
EGEE 520 Spring 2007 Semester Paper.    Instructor: Dr. Elsworth 

 

Solutions of the Schrödinger equation for the ground 

helium by finite element method 

by Jiahua Guo 

1. Introduction 

Multi-body Coulomb problems are traditional challenging problems 
[1]

. The failure of 

theory to describe precisely the system stimulated many mathematicians and 

physicists to devote themselves in using various methods to obtain the energies and 

other expectation values. Few-electron systems like helium are typical models. 

 

There are two electrons out of the nucleus of the helium atom; and each of them has 

three freedoms (without considering its spin). So the system is described by a 

six-dimensional Schrödinger equation (for fixed-nucleus problem). One usual 

approach in quantum mechanics is mean-field method 
[2]

. Each electron is considered 

independently to be in a central electric field formed by the nucleus and other 

electrons. The original problem is transferred into a system of nonlinear partial 

differential equations of low-dimension, then solve it iteratively. The other usual 

approach, named variational method 
[3-4]

, searches the status function to find the 

minimum energy value, which has been proved to be close to the precise value. 

 

A common feature of these calculations is a higher error in the non-Hamiltonian 

expectation values than in the energy, an indication that the approximate wave 

functions are less accurate than one might originally assume from the well-converged 

energies 
[5]

. This behavior provides the motivation for applying a new method to the 

problem. 

 

The finite element method (FEM) is a numerical algorithm that uses local 

interpolation methods to solve second-order differential equations describing 

boundary-value problems. A local interpolation scheme should be superior to global 

variational approaches in yielding an accurate wave function because of the ease by 

which local improvements to the approximate wave function can be introduced in the 

FEM. In principle, therefore, it is expected that this algorithm may provide new 

insights into the structure of molecules and atoms 
[5]

. 

 

The main works of the finite element method applied to atomic and molecular 

problems appeared in 1970’s, in one- and two-dimensional cases 
[6-7]

, where 

simplicity and efficiency of FEM was shown. The first work of FEM applied to 



three-dimensional case was done by Levin and Shertzer 
[5]

. They calculated the 

helium in the ground state and the six-dimensional Schrödinger equation was 

transferred into three-dimensional systems of equations rigorously 
[8]

. Works about 

three-dimensional FEM applied to three-body problems appeared hereafter 
[9-11]

. They 

all obtained very precise results. 

 

2. Governing Equations 

In Cartesian coordinates, the spin-independent, nonrelativistic Schrödinger equation 

for the two electrons in the helium atom is 
[5]

: 
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where H  is called Hamiltonian operator,   stands for the wave function and 

operator 
2

  calculates the kinetic energy of electron 1 and electron 2 (all the 

expressions are in the atomic units). Also we have: 
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In spherical coordinates, the Hamiltonian of the system can be written as 
[1]

: 
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Where 2

i
L  is the square of the angular momentum operator of the i th electron: 
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By the law of chain for the differential calculations: 
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1 x
L  and 

2

1 y
L : 



   




































 


2

12

2

1221

2

1221

1212

2

21

12

2

1221

2121

1221

2

1
sinsin

cos

sin

1
















rr

zyzy

rr

zyzy
zzyy

rr
L

x

   




































 


2

12

2

1221

2

1221

1212

2

21

12

2

1221

2121

1221

2

1
sinsin

cos

sin

1
















rr

xzxz

rr

xzxz
xxzz

rr
L

y
 

Since: 

212121122121
cos zzyyxxrrrr  


 

),,(
12211221122121

yxyxxzxzzyzyrr 


, 
122121

sin rrrr 


 

Thus: 































12

12

1212

2222

1
sin

sin

1
)(

iziyix
LLLL  

Therefore, the Hamiltonian can be transferred to an operator with three variables: 
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2.1. Boundary conditions 

In order to perform FEM, the infinite volume of coordinate space spanned by 
1

r , 
2

r , 

and 
12

  was made finite by truncation, i.e., 
1

r  and 
2

r  were each limited to the 

domain  
c

r,0 . The wave function   was set equal to zero for 0r  and 
c

rr  . 
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2.2. Formulation 

COMSOL Multiphysics describes the coefficient form of eigenvalue PDE as: 
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In order to match the equation form, the Hamiltonian should be formulated as: 
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Then the following coefficient values are used: 
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3. Solution 

The solution provides a number of the lowest eigenvalues. The ground state energy is 

solved as: E = -2.7285 hartree = -74.22 eV, close to the experimental value -78.98eV. 

Fig. 1 shows the calculation results, plotting with the value of the wave function u , 

which is interpreted as the probability density. Therefore, the red area should stand for 

the most possible distribution of electrons when at the ground state energy. According 

to Fig. 1, when E = -2.7285 hartree, one electron should be very close to the helium 

nuclei, with another electron far from it. 

 

One thing is left to be puzzled that since exchanging the positions of the two electrons 

should not change the system, the figure should have been symmetric. (Actually I am 

not able to well understand this figure, but the eigenvalue is close to the experimental 

result.) 

 

Fig. 1 The slice scheme of the wave function with the lowest eigenvalue. 



 

4. Validation 

In chemistry, an atomic orbit is a region in which an electron may be found. One 

specific region corresponds to one eigenvalue, which is the value of one energy level. 

Since the atomic orbits and energy levels of hydrogen atom have been well 

documented than any other atoms, the same model and solution process will be 

applied to hydrogen atom to validate the correction of our results for helium. 

 

4.1. Energy levels 

According to Bohr model, the energy levels of hydrogen atom can be solve as: 
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where 
0

E  is the lowest energy level, about -0.5 hartree, viz. -13.6eV. The following 

table compares the energy values got from FemLab and the values calculated from 

Bohr model. 

Energy 

level 

Energy value based on Bohr 

model (hartree) 

Energy value calculated by 

FemLab (hartree) 

Error 

n=1 -0.5000 -0.5014 0.28% 

n=2 -0.1250 -0.1247 0.24% 

Moreover, as mentioned above, the energy eigenvalue of helium atom is calculated as 

-2.7285 hartree, close to the experimental result -2.9037 hartree. 

 

4.2. Atomic orbits 

Similar to the energy levels, the atomic orbits of hydrogen atom are also well known. 

The following figures validate our calculations by comparing the isosurfaces of wave 

functions plotted by FemLab and the known atomic orbits of hydrogen. 
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5. Conclusion 

Based on the discussions above, it can be concluded that: 

1. Schrödinger equation can be simplified by decreasing some variables, making it 

an equation with fewer dimensions. 

2. FEMlab is a good tool when trying to find out the eigenvalues of energy of some 

three-dimensional systems (e.g. hydrogen and helium atoms). However, it can’t 

deal with a complicated many-body Schrödinger equation. 
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