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Summary

The stress-dependent permeability of porous-fractured media is examined where principal
stresses do not coincide with the principal permeabilities. This condition is the norm, and
may arise when either ¯ow is controlled at the local level due to the presence of inclined
bedding partings or oblique fractures, or as a result of the evolving loading environment.
Permeability response is controlled by shear and normal sti¨nesses of fractures, frictional
dilation coe½cients, skeletal and grain modulii, initial permeabilities and stress state. For
parameters representative of intact and fractured rocks, hydrostatic loading modes are
shown to have the greatest e¨ect in the pre-failure regime. Shear dilation e¨ects are small,
primarily controlled by the selected magnitudes of shear sti¨nesses and dilation coe½cients.
The resulting stress-permeability relationships, which cover both fractured and intact media,
are examined in a numerical study of ¯uid ¯ow injected across the diameter of a cylindrical
core with inclined fabric, subjected to various loading con®gurations. This is used to pro-
duce relationships that allow one to reduce ¯ow test data in non-standard specimen geo-
metries, where e¨ective stress changes are simultaneously applied. These results con®rm the
signi®cant impact of inclination of the rock fabric with respect to both ¯ow and loading
geometry on the evolving permeability ®eld.

1. Introduction

The e¨ective large-scale composite permeability, that includes the superposed
e¨ects of fractures and matrix, is a measure of the ¯uid transmission capacity of a
porous medium. It is one of the most important factors in determining, for exam-
ple, prospective well production rates, aquifer productivity, or the likely success of
remedial actions in aquifer restoration. As a result, the determination of perme-
ability has been a focal topic in the hydrogeological sciences as well as in petro-
leum engineering. By de®nition, permeability is a physical parameter that de®nes
transmission characteristics, independent of the properties of the percolating ¯uid.
Correspondingly, it is closely related to the distribution of both primary or sec-



ondary porosities, and may be stress sensitive. Where ¯uid ¯ow is viewed in iso-
lation, determining the form of the permeability tensor is complicated by issues
related to the representative elemental volume (REV) and in de®ning the orienta-
tion of the principal permeabilities. Where the pressure-sensitivity of component
fractures is considered, together with the likelihood that principal stresses will not,
in general, coincide with the principal permeability directions, the permeability
relations are controlled in a complex fashion by the stress tensor. Correspond-
ingly, permeability, and particularly secondary permeability, must be viewed as
strongly controlled by the ambient e¨ective stress state.

Experimental evidence indicates that the permeability of fractured media is
typically at least one order of magnitude larger than that of intact media (With-
erspoon et al., 1980). Envisioning the ¯ow through fractured media as ¯ow chan-
neled within a set of parallel-sided conduits, makes it possible to quantify fracture
permeability both numerically and experimentally (Snow, 1969; Louis, 1969; Bear,
1972; Hoek and Bray, 1977; Hsieh and Neuman, 1985; Lee et al., 1996). The
anisotropic transmissive behavior of fractured media, for ¯ow alone has been
investigated by statistical methods (Sagar and Runchal, 1982; Oda, 1985), discrete
modeling (Long and Witherspoon, 1985), and ®eld ¯ow tests (Hsieh et al., 1985).
Detailed characterization of individual fractures (Hakami et al., 1995; Ge, 1997),
or fracture networks (Shimo and Iihoshi, 1995) has also attracted attention in
order to obtain certain crucial fracture parameters. Where stress e¨ects are also
incorporated, the emphasis has been on pore-scale models representing the porous
matrix, de®ning behavior of the whole medium through analyzing the component
behavior of the capillaries (Greenkorn, 1964; Noltimier, 1971; Ioannidis et al.,
1996). Exposition of the role of pressure-sensitive fractures has primarily consid-
ered coincident principal axes of permeability and stresses (Elsworth and Xiang,
1989; Bai and Elsworth, 1994).

