

EGEE-520

DEM

Presented by:

AHMADIPUR, AMIR ABDELMALEK, BOTROS FANG, YI VALDEZ, ROBERT WANG, YI

Introduction and Historical Perspective

Discrete Element Method

Particle based

➤ Lagrangian

Explicit time stepping

Simulates behavior of granular materials

Granular media are modelled with individual (discrete) particles

- Originated in geomechanics by Cundall (1971) Progressive movements of rock masses as 2D rigid blocks
- Extended into a RBM code by Cundall (1974)
- Approximating the deformations of blocks of complex 2D geometry – code translated into FORTRAN by Cundall (1978)
- Computer codes for 3D problems developed by Cundall and Hart (1985)

Why DEM instead of Continuum?

Continuum models do not capture:

- Relative movements of the particles
- ➢ Rotations of the particles
- Sophisticated constitutive models are required to capture the behavior of the granular material
- In DEM many of the mechanical response features associated with the granular materials are captured

Discrete Element Method

Particle based

➤ Lagrangian

Explicit time stepping

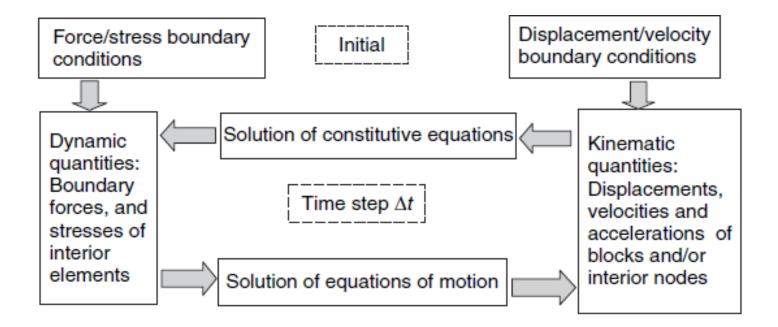
Simulates behavior of granular materials

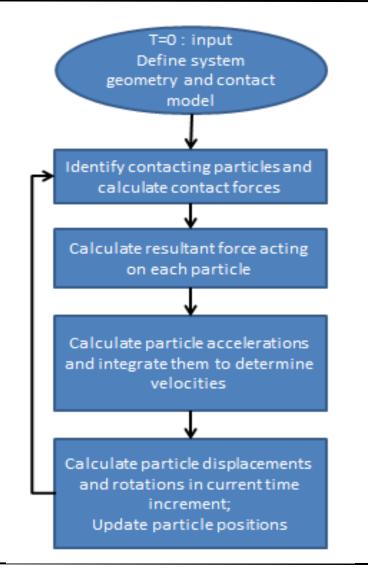
Granular media are modelled with individual (discrete) particles

- Loads and displacements can be applied to virtual samples to simulate the physical lab tests
- > Allows us to look inside the material
- Complex behavior is captured through the separately acting physical process algorithms
- Allows analysis of the mechanisms that involve large displacements

- Realistic particle shapes and arrangements are difficult to create and to calibrate
- Roughness, texture, and sharp edges of particles are not modelled
- Particle breakage or chipping is usually disallowed
- Idealized contact models (Hertz-Mindlin, etc.)
- Computationally expensive

- Agriculture and food handling
- Civil Engineering
- Chemical Engineering
- Oil and gas
- Mining
- Mineral processing
- Pharmaceutical
- Powder metallurgy





General Principles

Developed to study dry granular materials

- granular mechanics uses standard contact law
- contact law to develop creep theory
- > anisotropy of clays: contact laws + repulsive force
- particle crushing: contact laws for cementation
- strain localization: contact laws and granular rolling
- The one main feature:
 - complex responses controlled by contact laws and interparticle contacts.

