growth of money in a bank account with compounded interest.  

The Earth contains a wide variety of both positive feedbacks and negative feedbacks and 

depending on the conditions, either kind of feedback may dominate.  But — and this is 

very important — the mere fact that we exist, the fact that our planet has water and an 

atmosphere is compelling evidence to suggest that ultimately, our Earth system is 

dominated by negative feedback mechanisms (see Kasting, 1989 or Lovelock, 1988 for 

more discussion of this). However, it is equally important to realize that human time 

scales are much shorter than the history of the Earth and over periods of time that interest 

humans, positive feedback mechanisms may be very important; they have the potential to 

produce dramatic changes. 

 

5. Lag Time 
We next consider a slightly more complex system to illustrate the concept of a lag time.  

In Figure 6, two water tubs have been connected such that the drain from one flows into 

the adjacent tub.  Here, the drains have been simplified greatly  — all of the drain 

parameters in our first model are represented by a rate constants labeled k1 and k2; these 

rate constants get multiplied by the volume in the reservoir at any time to give the 

volumetric rate of flow out of the drain. Next, we take advantage of a useful feature of 

STELLA — the ability to define various parameters as graphical functions of other 

system variables or time.  In this case, I want to show how the system responds to a 

sudden spike in the faucet flow rate, so I first define the faucet rate as being equal to time, 
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then click on a button in the dialog box and a graph appears, enabling you to define the 

nature of this graphical relationship. The faucet in this case starts out with a value of 1 

m3/sec, which puts the system in a steady state to begin with, then increases to a peak 

value of 4 m3/sec, and then quickly returns to 1 m3/sec again and stays there for the 

duration of the experiment. 

 
Figure 6.  A system with two water tubs connected by a drain illustrates the concept of a 
lag time.  Here, both tubs start out with the same amount and the drains have identical 
rate constants; the faucet is defined as a graphical function of time, starting at a value of 1 
m3/s, then jumping up to 4 m3/s at time=2, then returning to 1 for the duration of the time.  
Water tub 1 peaks at a value of 12.85 m3 at time=3, so this reservoir has a lag time of 1 
second; tub 2 peaks much later, at time=12, so its lag time is 10 seconds behind the faucet 
peak, and 9 seconds behind the "upstream" reservoir. 
 

The response of the system is shown in Figure 6.  The first tub reaches its peak 1 second 

behind the peak in the faucet — it lags behind the faucet.  The second tub peaks at a 

lower value and much later than the first — the perturbation is buffered by the first water 

tub. Note that both tubs return to their steady state after variable amounts of time and that 

the total area under the two curves is equal, meaning that the same volume of water 
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moved through each reservoir. The pulse of extra water, propagating through the 

system is very similar to the pulse of water moving down a stream system, with the lag 

time in this analogy being the time between the peak in the rainfall and the flood peak 

along a certain reach of the stream.  The concept of a lag time is also relevant to systems 

such as the global carbon cycle — anthropogenic additions of CO2 into the atmosphere 

are similar to the faucet here; the climatic response involves a certain lag time. This lag 

time means that if we halt emissions today, the climate will continue to warm — a fact 

that many policy-makers and citizens should be aware of.  

 

 

III. Model Simplicity vs. Complexity 
 
Models are clearly meant to represent simplified versions of the real world, yet still 

complex enough capture the essence of the real system.  So, what is too simple, and what 

is simple enough? One way to understand this is by way of three variations on the water 

tub model, shown in Figure 7.  In the simplest version of this system, the faucet and drain 

flows are simple constants — they do not change over time.  The more realistic model 

uses Torricelli’s Law to express the rate of flow out of the drain.  The intermediate model 

simply represents the drain flow as the product of a rate constant times the volume in the 

tub.  
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Figure 7.  Three variations of the water tub model, with varying degrees of complexity.  
The simplest model has a constant drain, while in the more realistic model, the drain flow 
rate is calculated using Torricelli's Law. The model of intermediate complexity just 
represents that drain flow as a rate constant multiplied by the amount of water in the tub.  
comparing the models shows virtually no difference between the intermediate complexity 
model and the more realistic one.  The intermediate model is thus an acceptably simple 
model — not so simple that it fails to capture the essence of the system. 
 

From the results (Fig. 7), it is clear that the simplest model does a poor job of 

representing the real behavior of this system; it drops off at a constant rate and does not 

achieve a steady state except in the special case where the inflow is set equal to the 

outflow.  This simple system does not have any negative feedback associated with it 

either.  So, this is a good example of a model that is too simple.  In contrast, the 

intermediate model does a remarkably good job of matching the behavior of the more 

complex model.  It is fair to say, then, that the intermediate model is simple enough and 

yet not too simple — it captures the essence of the more complex model using a more 

parsimonious mathematical representation.  Nevertheless, the simple model is valuable as 

a starting point in the modeling process; its shortcomings provide suggestions for 

improvements and added complexity 
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It is worth noting that even the more complex model shown in Figure 7 is not overly 

complex.  An overly complex model might, for instance, try to represent the friction, 

viscosity, and 3-D turbulent flow in the water, which would clearly represent overkill in 

this case. 