It is well understood that compressive loading of fractured media leads to the
reduction of permeability as a result of fracture closure. Conversely, fracture
opening under extensional loading results in permeability enhancement. To quan-
tify the correlation between stress and permeability, signi®cant experimental
e¨orts have been made to de®ne the relationships between the fracture aperture,
subject to mechanical loading, and the initial fracture aperture. The results indi-
cate that fracture roughness exerts a critical control (Louis, 1969; Witherspoon et
al., 1980; Barton et al., 1985; Lamas, 1995). Empirical relations (Cook, 1988)
show that permeability decays exponentially with the increase of normal stress.
When conditions permit, laboratory testing may be used to determine the stress-
permeability relations directly (Zoback and Byerlee, 1975; Rutqvist, 1995; Taka-
hashi et al., 1995; Suri et al., 1997), and apply these to de®ne behavior at a larger
scale. At the ®eld-scale, the stress-permeability relationships may be related to
reservoir compaction (Rhett and Teufel, 1992), or soil and rock consolidation
(Al-Tabbaa and Wood, 1991; Nagaraj et al., 1996), in addition to well injection or
pumping (Li, 1985). Biot's (1941) theory of poroelasticity provides a comprehen-
sive framework for the evaluation of time-dependent e¨ective-stress ®elds in
homogeneous media, including the incorporation of poroelastoplasticity (Morita
et al., 1981; Oda, 1986). For the modeling of discretely fractured systems, explicit
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stress-permeability relationships have been developed by Elsworth (1989) and Bai
and Elsworth (1994) for fractured media, by Gangi (1978) and Bai and Elsworth
(1994) for intact media, and by Bai et al. (1997) for fractured-porous media.

In the analysis of stress-dependent permeability, the majority of current models
assume that the principal permeabilities are coincident with the principal stresses.
However, such a simpli®cation may be invalid when either the discontinuity planes
are inclined with respect to the local stresses, which is likely the norm where
rotations result from tectonic or human intervention. Under stress rotation, the
in¯uence of shear stresses on permeability changes may have a signi®cant e¨ect on
the resulting permeability ®eld. In addition, this view of non-coincident principal
stress and permeability directions provides a more general de®nition of material
anisotropies.

2. Stress-dependent Permeability for Fractured Media

Incorporating the in¯uences of both normal deformation and shear dilation on the
e¨ect of ¯uid ¯ow in orthogonally fractured media, the dimensionless permeability
changes caused by the solid deformation may be expressed as (Elsworth and
Xiang, 1989; Bai and Elsworth, 1994):
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where k0 is the initial permeability, De and Dg are the normal and shear strains, E

and G are the elastic and shear moduli, b is the fracture aperture, s is the fracture
spacing, and fd is the fracture dilatational angle. This follows directly from con-
sideration of the partitioning of strains within a fractured medium, where shear
and normal sti¨nesses, Ksh and Kn, represent the stress-deformation response
of the individual fractures. This is equivalent to behavior de®ned in terms of
a modulus reduction ratio, Rm � Emass=Eintact (Ouyang and Elsworth, 1993; sub-
scripts mass and intact represent the quantities in terms of rock mass or intact
rock, respectively), such that,
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Where the standard repetitive length of individual matrix blocks, including one
fracture, is taken as s, instead of s� b �since sg b�, then Eq. (2) collapses to Eq.
(1). The integer bracketed term of Eq. (2) drops out, under this requirement. A
schematic description of a three-dimensional fracture, set in a local coordinate
system �Ox 0 y 0z 0� and subjected to external load, is given in Fig. 1.

The orientations of the fracture sets can be determined from a relation between
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the global coordinate (XYZ) and the direction cosines of the fracture vector nor-
mal, i.e., �l1;m1; n1�; �l2;m2; n2�, and �l3;m3; n3�. As a result, the relationship in
Eq. (1) can be written more generally as follows:
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where the subscripts i; j; k � x 0; y 0; z 0; i 0 j 0 k; n is Poisson ratio, and Ds and Dt
are the normal and shear stresses.

As a speci®c example, the dimensionless permeability change in z 0 direction
may be de®ned as:

Fig. 1. A schematic ®gure showing the 3-D block-fracture geometry of the model. Matrix blocks are
linked by fractures of normal sti¨ness, kn, and shear sti¨ness, ksh
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It should be noted that the opening or closure of the fracture, when it is subject
to tension or compression, is attributed to the normal stresses only. Dilation due
to shear displacements always tends to increase the fracture aperture, and corre-
spondingly increases, the permeability magnitude (Meng and Bai, 1997), whereas
the formation of gouge or post-peak strength contractile displacements will de-
crease permeability. Naturally, depending upon the starting point of the stress-
strain relations, the shear-associated contraction may occur initially or at the stage
of rock failure. However, shear induced dilation is the focus of the present study.

Transformation between local stresses and permeabilities and their global
counterparts may be achieved by using the tensorial transformation properties
(e.g., Jaeger and Cook, 1979). For example, the following relations can be derived
for the case in which the global coordinate system (xyz) is coincident with the
principal stresses:
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1Ds2 � n2

1Ds3; �5�
Dsy 0 � l 22 Ds1 �m2

2Ds2 � n2
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Dty 0z 0 � l2l3Ds1 �m2m3Ds2 � n2n3Ds3: �10�

Conversion of the permeabilities between the local and global systems may
follow a similar process.