- Linear normal contact model
 - introduces initial boundary conditions
- Adhesive, elasto-plastic normal contact model
 takes into account plastic deformation
- Tangential forces
- Coupling example: sliding/stick slip model
 - rolling model
 - torsion model

Linear normal contact model

Interaction of 2 particles: i and j

➤ assumptions

PENNSTATE

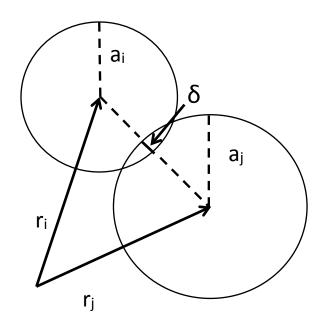
only interact if they are in contact

 \succ displacement/overlap occurs (δ)

$$\delta = (a_i + a_j) - (r_i - r_j) \bullet n$$

$$\succ$$
 where n = (r_i - r_j)/|r_i - r_j| vector

pointing from **i** to **j**



Linear contact model: Force

- The force from i and j at the contact (f^c) is split into:
 - normal force (fⁿ)

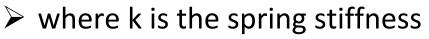
PENNSTATE

tangental force (f^t)

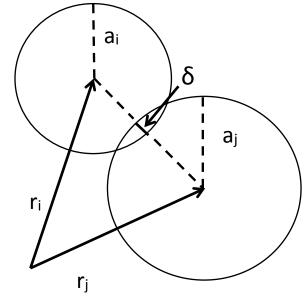
 $f^c = f^n + f^t$

Focusing on normal force

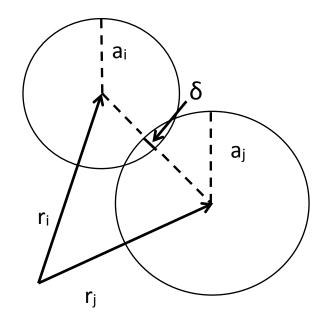
$$f^n = k\delta + \gamma_o v_n$$



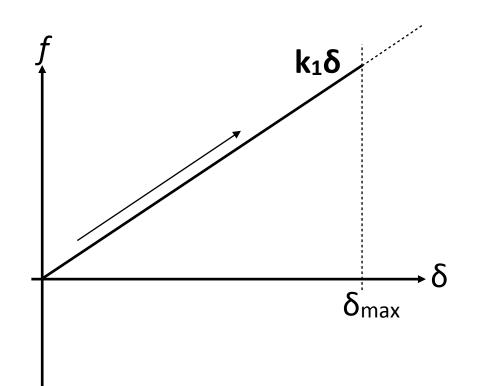
- $\succ \gamma_{0}$ is a viscous damping coefficient
- \succ v_n is the velocity in the normal direction



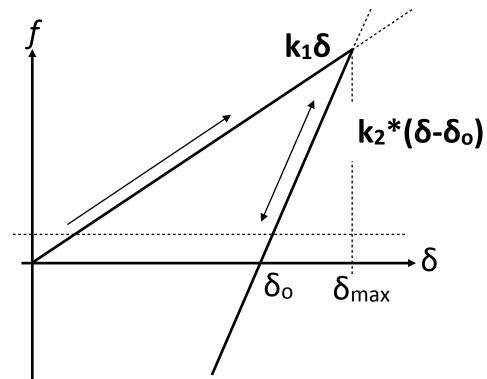
- Takes into account plastic deformation
- There will be memory effects where force is
 - > loading: $k_1\delta$ > un/reloading: $k_2^*(\delta-\delta_0)$ > unload: $-k_c\delta$



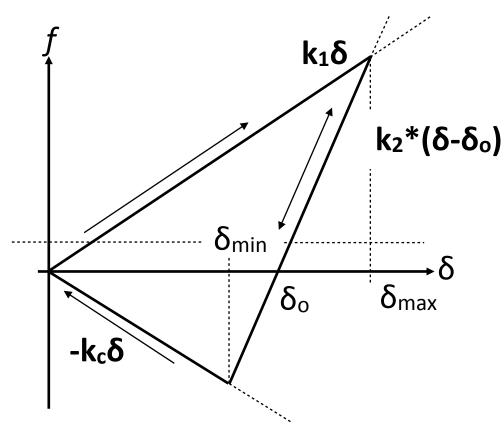
- loading: f increases linearly with δ until δ_{max} is reached
 - $\succ \delta_{max}$ = memory parameter
- the line with slope k₁ defines
 the maximum f for a given δ



