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A B S T R A C T

Hydraulic fracturing is a key method in the stimulation of shale gas reservoirs. Shale gas formations often
contain natural fractures which are fluid-pressure sensitive and dilate in response to the inflation of the fracture,
increasing fluid loss and slowing down and potentially prematurely arresting fracture propagation. Models ty-
pically assume 1-D single-porosity/permeability (Carter) leakoff perpendicular to the hydraulic fracture.
However, the leakoff process in naturally fractured formations is considerably more complex. In this study, we
present an hydraulic fracturing model based on the PKN-formalism which accommodates leakoff into a pressure-
sensitive dual porosity medium. Proppant transport is accommodated by introducing empirical constitutive
equations to determine the proppant distribution during the hydraulic fracturing treatment. The model is solved
numerically and is validated against known small and large time asymptotic solutions. The model is capable of
providing a rapid estimation of the morphology of hydraulic fractures in naturally fractured formations and the
corresponding proppant distribution. The simulation results illustrate that the leakoff into a dual porosity
medium, where fracture permeability is a strong function of applied fluid pressure, results in a reduced length of
the propagating fracture due to the fugitive fluid leakoff from the fracture into the surrounding formation and
that this in turn results in a reduced maximum width during the treatment. The ability to infuse proppants in
fluid-driven fractures penetrating large distances from the injection wellbore is further limited by premature
screen-out. This may compromise the ultimate efficiency of the final hydraulic fracture regarding gas recovery.
Reduced propagation and premature screen-out are limited by low permeability and large spacing of the natural
fractures. The presence of an existing network of natural fractures, including those adjacent to the hydraulic
fracture that may become propped, aids in the recovery of the resource by reducing diffusion lengths of the
hydrocarbon to the main fracture.

1. Introduction

Hydraulic fracturing is performed by injecting highly pressurized
fluid into subsurface to fracture the formation. Proppant is introduced
later to keep the fractures open. Since the pioneering work of
Khristianovic and Zheltov,1 various models have been proposed to ap-
proximately define the development of fracture geometry, among
which the PKN and GDK models are the most popular.1–4 Those models
including their numerical solutions have been reviewed by Adachi
et al.5 and Rahman and Rahman.6 Further studies have been devoted to
understanding the regimes of propagation and near tip behavior7–11

which are summarized by Detournay.12

A vertical hydraulic fracture will remain at approximately constant
height if the contrast in horizontal stress between pay zone and
bounding zones is sufficiently high, as shown in Fig. 1. A model with

constant height is of sufficient interest when the pay zone includes only
one layer in the formation, although many models consider the growth
of the fracture height.13–15 In the constant height case, when the half-
length of the hydraulic fracture, l, is much larger than its height, H, the
propagation process can be described using the classical PKN hydraulic
fracturing model.2,3 In this model, the fracture propagates laterally
away from the borehole. The volume of the propagating fracture ex-
actly balances the input of the fracturing fluid with the (i) advance of
the fracture tip, (ii) its concurrent inflation, and (iii) leak-off into the
formation. It achieves this by transporting fluid within and along the
fracture. Typically, 1-D single-porosity/permeability leakoff perpendi-
cular to the hydraulic fracture16,17 is assumed in the hydraulic fracture
models representing the formation as a single-porosity porous medium.

However, shale reservoirs are typically naturally fractured at a
variety of length-scales. These lengths vary from microfractures at the
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scale of tens of microns to observable fractures at the centimeter to
meter scale and are compounded by the presence of faults at decameter
to fractions of a kilometer scale. The porous matrix and transecting
fractures have very different mechanical and transport properties. The
fractures are mechanically soft and weak in tension, and serve as ready
defects for the concentration of deformation by inflating/propagating
fluids. The pre-stimulation differential in the transport properties of the
shale is further modified by the presence of such driven hydraulic
fractures. The permeability of the shale fractures may be significantly
increased by their dilation and retained in this dilated state by the
potential infusion of proppant. Therefore, the leakoff process in natu-
rally fractured shale formations during the treatment is considerably
more complex. In this paper, we present a hydraulic fracturing model
based on the PKN-formalism which accommodates the leakoff into
naturally fractured formations. This model considers the naturally
fractured formation as a dual porosity medium, with the leakoff process
on dual time scales - early leakoff dominated by fracture dilation and a
delayed leakoff dominated by mass transfer from activated natural
fractures to the matrix. In this, the later effect may play an important
role if the matrix is dissected with a short separation between natural
fractures.18,19 This dual porosity leakoff may increase the fluid leakoff
volume and prematurely arrest fracture propagation, which in turn may
significantly influence the ability to infuse proppants into the accessed
reservoir at desired large distances from the injection wellbore. A
proppant transport model is followed to investigate this effect.

The basic equations governing the response of a PKN fracture, the
leakoff process in the dual porosity medium, and the proppant transport
within evolving fractures are summarized in Section 2. Numerical al-
gorithms to solve this proposed model are introduced in Section 3. In
Section 4, the proposed model and algorithms are validated, and several
simulations are performed to demonstrate the effect of dual porosity
leakoff on fracture propagation and proppant transport.