3. Stress-dependent Permeability for Intact Media

The stress-permeability relationship for intact media can be derived using the
concept of Hertzian elastic contact (Timoshenko, 1934). Assuming that the
change in grain size of a porous medium with a cubical packing may be related to
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the external load, this relationship can be expressed as (Bai and Elsworth, 1994):
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where, before the second term on the right-hand side of the equation, the alternate
negative and positive signs refer to compressional and dilatational loadings,
respectively.

A more general formulation of the permeability changes along the
i �i � 1; 2; 3� direction, due to the changes in strains Dej � j � 1; 2; 3�, may be
expressed as:
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where strains Dej are linked to stresses Dsj via Hooke's strain-stress relationship,
such as:
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where the subscripts (1, 2, 3) correspond to �x 0; y 0; z 0� for a nonorthogonal ¯ow-
deformation system, and to (x, y, z) for an orthogonal ¯ow-deformation system.

Unlike in fractured media, where shear sliding between the fracture surfaces
may be manifest, the e¨ects of shear stresses within the intact porous media appear
to be negligible. It is known that the application of normal stresses changes the
material volume and consequently a¨ects permeability. In contrast, no net volume
change accompanies shear deformation in an elastic medium. As a result, it is
assumed that permeability changes in intact media, in the pre-yield regime, are
a¨ected only by normal stresses.

4. Comparative Analysis

The stress-permeability relationships presented in the previous section are further
examined with a simple two-dimensional geometry in which the angle between the
directions of the principal permeabilities and principal stresses is de®ned as y, as
shown in Fig. 2. For simplicity, the principal stresses are assumed to be parallel
to the global coordinate axes. The local stresses are related to the global stresses
through the following expressions:
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With the omission of all local subscripts, the selected modeling parameters
are listed in Table 1. The shear modulus can be evaluated through the relation
G � E=2�1� n�. For the present case, the selection of Young's modulus and
Poisson ratio is representative of low permeability rocks, such as marble or granite
(Jumikis, 1983). The value for the fracture normal sti¨ness is obtained from Bai
and Elsworth (1994), in the lower part of the range reported. Finally, the fracture
dilatancy angle is obtained from Elsworth and Xiang (1989), and a reasonable
initial aperture of the order of 1000 mm is selected. These values are summarized in
Table 1.

Applying the stress-permeability relationship for the fractured medium [i.e.,
Eq. (3)], Fig. 3 shows the dimensionless permeability along the x 0 and y 0 directions
with reference to the angle of inclination of the fabric, y. Di¨erent stress ratios

Fig. 2. Coordinate transformations between principal stress and permeability orientations. Principal
stresses aligned with the global axes, (x, y), are inclined at an angle y to the principal axes of anisotropy,

�x 0; y 0�

Table 1. Selected modeling parameters used for a two dimensional ¯ow system

Parameter De®nition Unit Value

E Young's modulus MPa 5� 103

Ksh fracture shear sti¨ness MPa/m 5� 102

Kn fracture sti¨ness MPa/m 5� 103

n Poisson ratio ± 0.2
sx; sy fracture spacing m 0.1
bx; by fracture aperture m 0.001
fd fracture dilatancy angle degree 5.37
y inclination angle degree 0±90
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between a variable magnitude of maximum principal stress, sx, and a ®xed mag-
nitude of the minimum principal stress, sy, are used. As the normal to the fracture
rotates to coincidence with the major principal stress, the permeability is a mini-
mum. Larger principal stress magnitudes induce a greater reduction in perme-
ability. As the normal to the fracture rotates perpendicular to the major principal
stress, the permeability becomes a maximum; the permeability of the other plane,
also aligned parallel to the major principal stress, also becomes a maximum.
Similar behavior results for intact media, using the relationship given in Eq. (12),
as shown in Fig. 4. Two noticeable di¨erences are apparent between the responses
of fractured and intact media, as identi®ed in Figs. 3 and 4. The ®rst is the slight
di¨erence between initial and ending values of permeability at y � 0 and 90
degrees. The second di¨erence is that the maximum and minimum permeabilities
of the intact media no longer coincide with the orientations of the principal
stresses (indicated by y). These di¨erence are explained as follows:

Examining the dimensionless permeability change in the x 0 direction, kx 0=k0x 0 ,
for the present two-dimensional case, Eq. (12) can be rewritten as:
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where