 

 

IV.  Common System Designs and Behaviors 

There is certainly a vast number of models of dynamics systems, but some common 

design elements or system structures are found in a great number of models. When we 

venture off into world of modeling, it will be helpful to be familiar with some of these 

common designs and it will be especially helpful develop a sense of what types of 

behaviors are associated with these designs. 

The series of figures below illustrate these common system designs in the form of very 

simple STELLA models, accompanied by graphs that show the behavior or evolution of 

these systems over time, and the basic equations used in the models. In each case, I 

mention a real-life system that is similar to these models. 

 

A. Linear Growth and Decay. The key to this system design is that the flows are defined 

as constants; this results in very simple, easy-to-predict behavior characterized by 

constant rates of change. 
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B. Exponential Growth and Decay. These are extremely common design elements that 

are sometimes referred to as first-order kinetic equations, but in simpler terms, they 

represent growth or decay (draining) processes where the rate of change is a fixed 

percentage of the reservoir involved in the flow. Exponential growth represents a classic 

form of positive feedback, yielding a runaway behavior, while exponential decay 

represents a negative feedback mechanisms that has a stabilizing effect.  

 

C. S-Shaped Growth. This system design is especially common in models of population 

growth that is limited by some resource. In this type of a system, one of the flows is 

defined as a percentage of the reservoir, but that percentage changes as the amount in the 

reservoir changes. This kind of a system design has a sort of built-in limit, determined by 

the rate constants, as shown in the figure. Interestingly, this sytem structure can lead to 

chaotic behavior as we will see in a later chapter on population growth.  
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D. Overshoot and Collapse. This system design represents a variation on the system 

shown in C above. In this case, the limit to growth, represented by reservoir B is 

declining as reservoir A increases. Reservoir A grows exponentially and shoots past its 

limit and as a result, the limit decreases more and more, fueling a collapse of A until it 

reaches a steady-state at a very low level.  

 

E. Oscillatory Behavior. This type of system design represents what is called a coupled 

system since the change of each reservoir is dependent on how its companion reservoir is 

changing. These systems often lead to an oscillation, creating cycles that do not have an 

external control. The oscillation arising from these coupled reservoirs is very different 

from the kind of oscillation forced onto a system by some external control — something 

that is a sinusoidal function of time. 
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F. Damped Oscillatory Behavior. This is a variation of the system shown in E above and 

is common in any environment where friction or some other form of energy loss is a 

factor. Interestingly, it is also a consequence of migrations in systems of coupled 

populations. 

 

V.  Validation, Tuning, and the Significance of Computer Models 

The purpose of a model is not to replicate the real world — it is clearly impossible to put 

the complexity of the real world into a computer.  Instead, the goal is usually to 

understand something about the behavior of a system, including how the system responds 

to changes.  We create and use these models because their real-life versions are so 

complex, large, and often slow that we cannot generally understand them without some 

kind of controlled experimentation.  But, the obvious simplification of models commonly 

creates leads to skepticism that ranges from complete rejection of anything the model 

reveals to a milder form in which the results are accepted as a good possibility for the 

way the real world behaves. So, how does one develop a sophisticated, nuanced 

appreciation for the significance of model results?  

 

Computer models such as the ones shown in this paper are nothing more than a set of 

differential equations that are integrated over time.  The significance of the model results 
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are therefore dependent on the nature of the equations.  Just as there is a range in the 

quality of equations from highly abstract to highly realistic, there is a range in the 

significance of the model results.   If the equations were pulled out of thin air, then the 

results are not significant relative to any real world system (but they are nevertheless 

meaningful in a purely mathematical sense).  If the equations are designed to express the 

general relationships of a real world system (e.g., the intermediate model of Fig.7), the 

model results might be only qualitatively meaningful. If the equations are designed and 

tested such that they mimic the important processes of the real world system, then the 

model results may be quantitatively significant, and the model might have some 

important predictive capabilities. A model such as this last type could be tested against 

known histories of the real world system; models that pass these tests are sometimes said 

to be validated, and their results can be considered to be reliable, at least within a certain 

range of conditions. Many modelers shy away from the term validation since it implies a 

sense that the model is perfect (which is highly unlikely) — perhaps it is better to say that 

these models are “tuned” to match observations from the real world. 

 

The task of model tuning is simple in some cases.  For instance, the water tub model is 

easily tested by constructing a real version of the model (see Moore and Derry, 1995) and 

collecting some real data to compare with the computer model results, then adjusting the 

drain rate constant until the model matches the observations.  If this succeeds, then our 

model is tuned (again, some would say validated) and we could say that it captures the 

essence of the system.  Torricelli’s Law, used to construct the more realistic version of 

the water tub model in Figure 7, is essentially derived from observations and so it 

generally gives quite reliable results. 
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But for larger systems, such as the global carbon cycle (Figure 11), the process of 

model tuning or validation is a bit trickier — you clearly can’t create a lab-version of 

such a vast, global-scale model.  Instead, we have to rely on some kind of natural 

experiment in which we have some knowledge of an imposed change and some record of 

the model’s performance or state over time.  Unwittingly, humans have been conducting 

such an experiment and the state of the carbon cycle is partly available in the form of 

instrumental measurements since the late 1950’s and ice core records of atmospheric CO2 

concentrations before then — thus giving us a data set to use in tuning global carbon 

cycle models. 

 

 