2. Mathematical formulation

2.1. The Perkins-Kern-Nordgren (PKN) model

Transient evolution of the fracture length and aperture is predicted
by the PKN model, given the injection rate, Q0, the fracture height, H,
Young's modulus, E, and Possion's ratio, ν, of the rock, the fluid visc-
osity, μ, and the leak-off velocity, u(x,t). It is assumed that the cross-
section of fracture is elliptical, that the pressure in the fracture is uni-
form over the height of the fracture, and that the in situ stress acting
perpendicular to the plane of the fracture, σmin , is constant over the

entire fracture. An approximation is made that plain strain prevails in
planes perpendicular to the propagation direction. These assumptions
enable the model to be formulated in terms of an average aperture. and
an average flux q x t( , ) defined as

∫
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The relationship between local flux q(x,z,t) and pressure gradient is
approximated by Poiseuille's law written as15
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By considering the elliptical shape of the aperture profile, in-
tegrating Eq. (2) over H yields
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The assumption of plain strain in planes perpendicular to the pro-
pagation direction allows the nonlocal relationship between aperture
and net pressure to be reduced to a local operator of the form

=
′

w x t πH
E

p x t( , )
2

( , ), (4)

where ′ = −E E ν/(1 )2 is the plane strain Young's modulus and
= −p x t p x t σ( , ) ( , )fluid min is the net fluid pressure inside the fracture

with p x t( , )fluid being the absolute fluid pressure. Note that the plane
strain approximation is true only at distance O H( ) or more away from
fracture tip and when the fracture width and pressure vary smoothly
along the fracture length direction. In addition, the plane strain ap-
proximation constrains the application of the model to situations where
the toughness of the rock is negligible. These two limitations of the
model can be overcome by introducing a non-local elasticity equa-
tion.10

By considering fracture inflation and fluid leakoff, the local fluid
mass balance equation is written as

∂
∂

+ ∂
∂

+ =
q x t

x
w x t

t
u x t

( , ) ( , ) ( , ) 0,
(5)

where u(x,t) is the fluid leakoff velocity accounting for both sides of the
fracture. The classical Carter leakoff theory16 assumes that, for a given
formation, the fluid leakoff velocity is perpendicular to the hydraulic
fracture plane and is only a function of the time that the fracture wall is
exposed to the fracturing fluid. This can be described as

=
−

u x t C
t τ x

( , ) 2
( )

,l

(6)

where the constant Cl is the leakoff coefficient, t is the lapse time since
pumping starts, and τ x( ) is the arrival time of the fracture tip at location
x. However, for naturally fractured formations, which might be treated
as dual porosity media, the leakoff process is considerably more com-
plex and will be discussed in Section 2.2.

The fracture length l(t) is not known a priori and is absent from the
local mass balance equation (Eq. (5)). An equation for l(t) is obtained by
integrating Eq. (5) in space over the length of the fracture and then in
time over the total lapsed time

∫ ∫ ∫ ∫+ ′ ′ − ′ ′ =
′

w x t dx u x t dxdt q t dt( , ) ( , ) ( ) 0,
l t t l t t

0

( )

0 0

( )

0 0 (7)

where =q Q H/(2 )0 0 is the fluid injection rate per unit height of fracture.
In this global mass balance equation, we note that the first term is the
total volume of the fracture and the second term is the cumulative fluid
leakoff volume, with the last term accounting for the total fluid injec-
tion volume.

Fig. 1. Schematic of the main PKN fracture crossing natural fractures.
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2.2. Governing equations for leakoff process in a dual porosity medium

The naturally fractured formation is considered as a dual porosity
medium. Although sealed natural fractures cannot contribute to re-
servoir storage or enhance permeability at the beginning of the hy-
draulic fracturing treatment, they may reactivate and dilate after the
treatment pressure reaches a critical fissure opening pressure, resulting
in an exponential increase in fracture permeability with increased
treatment pressure. Then, the fluid that flows into the natural fractures
is dissipated by fluid loss into the newly exposed matrix surrounding
the natural fractures.18,19 The governing equations for leakoff in a dual
porosity medium and a dynamic fracture permeability model are
summarized in the following.

The mass balance equations for fluid flow in matrix and natural
fracture system, respectively, are

∂
∂

+ ∇⋅ = −M
t

ρ ω p p ρq( ) ( ) ,m
m f m (8)

∂
∂

+ ∇⋅ = − −
M
t

ρ ω p p ρq( ) ( ) ,f
f f m (9)

where M is the fluid mass, ρ is the fluid density, q is the flow rate, and p
is the fluid pressure. The subscripts represent m for matrix and f for
fracture, respectively. Eqs. (8) and (9) are solved in the domain of the
formation surrounding the hydraulic fracture. For simplicity, transfer
between matrix and surrounding natural fractures20–22 is quantified by
the assumption of a quasi-steady response. Note that, in the context of
hydraulic fracturing, flow between matrix and natural fractures may
approach but not actually reach the quasi-steady state due to the short
duration of the stimulation. Thus, using a model which can capture the
early time response may be both more appropriate and more accu-
rate.23 However, fluid transfer at quasi-steady state is governed by the
instantaneous pressure differential, −p pf m, and the transfer coeffi-
cient, ω, defined as

=ω π
s

k
μ

,m
2

2 (10)

where s is the spacing between fractures and km is the permeability of
the matrix. Eq. (10) is for the case with one set of natural fractures (slab
geometry) and assumes a quasi-steady state with constant pressure
boundary condition. The interested reader may find a detailed ex-
planation of this transfer coefficient in the literature.21,22

It is assumed that fluid flow within both matrix and natural fracture
system follow Darcy's law described as
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By substituting Eqs. (11 and 12) into Eqs. (8 and 9) and considering
that =M ρϕ, the governing equations for fluid flow within matrix and
natural fracture system, respectively, are obtained as (see Appendix A)
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where ϕm and ϕf are the porosity of the matrix and natural fracture
system, respectively, Kw is the fluid bulk modulus and Ks is the solid
grain bulk modulus.