Fig. 3. Variation in dimensionless permeability for ¯ow within a two-dimensional fractured medium
with rotation of the principal stresses relative to the principal directions of anisotropy, y. High di¨er-
ential stress �sx=sy�; materials parameters from Table 1. Dimensionless permeability de®ned as the

ratio of stress-modi®ed permeability to unstressed permeability, k=k0, as detailed in Eq. (3)
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Incorporating Eqs. (18) and (19) into (17), variations of local stresses in Eq. (17)
can be further de®ned as:

Dey 0 � 1

2E
��1ÿ n��Dsx � Dsy� ÿ �1� n� cos 2y�Dsx ÿ Dsy��: �20�

It should be noted that cos 2y in Eq. (20) remains positive if y is equal to or less
than 45 degrees. For the present case (e.g., Dsx � 80MPa and Dsy � 10MPa), the
last term on the right-hand side of Eq. (20) remains negative when y falls between
0 and 30 degrees, which results in larger values of permeability ratio, kx 0=k0x 0 ,
determined from Eq. (17), particularly when the stress di¨erence is the largest.

This behavior does not occur for fractured media, where from Eq. (3), perme-
ability changes are mainly controlled by changes in the normal sti¨ness of the
fracture (second term on the right-hand side of the equation). A detailed discus-
sion identifying the primary and secondary in¯uences on permeability change
[Eq. (3)] is given in a subsequent section on Finite Element Analysis.

Despite these di¨erences, the resulting permeability pro®les for both types of
media imply the dominance of permeability variations due to the normal stress
changes, since dilative changes of intact media are not incorporated into the
model. Results are reported for a lower stress ratio between a ®xed maximum
principal stress �sx� and a varying minimum principal stress �sy�, in Figs. 5 and 6,
for fractures and intact media, respectively. Markedly di¨erent pro®les of the

Fig. 4. Variation in dimensionless permeability for two-dimensional ¯ow within an intact medium with
rotation of the principal stresses relative to the principal directions of anisotropy, y. High di¨erential
stress �sx=sy�; material parameters from Table 1. Dimensionless permeability de®ned as the ratio of

stress-modi®ed permeability to unstressed permeability, k=k0, as detailed in Eq. (12)
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permeability changes, relative to the previous cases for fractured and intact media,
result. The permeability response increases monotonically with the inclination of
the fabric to the principal stresses, for this moderate level of the stress ratios. The
resulting changes in permeability with rotation of the stress tensor for low stress
ratios are shown in Figs. 7 and 8. The comparative analysis reveals the strong in-
¯uence of the stress state.

Fig. 5. Variation in dimensionless permeability for ¯ow within a two-dimensional fractured medium
with rotation of the principal stresses relative to the principal directions of anisotropy, y. Moderate
di¨erential stress �sx=sy�; material parameters from Table 1. Dimensionless permeability de®ned as the

ratio of stress-modi®ed permeability to unstressed permeability, k=k0, as detailed in Eq. (3)

Fig. 6. Variation in dimensionless permeability for two-dimensional ¯ow within an intact medium with
rotation of the principal stresses relative to the principal directions of anisotropy, y. Moderate di¨er-
ential stress �sx=sy�; material parameters from Table 1. Dimensionless permeability de®ned as the ratio

of stress-modi®ed permeability to unstressed permeability, k=k0, as detailed in Eq. (12)
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5. Parametric Analyses

Conducting laboratory ¯uid ¯ow tests in cored rock specimens is a useful means to
determine the anisotropic characteristics and permeabilities of aquifers and reser-
voir rocks. However, in addition to the expense involved, most laboratory tests are
di½cult to perform due to complications in the test design, instrumental setup,
¯ow rate control, ¯uid leakage management, and specimen preparation. Conse-

Fig. 7. Variation in dimensionless permeability for ¯ow within a two-dimensional fractured medium
with rotation of the principal stresses relative to the principal directions of anisotropy, y. Low di¨er-
ential stress �sx=sy�; material parameters from Table 1. Dimensionless permeability de®ned as the ratio

of stress-modi®ed permeability to unstressed permeability, k=k0, as detailed in Eq. (3)

Fig. 8. Variation in dimensionless permeability for two-dimensional ¯ow within an intact medium with
rotation of the principal stresses relative to the principal directions of anisotropy, y. Low di¨erential
stress �sx=sy�; material parameters from Table 1. Dimensionless permeability de®ned as the ratio of

stress-modi®ed permeability to unstressed permeability, k=k0, as detailed in Eq. (12)
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quently, the e¨ort of modeling to represent true test conditions, and to recover the
maximum information from the test, appears worthwhile. Numerical analyses
using the ®nite element technique are described in the following, with `test' refer-
ring to the `numerical replication' process.

