Radiative heat balance (at equilibium):

HEAT ABSORBED = HEAT EMITTED

$$R^2 E_s [1 -] = 4 R^2 [f T_s^4]$$

- R = radius of the Earth
- E_s = solar irradiance
 - = planetary albedo
- f = effective infrared transmission
 factor (greenhouse effect)
 - = Stefan-Boltzman constant
- T_s = surface temperature

PLANETARY ALBEDO: The fraction of incoming radiation that is reflected back to space.

[sea water ~0.1; bare land ~0.3; sea ice ~0.6; fresh snow ~0.9]

ICE-ALBEDO FEEDBACK: For any imposed cooling (or warming), the resulting higher (or) albedo will cause further cooling (or warming). Thus, ice advance is self-stabilizing.

RUNAWAY ICE ALBEDO: If ice lines close to within ~30° of the equator, the ice albedo feedback becomes unstoppable and ice quickly covers the tropics.

see Budyko, M.I., The effect of solar radiation variations on the climate of the Earth; TELLUS **21**: 611-619 (1969).