At the beginning of the hydraulic fracturing treatment, the natural
fractures remain closed and sealed indicating that the permeability and
porosity of the natural fracture system remain unchanged. As the
treatment pressure increases, the potential exists for natural fractures to

reactivate and dilate. It is assumed that the natural fracture will open
when the internal pressure exceeds the normal stress tending to close
it,18 as illustrated in Fig. 2. In other words, the natural fracture re-
activates when the effective normal stress = − ≤σ σ p 0n

e
n f , where σn is

the total normal stress and pf is the pressure within the natural fracture.
Fig. 2 shows a rock element with dimensions that are small compared
with the height of the hydraulic fracture. For the assumption of plane
strain, during the hydraulic fracturing process, the stress in the direc-
tion parallel to the hydraulic facture will increase by an amount of νp2 ,
while the vertical stress increases by p, where p is the net pressure in the
hydraulic fracture.18 Therefore, the effective normal stress can be cal-
culated as

= − + + +σ α p νp σ θ p σ θ[(2 )sin ( )cos ],n
e

f f max
2

min
2

(15)

where αf is the Biot coefficient, σmax and σmin are maximum and

Fig. 2. Critical pressure to open natural fractures (p is net pressure in the hy-
draulic fracture, and and are maximum and minimum in-situ stresses, respec-
tively).
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minimum in situ stresses, respectively, and θ is the angle between hy-
draulic fracture and natural fracture. According to this equation, the
critical fissure opening pressure can be written as

= + + +p
α

νp σ θ p σ θ1 [(2 )sin ( )cos ].c
f

max
2

min
2

(16)

After the natural fracture opens, its hydraulic aperture increment
associated with the changes in fluid pressure may be defined empiri-
cally as24

= −b p χbd /d ,f (17)

where χ is a small constant characterizing the compliance of a natural
fracture with respect to pressure change. Although Eq. (17) is usually
used for closed fractures,24 it is also applicable for completely open
fractures, which is the case focused on here. This can be achieved by
relating the relative change in fracture aperture, b bd / , to the change in
fluid pressure, pd f , through a compliance-related coefficient χ . Com-
pliance of natural fractures is of the order of −− −10 10 m/Pa10 12 ,25 and
the aperture in dilation could be of the order of several millimeters.
Therefore, a reasonable value for the constant χ should be
~ −− − −10 10 Pa7 9 1. By integrating, the hydraulic aperture of the natural
fracture can be expressed as

= ⎧
⎨⎩

<

− >
b

b p p

b χσ p pexp( )
,

f c

n
e

f c

0

0 (18)

where b0 is the initial natural fracture aperture. The dynamic porosity
and permeability of the natural fracture system can be calculated, re-
spectively, as26,27
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Eqs. (13)–(16) and (18)–(19) give the complete set of the governing
equations for the leakoff process in a dual porosity medium. By solving
this set of equations, the leakoff velocity in Eq. (5) can be calculated by
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u k
μ

p
k
μ
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f
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(21)

at the walls of the hydraulic fracture, where the factor 2 accounts for
leakoff through both walls of the fracture.

2.3. Governing equations for proppant transport

The presence of fluid-pressure-sensitive natural fractures will ac-
celerate the leakoff process and exhibit a profound influence on the
ability to drive a dominant hydraulic fracture or fracture network in
naturally fractured reservoirs. This will in turn significantly influence
the ability to infuse proppants in fractures that deeply penetrate the
reservoir. In this section, we consider a proppant transport model
within a propagating fracture which accommodates the effect of frac-
ture dilation on leakoff as this directly influences the pressure gradient
within the fracture and the ability of the fracturing fluid to carry the
proppant load.

After introducing proppant, the mixture of fluid and particles forms
a slurry with a behavior different from that of a pure fracturing fluid
(governed by Eqs. (3) and (5)). The 1D mass balance equations for the
slurry and proppant are given as
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where =c c c/ max is the normalized volumetric concentration of the
proppant (with =c 0.585max as the maximum allowable concentration),

= −S ucH b Na( 2 )leakoff is the proppant leakoff rate into the natural
fractures (here proppant is assumed to leakoff at the same velocity as
fracturing fluid), with ⋅H ( ) denoting the Heaviside step function, and q s

and q p represent respectively the average slurry and proppant fluxes
over the fracture height. The fluxes can be defined as
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where a is the particle radius, B is a blocking function, Q̂s and Q̂ p are
two dimensionless functions of proppant concentration and aper-
ture.28,29

The blocking function B accounts for proppant bridging and is de-
scribed as
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where N represents a multiple of the particle diameter. Proppant
bridging occurs when the fracture aperture is smaller than N times the
proppant particle diameter. As an illustration, Fig. 3(a) shows the
function B versus w a/2 when N=3.