5.1 Test Speci®cations

The specimen geometry, based on speci®c test con®gurations, was provided by a
petroleum company. The tests are constrained for ¯uid to ¯ow through cylindrical
core specimens with the bedding inclined at an angle y between 0 to 30 degrees
with the horizontal plane (i.e., the angle between bedding plane and x axis). As a
result, the bedding fractures a¨ect the ¯uid ¯ow along the primary x orientation.
Parallel orthogonal fractures are embedded within the specimens with their planes
being coincident with the local coordinate system �x 0y 0z 0�. The initial specimen
geometry is 2.5 inch (6.35 cm) in height and 1.0 inch (2.54 cm) in diameter. Inlet
and outlet are small circular holes of 0.25 inch (0.635 cm) in diameter, placed on
opposite sides of the specimen, as indicated in Fig. 9. During the tests, a constant
¯ow rate, Q, is applied while ¯uid pressure, p, is measured at the outlet. The in-
jection area is approximately 0.04 in2 (0.258 cm2). The selected parameters are
listed in Table 2. Young's modulus and Poisson ratio are chosen as representative
of sandstone and limestone (Jumikis, 1983). The value for the fracture normal
sti¨ness is obtained from the relationship in Bai and Elsworth (1994). Spacing of
micro-fractures within the specimen is selected as 0.1 mm, with an initial aperture
an order-of-magnitude lower, as de®ned in Table 2, yielding a secondary porosity
of approximately 10%. For the selected fracture spacing, approximately 5 micro-
fractures intersect the injection area.

5.2 Loading Con®gurations

The test specimen is subjected to axial and radial principal stresses (e.g., sz � s1,
sx � s2 and sy � s3). Five loading con®gurations are selected and itemized in

Fig. 9. Geometry of the cylindrical specimen used in ¯ow tests. Principal stresses are aligned along the
(x, y, z) coordinate system, with the fracture system de®ned relative to �x 0; y 0; z 0�
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Table 3, including uniaxial and triaxial conditions applicable to cylindrical labo-
ratory specimens. An additional polyaxial load case is included, approximately
representing conditions in a stressed block.

5.3 Stress±y Relationship under Di¨erent Loadings

Referring to Fig. 9, the global (xyz) and local �x 0y 0z 0� coordinates are correlated
by the directional cosines:

l1 � cos y; m1 � 0; n1 � sin y; �21�
l2 � 0; m2 � 1; n2 � 0; �22�

l3 � ÿsin y; m3 � 0; n3 � cos y: �23�
If the layers are inclined only relative to the x and z coordinates, the two-

dimensional stress transformation equations resulting from Eqs. (5) through (10),
reduce to:

Dsx 0 � Dsxcos
2 y� Dszsin

2 y; �24�
Dsy 0 � Dsy; �25�

Dsz 0 � Dsx sin
2 y� Dsz cos

2 y; �26�
Dtx 0y 0 � Dty 0x 0 � 0; �27�
Dty 0z 0 � Dtz 0y 0 � 0; �28�

Dtz 0x 0 � Dtx 0z 0 � cos y sin y�Dsz ÿ Dsx�: �29�

Table 2. Selected modeling parameters for ¯uid injection into a central horizontal hole of a cylindrical
specimen

Parameter De®nition Unit Value

E Young's modulus MPa 3� 104

Ksh fracture shear sti¨ness MPa/m 3� 105

Kn fracture sti¨ness MPa/m 3� 106

n Poisson ratio ± 0.2
sx; sy; sz fracture spacing m 0.001
bx; by; bz fracture aperture m 0.0001
fd fracture dilatancy angle degree 5
y inclination angle degree 0±90

Table 3. Selected loading con®gurations for cylindrical specimens subject to lateral injection

Case Loading s1 s2 s3 Value

1 no 0 0 0 MPa
2 uniaxial 100 0 0 MPa
3 triaxial 100 50 50 MPa
4 polyaxial 100 75 50 MPa
5 hydrostatic 100 100 100 MPa
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Five loading con®gurations are analyzed, as listed in Table 3, with the rela-
tionships between the local stresses and the angle of inclination y, as given in Eqs.
(24) through (29).

Stresses acting on fracture planes, inclined at y to the principal stress, sz, are
illustrated in Figs. 10±13. Hydrostatic and unstressed states yield invariant stresses
with the inclination of the fracture planes, while loading con®gurations with a
deviatoric load result in variable normal and shear stresses. Out-of-plane loading

Fig. 10. Change in normal stress parallel to the anisotropy, Dsx 0 , with variation in the inclination, y, of
the applied principal stress, to the orientations of fractures. Loading conditions are de®ned in Table 3

Fig. 11. Change in normal stress perpendicular to the anisotropy, Dsz 0 , with variation in the inclina-
tion, y, of the applied principal stress, to the orientations of fractures. Loading conditions are de®ned in

Table 3
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is invariant, as shown in Fig. 12, and shear stresses are a maximum on planes
inclined at 45�, and zero on the principal planes as shown in Fig. 13.