Functions Q̂s and Q̂ p are introduced by Dontsov and Peirce29 based
on an empirical constitutive model and expressed as

⎛
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= +Q c w
a

Q c a
w

cDˆ , ( ) ,s s
2
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where Qs and Qp are dimensionless functions of normalized proppant
concentration only and = −D c c8(1 ) /3α

max max is a constant related to
the permeability of the packed particles. In this study, α is chosen to be
4.1 following Dontsov and Peirce.28 The first term of Eq. (27) represents
the reciprocal of the effective viscosity of the slurry. The slurry viscosity
increases with an increase in the proppant concentration due to the
interactions between particles and between particle and fluid. The
second term of Eq. (27) accounts for Darcian flow within the porous
medium. This term is trivial when proppant concentration is small and
become significant when normalized proppant concentration is close to
1, as shown in Fig. 3(b). Thus, Eq. (24) is able to capture the transition
from Poiseuille flow to Darcy filtration flow as the normalized proppant
concentration increases from 0 to 1. The function Q̂ p describes the
proppant convection driven by the slurry flow. As can be seen from
Fig. 3(c), Q̂ p becomes zero when normalized proppant concentration
reaches 1, indicating that an immobile bed is formed.

3. Numerical algorithm

The response of the system is evaluated by incorporating these
constitutive relations into a numerical model. The system of equations
is sequentially coupled and is solved in three steps: (i) solved for the
leakoff velocity, i.e. coupling Eqs. (13), (14) and (21); (ii) solved for the
propagation of the fracture, i.e. coupling Eqs. (3)–(5) and (7); and (iii)
solved for proppant transport, i.e. Eq. (23). In this scheme, each system
is solved while holding the primary variable from the other two systems
of equations constant.

The system of governing equations is defined over the range
≤ ≤x l t0 ( ) which varies with the propagating fracture. To facilitate the

numerical solution of this complex moving-boundary problem, a
moving mesh is introduced to avoid adjusting the spatial discretization
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at each time step. The equation systems for fracture propagation and
proppant transport are reformulated in terms of the moving coordinate

=ξ x
l t( ) (29)

which remains in the range [0, 1]. The conversion of parameters from x
to ξ requires a corresponding transformation of spatial and time deri-
vatives written as

∂ ⋅
∂
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( ) ( ) ̇ ( ) ,
x ξ t (30)
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∂
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∂x l ξ

( ) 1 ( ) ,
t t (31)

where =l dl dṫ / is the velocity of fracture propagation. Under this
transformation, the governing equation for fluid/slurry flow (Eqs. (5) or
(22)) can be written as
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u
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and the governing equation for proppant transport, i.e. Eq. (23) can be
written as

∂
∂

− ∂
∂

+
∂
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+ =wc
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ξ l
l
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ξ l

q
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S
̇ 1 0.

p

leakoff
(33)

The equation system for leakoff is solved at the natural scale.
As indicated earlier in this section, first, the leakoff velocity is de-

termined for a given time step using the finite element method, and
then Eq. (32) is solved to obtain the fracture geometry and fluid/slurry
flow rate using an implicit finite difference scheme. Finally, the prop-
pant distribution over the entire fracture length is updated by solving
Eq. (33) using an explicit finite volume method. There is no restriction
on the time step Δt when solving for the fracture propagation, while the
time step for the proppant transport should be small enough to satisfy
the Courant–Friedrichs–Lewy (CFL) condition.30 To allow for arbitrarily
large time steps for the whole algorithm, the time step Δt for Eq. (32) is
subdivided into smaller time steps when solving for Eq. (33), each of
which satisfies the CFL condition.

4. Numerical results

4.1. Model validation

Small and large time asymptotic solutions to the PKN model have
been developed15,31 to describe limiting behavior of fracture propaga-
tion at sufficiently small and large times, respectively. To validate the
established fracture propagation model, which accommodates the
leakoff into a dual porosity medium, a simulation of facture propaga-
tion without proppant transport is performed. The simulation results
are compared with the small and large time asymptotic solutions15,31

where only the leakoff process into the natural fracture system (Eq.
(14)) is considered without fluid transfer between matrix and natural
fracture system. In addition, the natural fractures are set to be per-
pendicular to the hydraulic fracture and remain closed at all times,
indicating constant permeability and porosity. As a result, a simplified
1-D single-porosity/permeability leakoff process is rigorously re-
presented. This is comparable to the classical Carter leakoff model. The
parameters used in this study are listed in Table 1.

Once the numerical solution is obtained, it is scaled as

= = =τ t
t

γ l
l

Ω w
w*

,
*

,
*

,
(34)

where τ , γ and Ω are dimensionless time, fracture length and aperture,

Fig. 3. (a) The blocking function when N=3 and the functions (b) Qs and (c)
Qp versus normalized proppant concentration for 3 specified values of the
parameter.

Table 1
Input parameters for model validation case.

Parameter Value

Injection rate, Q0 0.004m3/s
Fracture height, H 10m
Plain strain Young's modulus, E′ 25 GPa
Fluid dynamic viscosity, μ 0.001 Pa s
Fluid bulk modulus, Kw 2.2 GPa
Permeability of natural fracture system, kf 1.5 × 10–17 m2

Porosity of natural fracture system, ϕf 0.002

Initial formation pore pressure, p0 6MPa
Minimum in situ principle stress, σmin 15MPa
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respectively. The three characteristic quantities are computed as

=
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=
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4
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4
0

2

4 4

3
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where =p* 1MPa is an introduced characteristic net pressure. Using the
same scaling, the small time asymptotic solution15,31 can be written as
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The large time asymptotic solution15,31 can be written as
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where Cl is the leakoff coefficient. According to Carter leakoff theory,16

Cl can be calculated as

=C Δp
k ϕ
μπK

,l
f f

w (43)

where Δp is the pressure differential between hydraulic fracture and
formation. For this study, the leakoff coefficient Cl is calculated to be
7.91 × 10−6 m/s1/2.

The simulation starts at a non-dimensional time of = −τ 10 7 and
ends at =τ 105 to ensure that it evolves from the small time to the large
time similarity solution.15,31 Fig. 4(a) and (b) show the simulated
evolution of fracture length γ τ( ) and average width Ω τ(0, ) as a func-
tion of time τ , respectively, comparing these with the small time and
large time asymptotics. The simulated solution faithfully follows the
small time asymptotics at the beginning of the simulation (storage-
dominated regime) and also the large time asymptotics at the end
(leakoff-dominated regime). Comparisons of fracture profiles between
numerical solution and similarity solutions for small and large time are
shown in Fig. 4(c) and (d), respectively. In these two figures, the dashed
lines with open circles represent the numerical solutions, while the red
and blue solid lines depict the small time and large time similarity so-
lutions, respectively. It can be seen that the simulated fracture profiles
agree with the similarity solutions very well.

4.2. Simulations without proppant transport

A series of simulations without proppant transport were undertaken
to explore the essential impacts of dual porosity flow around a propa-
gating PKN fracture. Table 2 lists the input parameters for this study.
The fracturing fluid is injected at a constant flow rate Q0 for 3000 s.
Then the pumping is stopped and the injected fluid is prevented from
flowing back, i.e. the well is shut in. The analysis is carried out by
considering (i) dual porosity leakoff with both fracture opening driven
by fluid pressure and fluid transfer between fracture and surrounding
matrix, and then (ii) a leakoff process only into a single natural fracture
system with fracture opening but without fluid transfer between matrix

Fig. 4. Model validation: (a) comparison between simulated fracture length with small and large time asymptotics; (b) comparison between simulated fracture width
at inlet with small and large time asymptotics; (c) comparison of facture profile between numerical solution at and small time similarity solution; and (d) comparison
of facture profile between numerical solution at and large time similarity solution.
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and fracture, and finally (iii) a single-porosity leakoff with constant
formation permeability and porosity (referred to as Carter leakoff).

The evolution of fracture length and average width at inlet with
time for the three cases mentioned above are shown in Fig. 5, with the
dashed lines indicating the time when the well is shut in. It can be
observed that the dual porosity medium, where fracture permeability is

a strong function of applied fluid pressure, results in a reduced length of
the propagating fracture (Fig. 5(a)) due to the fugitive fluid leakoff
from the fracture into the surrounding formation and that this in turn
results in a reduced maximum width (Fig. 5(b)) during the treatment.
After shut-in, the fracture length and width decrease more quickly for
the dual porosity medium than the other two cases due to the faster
leakoff. Fig. 6 shows the evolution of pore pressure for matrix and
natural fracture system and fracture permeability ratio at a specified
location (x=7m and y=−7m) in the formation during the treat-
ment. It can be seen that the pressure within the natural fractures builds
more quickly than the matrix due to a higher permeability, and that the
natural fractures begin to dilate when the fluid pressure reaches the
critical fracture opening pressure, as indicated by the increase of the
permeability in Fig. 6(b). A reduction of the fluid pressure within nat-
ural fractures follows shut-in due to the cessation of fluid supply, and
this in turn results in a sudden drop of the fracture permeability, im-
plying that the fracture closure results from the increase in normal ef-
fective stress. Fig. 7 displays the pore pressure distribution within the
natural fracture system when the well is shut in. It is apparent that fluid
travels for a longer distance in the region close to wellbore, i.e. the
region where x is close to 0, due to the earlier arrival time of the
fracture tip and the higher permeability resulting from the dilation of
the natural fracture.

Two parametric studies were performed to examine the effect of the
orientation and spacing of natural fractures on the resulting PKN frac-
ture geometry. First, four cases with different angles between hydraulic
fracture and natural fractures, θ, were conducted where the spacing
between the natural fractures remains constant ( =s 0.2m). And then,
several cases with different spacings between the natural fractures were
simulated where θ was kept at π/2. The other parameters for these two
parametric studies are listed in Table 2. Fig. 8 shows the evolution of
fracture length and average width at inlet for four specified values of
the angle between the main PKN fracture and natural fractures. It can
be seen that the length and width of the hydraulic fracture increase as
the angle θ decreases. This results because the leakoff process is mod-
erated by the orientation of the natural fractures in the formation where
the permeability increase is strongly influenced by the inclination of the
fractures relative to the stress field – and this results in further feed-
backs on the fracture length (Fig. 8(a)) and fracture width (Fig. 8(b)) of
the main PKN fracture. Note that this model assumes a planar hydraulic
fracture which always crosses the natural fractures directly – in certain
cases the hydraulic fracture may divert into the natural fracture when
the angle θ is small and this may result in stunted growth of the hy-
draulic fracture.32 Fig. 9 shows the main PKN fracture length at shut-in

Table 2
Parameters for simulations without proppant transport.