5.4 Permeability-Stress Equations

Incorporating the fracture aperture changes resulting from the changes in nor-
mal stresses and shear stresses, applying the simpli®ed assumptions that all the

Fig. 12. Change in normal stress parallel to the anisotropy, Dsy 0 , with variation in the inclination,
y, of the applied principal stress, to the orientations of fractures. Loading conditions are de®ned in

Table 3

Fig. 13. Change in shear stress acting on the fracture planes, Dtx 0z 0 , with variation in the inclination, y,
of the applied principal stress, to the fractures. Loading conditions are de®ned in Table 3
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parameters are independent of the coordinate systems, as well as that bi � bj � bk,
the modi®ed dimensionless permeabilities along local, x 0, y 0 and z 0 directions, may
be de®ned, according to Eq. (3), as:

Dkx 0

k0x 0
� 1

2

(
1ÿ Dsy 0

Knb
� sy 0 ÿ b

Eb
�Dsy 0 ÿ n�Dsx 0 � Dsz 0 ��

� �3

�
"
1ÿ Dsz 0

Knb
� sz 0 ÿ b

Eb
�Dsz 0 ÿ n�Dsx 0 � Dsy 0 ��

� �Dtz 0x 0 � G

sz 0
� Ksh

� �ÿ1
tan fd

b

#3)
�30�

Dky 0

k0y 0
� 1

2

("
1ÿ Dsx 0

Knb
� sx 0 ÿ b

Eb
�Dsx 0 ÿ n�Dsy 0 � Dsz 0 ��

� �Dtz 0x 0 � G

sx 0
� Ksh

� �ÿ1
tan fd

b

#3

�
"
1ÿ Dsz 0

Knb
� sz 0 ÿ b

Eb
�Dsz 0 ÿ n�Dsy 0 � Dsx 0 ��

� �Dtz 0x 0 � G

sz 0
� Ksh

� �ÿ1
tan fd

b

#3)
�31�

Dkz 0

k0z 0
� 1

2

("
1ÿ Dsx 0

Knb
� sx 0 ÿ b

Eb
�Dsx 0 ÿ n�Dsy 0 � Dsz 0 ��

� �Dtz 0x 0 � G

sx 0
� Ksh

� �ÿ1
tan fd

b

#3

� 1ÿ Dsy 0

Knb
� sy 0 ÿ b

Eb
�Dsy 0 ÿ n�Dsx 0 � Dsz 0 ��

� �3)
: �32�

5.5 Finite Element Analysis

For modeling steady state ¯uid ¯ow through the cylindrical specimen, a three-
dimensional ®nite element model is assembled, using eight-node isoparametric
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brick elements (Bai and Meng, 1994) and a protocol to accommodate the coupled
nature of the ¯ow-deformation system (Bai and Elsworth, 1994). The ®nite ele-
ment mesh arrangement is depicted in Fig. 14, in which eight layers inclined with
respect to the horizontal plane are incorporated. Each inclined plane consists of 42
elements, which results in a total of 486 nodes and 336 elements.

Assuming an isotropic rock specimen with an initial permeability of
kx 0 � ky 0 � kz 0 � 100 md (milli darcy), applying uniform fracture spacing (i.e.,
si � sj � sk), and the other parameters listed in Table 2, enables mean permeabil-
ity magnitudes to be determined, as reported in Table 4.

Figs. 15, 16 and 17 show the relative permeability magnitudes resulting from
di¨erent external loadings along the x 0; y 0 and z 0 directions with respect to di¨er-

Fig. 14. Finite element mesh within the cylindrical specimen. Half symmetry is used. The mesh is
invariant with fracture inclination, y

Table 4. Permeability versus inclination of bedding to principal stress
direction, y, for the loading con®gurations of Table 3 (unit: md)