Parameter Value

Injection rate, Q0 0.004m3/s
Fracture height, H 10m
Plain strain Young's modulus, E′ 25 GPa
Poisson's ratio, ν 0.2
Fluid dynamic viscosity, μ 0.2 Pa s
Fluid bulk modulus, Kw 2.2 GPa
Initial permeability of natural fracture system, kf0 3.25 × 10–15 m2

Initial porosity of natural fracture system, ϕf 0 0.002

Fracture spacing, s 0.2 m
Biot coefficient, αf 0.8
Permeability of matrix, km 1.48 × 10–17 m2

Porosity of matrix, ϕm 0.06
Initial formation pore pressure, p0 6MPa
Minimum in situ principle stress, σmin 15MPa
Maximum in situ principle stress, σmax 16MPa
Compliance coefficient of fractures, χ 3 × 10−7 1/Pa
Angle between NFs and HF, θ π/2

Fig. 5. Evolution of (a) fracture length and (b) average width at inlet with (i)
leakoff into a single natural fracture system without fracture opening (Carter
leakoff), (ii) leakoff into a single natural fracture system with fracture opening,
and (iii) leakoff into a dual porosity system. (The black lines indicate the time
when the well is shut in.).

Fig. 6. (a) Evolution of fluid pressure and (b) fracture permeability ratio with
time in fracture and matrix system at a specific location (x=7m and
y=−7m). (The black lines indicate the time when the well is shut in.).
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as a function of spacing of natural fractures. The PKN fracture length
increases with an increase of the spacing of the natural fractures. This is
due to small spacing between natural fractures enabling large contact
areas between matrix and natural fracture system, which in turn ac-
celerates the leakoff process and result in short main PKN fracture
lengths.

4.3. Simulations with proppant transport

The foregoing analysis has illustrated that the presence of fluid-
pressure-sensitive natural fractures exhibits a profound influence on the
ability to drive a dominant PKN fracture in naturally fractured re-
servoir. This observation is important as this limits the maximum load

of proppant that may be carried into the fracture and may compromise
the ultimate efficiency of the final hydraulic fracture in relation to gas
recovery. In this section, several cases are investigated to explore the
impact of dual porosity leakoff on proppant transport. In these

Fig. 7. Fluid pressure distribution of natural fracture system when the pumping stops.

Fig. 8. Evolution of (a) fracture length and (b) average width at inlet with
different angles between hydraulic fracture and natural fractures. (The black
lines indicate the time when the pumping stops).

Fig. 9. Fracture length at the end of pumping as a function of natural fractures
spacing.

Table 3
Parameters for simulations with proppant transport.

Case No. Initial permeability of natural
fracture system, kf0

Fracture
spacing, s

Proppant particle
radius, a

1 3.25 × 10–15 m2 0.5 m 2 × 10−4 m
2 3.25 × 10–13 m2 0.5 m 2 × 10−4 m
3 3.25 × 10–13 m2 20m 2 × 10−4 m
4 3.25 × 10–13 m2 20m 1 × 10−4 m
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simulations, the main PKN fractures are driven by pure fracturing fluids
until t=1000 s, i.e. the pad time is 1000 s, and thereafter proppant is
introduced forming a slurry comprising fracturing fluids and proppant
particles. The simulations are stopped following screen-out. Proppant is
introduced at a normalized volumetric concentration of 0.2. It is as-
sumed that screen-out occurs when the fracture width is smaller than
three particle diameters (N=3). The initial permeability of the dual
porosity medium, the spacing of the natural fractures and the radii of
the proppant particles for the different cases are given in Table 3. The
other input parameters are as listed in Table 2.

Case 1 is a standard case with dual porosity leakoff with Fig. 10
showing the simulated fracture profiles and proppant concentration at
different times. At the beginning of the simulation, proppant particles
transport from the wellbore towards the fracture tip, driven by the fluid
flow. When the proppant reaches the tip region, where the fracture
width is relatively small, they begin to accumulate - ultimately under-
going a sudden increase in the proppant concentration representing
screen-out. After that, only a small fraction of the fracturing fluid is able
to infiltrate through the packed bed into the tip region, while the rest is
retained behind the bed resulting in fracture inflation, as apparent in
Fig. 10(a). This observation is also supported by the pressure and length
histories shown in Fig. 11. There is a slight increase in the fluid pressure
at the inlet after proppant is introduced. This may be caused by the
notable change in slurry viscosity. The pressure then builds (Fig. 11(a))
and the fracture stops propagating (Fig. 11(b)) when screen-out occurs.
Note that the steps in fracture width that occur upon screenout (shown
in Fig. 10(a)) result from the local elasticity equation, i.e. Eq. (4), which
might not be rigorously applicable here. These steps should actually be
smoother if a non-local elasticity equation is used.10

In order to examine the effect of dual porosity leakoff on proppant

Fig. 10. (a) Fracture profiles and (b) the proppant concentration at different
times of Case 1.

Fig. 11. (a) Inlet pressure and (b) fracture length histories for Case 1 (DP
leakoff) and the reference simulation with Carter leakoff.

Fig. 12. Comparisons of (a) fracture profiles and (b) proppant concentration
distribution at a specified time t=1775 s between cases with dual porosity
leakoff and Carter leakoff.
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Fig. 13. Simulation results of Case 1–4: (a) fracture profiles and (b) the proppant concentrations at different times of Case 1; (c) fracture profiles and (d) the proppant
concentrations at different times of Case 2; (e) fracture profiles and (f) the proppant concentrations at different times of Case 3; (g) fracture profiles and (h) the
proppant concentrations at different times of Case 4; (i) variation of the pressure at the inlet and (j) fracture length versus time for Case 1–4.
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transport, a reference simulation with Carter leakoff is performed in
which the other parameters remain the same as Case 1. Fig. 12 shows
the comparisons of fracture profiles and proppant concentration dis-
tributions at a specified time between the two simulations. The fracture
for dual porosity leakoff is shorter and narrower than that for Carter
leakoff due to the large leakoff volume, which in turn leads to an earlier
screen-out of the proppant. As can be seen from Fig. 12(b), at
t=1775 s, for the dual porosity leakoff, the proppant concentration at
x= 50m, which is still 20m away from the fracture tip, reaches the
maximum allowed proppant concentration, while for Carter leakoff the
particles are able to continue advancing until they arrive at the tip
region. Comparisons of pressure and fracture length histories are shown
in Fig. 11. Again, accelerated leakoff is observed at t~400 s for the dual
porosity leakoff resulting from the dilation of the natural fractures. Also
observed is that screen-out occurs much earlier for the dual porosity
case as indicated by a faster rise in the pressure at inlet (Fig. 11(a)) and
an earlier arrest in fracture length growth (Fig. 11(b)).

In Case 2, the permeability of the natural fracture system is 2 orders-
of-magnitude larger than that of Case 1, with the simulation results
shown in Fig. 13(c) and (d) (results of Case 1 are replotted in Fig. 13(a)
and (b) to facilitate comparison). Apparent is that, due to the large
leakoff rate, the fracture is both short and narrow (~15m in length and
~1.7 mm in width) immediately before the proppant is introduced. This
results in a premature proppant screen-out at ~1070 s after which the
fracture propagation arrests and instead inflates in width. Conversely,
with reduced leakoff (Case 1), the fracture is free to propagate until
~1775 s. In Case 3 (Fig. 13(e) and (f)), the spacing of the natural
fracture system is increased to 20m while all other parameters are kept
the same as Case 2. Results show that proppant screen-out is delayed
and a larger fraction of the fracture is propped for the lower leakoff of
Case 3 relative to Case 2. This is due to that the larger fracture spacing
(Case 3) reduces contact areas between matrix and natural fracture
system which decelerates the leakoff and in turn results in a longer and
wider driven fracture, as has been illustrated in the previous section.
Case 4 (Fig. 13(g) and (h)) explores behavior for a proppant particle

size that is half of that of Case 3. Results show that smaller diameter
proppant is able to reach the fracture tip more easily, resulting in later
screen-out and with most of the fracture being propped. The variation
of the pressure at the inlet and the fracture length versus time for Case
1–4 are shown in Fig. 13(i) and (j) where the rapid pressure buildup
and the constant fracture length indicate proppant screen-out. It is
apparent that Case 1 (reduced leakoff) returns the longest fracture and
most delayed proppant screen-out, followed by Case 4 (small porppant
with leakoff) and Case 3 (standard proppant with widely spaced natural
fractures), with Case 2 (standard proppant closely space natural frac-
tures) exhibiting the shortest fracture and earliest proppant screen-out.

The dilation of the pre-existing natural fractures during hydraulic
fracturing treatment may result in active flow within the fracture net-
works, increase the effective stimulated reservoir volume (SRV), and
improve the effectiveness of the treatment.33 However, the active net-
work (the SRV that is open for gas flow) may be smaller than the SRV
since some parts of the natural fractures are left unpropped and will
close following treatment. Therefore, estimating the propped volume of
the natural fractures is crucial in evaluating well performance. By using
the proposed model and assuming that the proppant travel at the same
velocity as the fracturing fluids, the proppant travel distance away from
the main fracture, L(x,t), may be obtained by tracking the proppant
front as follows

∫= + ′ ′

× ′ ′ − ′

L x t L x t v x L x t t

H b x L x t t Na dt

( , ) ( , ) [ ( , ( , ), )

( ( , ( , ), ) 2 )] ,
t

t
nf0 0 0

0

0

(44)

where L0(x,t0) is the proppant travel distance at last time step, vnf is the
average linear velocity along the direction of the natural fractures, b is
the aperture of the natural fractures, and ⋅H ( ) is the Heaviside step
function. Eq. (44) can be simply viewed as an integral of travel velocity
over travel time. For Case 1–4, the initial natural fracture apertures, b0,
can be back-calculated from the initial fracture permeability, kf0, and
spacing, s, using the cubic law as26

=b sk12 ,f0 03 (45)

with the results listed in Table 4. In Case 1–3 (standard proppant dia-
meters with various forms of dual porosity leakoff), the natural frac-
tures are too narrow to allow the proppant particles to migrate into the
natural fractures – although the fractures do dilate during the treat-
ment. Conversely, for Case 4 (proppant of halved-diameter), the prop-
pant is able to enter into the natural fractures when the fracture is di-
lated to b> 6a. Fig. 14 shows the extent of the region of propped
natural fractures (red color) at the completion of the stimulation. The
proppant travels furthest in the region closest to the wellbore where the
dilation of the fractures is greatest (highest fluid pressure) and where

Table 4
Initial natural fracture apertures for Case 1–4, evaluated from initial perme-
ability.