Loading case Permeability y

0� 30� 60� 90�

1 kx 0

ky 0

kz 0

100
100
100

100
100
100

100
100
100

100
100
100

2 kx 0

ky 0

kz 0

86.63
86.63
99.88

89.71
86.17
96.34

96.34
86.17
89.71

99.88
86.63
86.63

3 kx 0

ky 0

kz 0

79.57
79.57
85.85

81.08
79.46
84.22

84.22
79.46
81.08

85.85
79.57
79.57

4 kx 0

ky 0

kz 0

79.54
76.32
82.59

80.29
76.30
81.82

81.82
76.30
80.29

82.60
76.32
79.54

5 kx 0

ky 0

kz 0

73.19
73.19
73.19

73.19
73.19
73.19

73.19
73.19
73.19

73.19
73.19
73.19
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ent angles of inclination of the fracture planes, y. Similar to the previous two-
dimensional cases, permeability changes are dominated by changes in normal
stresses induced across the fracture planes, especially for uniaxial loading. The
dominant in¯uence of normal stresses on the change in permeability is the most
obvious along the x 0 and z 0 directions. Hydrostatic loading yields the maximum
change in permeability, relative to the unstressed permeability. As expected, tri-
axial and polyaxial loadings are intermediate between these limiting values. The
dominant role of normal stresses may be shown by splitting the right-hand side
of Eq. (30) into the following ®ve parts (except the terms related to the value 1);
i.e.,

Fig. 15. Change in permeability parallel to the fracture k 0x 0 with varying inclination y of the fracture
system relative to the specimen axis. Load conditions are de®ned in Table 3

Fig. 16. Change in permeability parallel to the fracture k 0y 0 with varying inclination y of the fracture

system relative to the specimen axis. Load conditions are de®ned in Table 3
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Knb
;

Part 2 :
sy 0 ÿ b

Eb
�Dsy 0 ÿ n�Dsx 0 � Dsz 0 ��;
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Dsz 0

Knb
;

Part 4 :
sz 0 ÿ b

Eb
�Dsz 0 ÿ n�Dsx 0 � Dsy 0 ��;

Part 5 : Dtz 0x 0
G

sz 0
� Ksh

� �ÿ1
tan fd

b
:

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

�33�

Under triaxial loading (case 3), Fig. 18 depicts the magnitudes of the per-
meabilities contributed by each part of Eq. (33), respectively. Unlike the con-
tributions from the normal stresses (parts 1 to 4), it is easily seen that the change in
shear stresses (part 5) plays a minor role in the associated permeability changes.
This results from the low magnitude of dilation angle, fd , selected in the analysis,
with shear e¨ects anticipated to be larger for lower con®ning stresses, lower shear
sti¨nesses, and increased angles of dilation.

5.6 Equivalent Geometric Factor

It is common practice to determine laboratory permeability magnitudes, k, by
conducting steady state ¯ow tests. Permeability is derived from the test data using

Fig. 17. Change in permeability perpendicular to the fracture k 0z 0 with varying inclination y of the
fracture system relative to the specimen axis. Load conditions are de®ned in Table 3
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a modi®ed Darcy's law in which a `geometric factor' is used to relate the actual
¯ow geometry to an ideal geometry. For the ¯ow geometry de®ned in Fig. 9, the
cross-sectional area of ¯ow is not constant. The ¯ow geometry that results in this
specimen geometry may be represented as a function of specimen dimensions, in-
let/outlet area and angle of inclination of the ¯ow anisotropy. The desire is to
provide a geometric factor that allows permeability to be calculated directly with
reference to the measurable inlet port area, alone. This obviates the need to com-
plete numerical simulations for the reduction of all data, since the geometric cor-
rection factor may be de®ned from the following. This geometric factor becomes
an `equivalent' value for the tests involved in the external loading since this con-
version factor incorporates not only the geometric variations between actual and
analytical ¯ow cross-sectional areas, but also the specimen spatial changes as a
result of the mechanical loading. The evaluation of correction factors, incorpo-
rating both geometric and stress e¨ects, is only possible with the aid of numerical
modeling.

Darcy's law can be written in a general form as:

Q � ÿA
k

m

Dp

L
; �34�

where A is the uniform ¯ow cross-sectional area and L is the ¯ow length across the
domain.

Assuming that the subscript `t' indicates the quantity from the test or numeri-
cal simulation, where the geometry of Fig. 9 is used, while the subscript `a' implies
the analytically calculated values for a constant ¯ow cross-sectional area, Darcy's
law can be written symbolically for each individual situation as:

Fig. 18. Permeability (md) components resulting from normal (parts 1 and 3), Poisson (parts 2 and 4)
and shear (part 5) components, de®ned in Eq. (29). Variation with relative inclination y of fracture

fabric
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qt � ÿAt
kt

m

Dpt

L
; �35�

qa � ÿAa
ka

m

Dpa

L
; �36�

If steady state ¯ow conditions prevail, one has:

qt � qa; kt � ka: �37�
However, if the in¯uence of the external load is incorporated, Eq. (37) should

be modi®ed as:

q�t � qt ÿ Dqt � qa; k �t � kt ÿ Dkt � ka; �38�
where Dqt and Dkt are the changes of ¯ow rate and permeability due to the stress
changes.