Case no. Initial natural fracture
aperture, b0

Ratio of initial fracture aperture and
proppant particle diameter, b0/2a

1 2.69 × 10−5 m 0.0673
2 1.25 × 10−4 m 0.3123
3 4.27 × 10−4 m 1.0682
4 4.27 × 10−4 m 2.1363

Fig. 14. Regions of propped (red color) and unpropped (blue color) natural fractures for Case 4 at the completion of the stimulation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.).
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the advective fluid velocities (largest fluid pressure gradients) are
highest. No proppant enters into the natural fractures in the region
closest to the fracture tip due to minimal dilation and low pressure
gradients – the converse of conditions close to the wellbore. The
propped natural fractures may be more beneficial to the effective pro-
duction of hydrocarbon than the un-propped fractures34 once stimula-
tion is arrested and fractures compact as pressures drop below in situ
stress magnitudes.

5. Conclusions

We present a coupled hydraulic fracturing model that is capable of
accommodating leakoff from an evolving PKN fracture into a dual
porosity medium. The model accommodates natural fractures that in-
tersect the main PKN fracture and dilate and contribute flow from (and
then to) that PKN fracture These fractures are fluid pressure sensitive
and dilate in response to the inflation of the fracture – following the
appropriate permeability and leakoff response for the medium. A
proppant transport model is included to study the proppant con-
centration distribution concurrent with the fracture propagation.

The simulation results illustrate that leakoff into a dual porosity
medium, where fracture permeability is a strong function of applied
fluid pressure, results in a reduced length and width of the propagating
fracture. This is due to the fugitive fluid leakoff from the fracture into
the surrounding formation. This behavior is moderated by the or-
ientation and spacing of the natural fractures in the formation. Here,
the permeability increase is strongly influenced by the inclination of the
fractures relative to the stress field and the fluid transfer volume be-
tween matrix and natural fracture system is largely controlled by the

spacing of the natural fractures.
The impact of dual porosity leakoff is significant as this limits the

maximum load of proppant that may be carried into the fracture.
Screen-out of proppant occurs much earlier for the case with dual
porosity leakoff, and the ability to infuse proppants in fluid-driven
fractures penetrating large distances from the injection wellbore is
further limited by this premature screen-out, which may compromise
the ultimate efficiency of the final hydraulic fracture relative to gas
recovery. Reduced propagation and premature screen-out are limited
by low permeability and large spacing of natural fractures. This results
from reducing the leakoff rate which in turn results in a wider main
fracture and delays the occurrence of proppant screen-out. The reach of
the effective production network, which is related to the propped nat-
ural fractures, can also be estimated by using the proposed model. The
proppant travels furthest in the region closest to the wellbore where the
dilation of the fractures is greatest and where the advective fluid ve-
locities are highest, while proppant may not be able to enter into the
natural fractures in the region closest to the fracture tip due to minimal
dilation and low pressure gradients. Only the propped natural fractures
contribute to the effective production from the network once stimula-
tion is arrested and fractures reseat under reversed pressure magni-
tudes.
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Appendix A. Derivations of governing equations for leakoff process in a dual porosity medium

The following provides the background derivations of Eqs. (13) and (14). Substituting Eqs. (11) and (12) into Eqs. (8) and (9) yields
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Since the fluid masses are =M ρϕm m and =M ρϕf f , Eqs. (A-1) and (A-2) can be rewritten as
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Fluid bulk modulus, Kw, is defined as
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thus the derivative of fluid density with respect to time can be expressed as
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Solid grain bulk modulus, Ks, is defined as
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where Vs, Vp and V are volume of solid grain, volume of pore space and total volume, respectively. The derivative of the matrix porosity with respect
to time can be expressed as
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Substituting Eqs. (A-6) and (A-8) into Eqs. (A-3) and (A-4) gives
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Appendix B. Equivalent carter leakoff coefficient

It may be beneficial to have an equivalent Carter leakoff coefficient to represent the leakoff process into a pressure-sensitive dual porosity
medium. This will be computationally time-saving since it can avoid spatial discretization of the formation surrounding the main PKN fracture. The
fluid leakoff into a dual porosity medium consists of (i) fluid directly penetrating into the matrix, (ii) fluid flowing into natural fractures, and (iii)
fluid transferring from natural fractures to the matrix. According to the Carter leakoffmodel, the rate of fluid directly penetrating into the matrix can
be written as
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u x t
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where =C Δpl
m k ϕ

μπK
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w
is a constant leakoff coefficient. If the fluid transfer from the natural fractures to the matrix is ignored, rate of fluid flowing

into the natural fractures can be approximated as
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where =C Δpl
f k p ϕ

μπK
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w
is a variable leakoff coefficient due to the fact that the fracture permeability k p( )f as a function of net pressure, p, as shown in

Eq. (20). Pressure p varies slowly with both t and x and use of an average value, p , for net pressure in Eq. (45) may be acceptable.3 Fluid travel
distance away from the main PKN fracture can be evaluated by integrating u td1

2 2 from 0 to −t τ x( ), which is −C t τ x2 ( )l
f . Thus, the leakoff rate

resulting from fluid transfer from the natural fractures to the matrix can be approximately expressed as
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where =vtr
k
μ
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m is the flow rate from the natural fractures to the matrix. Therefore, the total leakoff rate can be approximated as
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where Cl
e is the equivalent Carter leakoff coefficient and is expressed as
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