Let the modi®ed Darcy's law with reference to the loading environment be
given as:

q�t � ÿAt
k �t
m

Dpt

L
: �39�

Substituting Eq. (38) into (39), gives:

q�t � ÿAt
kt ÿ Dkt

m

Dpt

L
: �40�

The equivalent geometric factor G � can be obtained by equating Eq. (36) to
(40), which results in (Bai and Meng, 1997):

G � � Dpt

Dpa

� Aaka

At�kt ÿ Dkt� : �41�

In general, Aa UAt, therefore, G �U 1.
The utility of the geometric factor, G � is to relate laboratory ¯ow rates and

pressure drops, measured within a non-standard specimen geometry to invariant
magnitudes of permeability, ka. When there is no change due to mechanical
e¨ects, Dkt � 0 and the factor relates purely to the mismatch in geometries. In this
situation G � represents the ratio of pressure drop measured in the cross-specimen
test (Fig. 9) to that measured, say longitudinally within a constant diameter core.
It is a purely geometric correction for the selected test geometry where the same
volumetric ¯ow rate occurs in each test. Similarly, where mechanical changes
in permeability are applied to the specimen, G � represents the ratios of pressure
drops in the actual testing con®guration to that for a longitudinal test within a
core. Now stress and geometric e¨ects are included in the result, making it possible
to conveniently determine the anticipated mechanical e¨ect on reservoir perme-
ability for any desired specimen con®gurations. Prior evaluation for magnitudes of
G � enables one to directly deduce permeability magnitudes from laboratory data
from non-standard specimens, and to extrapolate them to de®ne expected magni-
tudes of permeability change in altered stress ®elds.
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The relationships between the equivalent geometric factor and the angle of
inclination of micro-fractures may be derived from the numerical modeling for
a variety of loading conditions, as shown in Fig. 19. Except for unstressed and
hydrostatically loaded specimens, the geometric factors decrease with an increase
in y, showing the e¨ect of normal stresses in reducing permeability magnitudes.
Larger equivalent geometric factors, in general, represent a greater e¨ect of exter-
nal loading. In view of the specimen size e¨ect, four di¨erent specimen size com-
binations are selected using identical specimen diameters but di¨erent specimen
heights, ranging from 1.0 inch to 2.5 inches (2.54 cm to 6.35 cm), respectively. For
the case of y � 0�, Fig. 20 depicts the relationships between the equivalent geo-

Fig. 19. Change in the equivalent geometric factor, G�, of Eq. (41), with inclination angle, y. Loading
cases are as described in Table 3

Fig. 20. Change in the equivalent geometric factor, G�, of Eq. (41), with specimen height. Loading
cases are as described in Table 3
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metric factors and di¨erent specimen heights for various loading conditions. The
equivalent geometric factors decrease with the increase of the specimen heights for
all loading cases. In general, the greater the specimen height, the smaller the ex-
ternal load, the smaller the equivalent geometric factor.

6. Conclusions

Analytical relationships between permeability and stress variation are presented
where the principal permeability directions are not coincident with the principal
stress directions in a general three-dimensional geometry, and for both fractured
and intact media. These relationships are the most relevant for characterizing
coupled ¯ow-deformation phenomena, where: (a) inclined bedding partings are
embedded in fractured porous media, (b) inlet and outlet locations induce ¯ow
that is di¨erent from the principal permeability directions of the media, and (c)
principal stresses are not coincident with the principal ¯ow orientations. These
conditions are common in subsurface hydrogeological and geomechanical envi-
ronments; however, they are typically ignored by the majority of models for both
convenience and simplicity. The permeability changes resulting from the non-
alignment of principal stresses and principal permeability directions are shown to
be signi®cant. Using a comparative example and case studies, numerical modeling
highlights the important di¨erences between: (a) two-dimensional and three-
dimensional modeling (e.g., the dominant e¨ects of normal and shear stresses); (b)
the contrasting pressure sensitivities of fractured and intact media (e.g., the mini-
mal impact of shear stresses in inducing permeability changes in porous media); (c)
the impact of di¨erent loading con®gurations (e.g., the minimal and maximal
e¨ects of unstressed and hydrostatically stressed conditions); and (d) the impor-
tance of various angles of inclination of the fabric within these systems (e.g.,
maximized e¨ect for shear at y � 45�, etc.)
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