- unloading: f decreases down to
 0 at δ₀ along the line k₂
- reloading at any instant leads to an increase of f along the same line
- once f_{max} is exceeded, the force follows the slope k₁ and δ_{max} is adjusted



- > below δ_0 = negative attractive forces until the f = $-k_c \delta_{min}$
- k₁ and -k_c define the range of possible force values
 - deviation from that takes place in un/reloading phases and follows k₂



- For the tangential degrees of freedom, there are three different force and torque laws
- Friction
 - dynamic and static sliding behavior
- Rolling resistance
 - distance two particles roll over each other without sliding
 - > activates torque (2 particles rotating anti-parallel)
- Torsion resistance
 - when two particles are rotating anti-parallel with spins parallel to the normal direction

- One example of how they can be coupled is through a sliding/ stick slip model
- ➤ The f^t is coupled with the fⁿ through Coulomb's law:
 ➤ f^t ≤ f_c = u^sfⁿ
- Where, for the sliding case, the dynamic friction is:
 f^t = f^t_C = u^dfⁿ
 With u^d < u^s
- For an adhesive contact (seen earlier), the Coulomb law is modified so that

 \succ fⁿ= fⁿ + k_c δ

- If you have an active contact, need to project a tangential spring into the tangential plane
- $\succ \xi = \xi' n(n\xi')$

 \succ where ξ' is the spring in the previous step

- to compute the changes in the spring, a tangential test force is computed:
 - \succ f^t_o= -k_t ξ + γ _tv_t
- > If $f_o^t \le f_c^s$ with $f_c^s = u^s(f^n + k_c\delta)$ you have static friction
- \succ if $f_o^t > f_c^s$ then sliding friction becomes active

- \succ The four parameters in the friction law are k_t, u_s, $\phi = u_s/u_d$, and γ_t
 - accounting for tangential stiffness
- I. project tangential spring into the tangential plane
- II. compute the changes in the spring via tangential test force
- III. continuously iterate at time steps and plug the equations into each other for each step and track the state of friction

- The rolling resistance model
 - > the three new parameters (k_r , u_r , γ_r with $\phi_r = \phi_d$) will be used like in the friction law
 - these parameters account for a rolling stiffness, static rolling friction coefficient, and a rolling viscosity
- The torsion resistance model
 - > the three new parameters (k_0 , u_0 , γ_0 with $\phi_r = \phi_0$) will be used like in the friction law
 - these parameters account for a torsion stiffness, static torsion friction coefficient, and a torsion viscosity

- This was only looking at 2 grains...
- real applications look at thousands of grains to analyze:
 - propagation and mechanics of fractures
 - Mine structure and rock reinforcement
 - underground civil structure
 - glacial loading/unloading
 - crustal deformation
- All of these examples need to look at the stress state, strength, and stiffness of the material

Governing Equations

Mass proportional damping:

 $d\downarrow i\uparrow m = -\alpha \partial u\downarrow i /\partial t m$

Stiffness proportional damping:

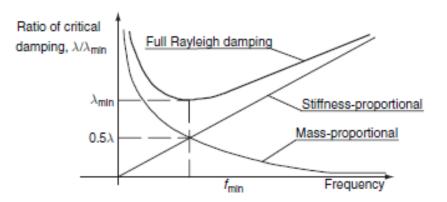
 $d\downarrow i\uparrow s = \beta K\downarrow ij \partial u\downarrow j /\partial t$

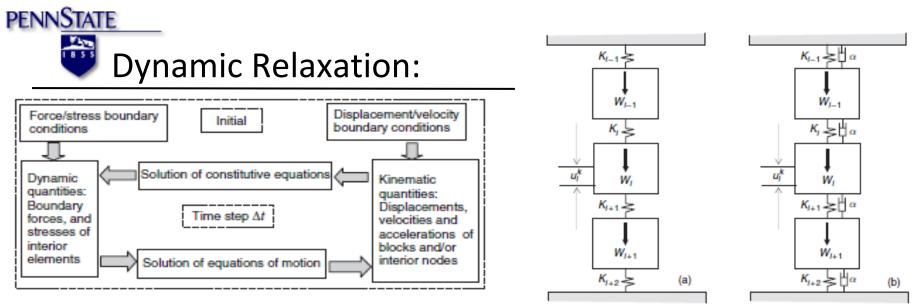
Critical damping ratio using Bathe and Wilson equation:

 $\lambda = 1/2 (\alpha/\omega + \beta\omega)$

 $\lambda \downarrow \min = \sqrt{\alpha/\beta} = \omega \downarrow \min$

 $f\downarrow min = \omega \downarrow min / 2\pi$





From Newton's Second Law:

 $ma \downarrow x + \alpha mv \downarrow x = F \downarrow x \qquad ma \downarrow y + \alpha mv \downarrow y = F \downarrow y$

 $Id^{\uparrow 2} \theta^{\uparrow 2} / dt^{\uparrow 2} + \alpha I$ $d\theta / dt = T$

From Hooke's Law:

$$\begin{split} F \downarrow i = K \downarrow i \left[(u \downarrow i \uparrow k + 1 - u \downarrow i - 1 \uparrow k + 1) + (u \downarrow i \uparrow k - u \downarrow i - 1 \uparrow k) \dots + (u \downarrow i \uparrow 1 \\ - u \downarrow i - 1 \uparrow 1) \right] = K \downarrow i \left[\sum_{j=1}^{\infty} f K + 1 \right] (u \downarrow i \uparrow j - u \downarrow i - 1 \uparrow j) \end{split}$$

 $F \downarrow i+1 = K \downarrow i+1 \left[\sum_{j=1}^{\infty} f K + 1 \right] \left[(u \downarrow i \uparrow j - U \downarrow i+1 \uparrow j) \right]$

Doing a force balance:

$$\begin{split} m \downarrow i \, d \uparrow 2 \, u \downarrow i \uparrow k \, / dt \uparrow 2 &+ \alpha m \downarrow i * (d u \downarrow i \uparrow k \, / dt \,) = W \downarrow i - K \downarrow i \sum_{j=1}^{j=1} h - 1 \\ u \downarrow i - 1 \uparrow j \,) - K \downarrow i + 1 \sum_{j=1}^{j=1} h - 1 \\ \hline (u \downarrow i + 1 \uparrow j - u \downarrow i \uparrow j \,) &= f \downarrow i \uparrow k - 1 \end{split}$$

 $d12 \ u \downarrow i\uparrow k \ / dt\uparrow 2 = u \downarrow i\uparrow k + 1 - 2 u \downarrow i\uparrow k + u \downarrow i\uparrow k \frac{du}{dt} i \uparrow k \frac{du}{dt} \frac{dt}{dt} = u \downarrow i\uparrow k + 1 - 2 u \downarrow i\uparrow k - 1 \ / 2\Delta t$

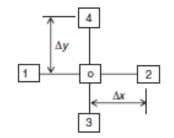
$$\begin{split} u \downarrow x \uparrow k + 1 = (1 + \Delta t/2 \ \alpha) \uparrow -1 & \{f \downarrow x \uparrow k - 1 \ (\Delta t) \uparrow 2 \ /m \ + 2 u \downarrow x \uparrow k \\ -(1 - \Delta t/2 \ \alpha) u \downarrow x \uparrow k - 1 & \} \end{split}$$

$$\begin{split} u \downarrow y \uparrow k + 1 = (1 + \Delta t/2 \ \alpha) \uparrow -1 & \{f \downarrow y \uparrow k - 1 \ (\Delta t) \uparrow 2 \ /m \ + 2u \downarrow y \uparrow k \\ -(1 - \Delta t/2 \ \alpha) u \downarrow y \uparrow k - 1 & \} \end{split}$$

 $\begin{array}{l} \theta\uparrow k+1=(1+\Delta t/2 \ \alpha)\uparrow -1 \ \{T\uparrow k-1 \ (\Delta t)\uparrow 2 \ /I \ +2\theta\uparrow k -(1-\Delta t/2 \ \alpha)\theta\uparrow k-1 \ \} \end{array}$

 $\begin{array}{ll} a\downarrow i=u\downarrow i\uparrow k+1-2u\downarrow i\uparrow k+ & \nu\downarrow i=u\downarrow i\uparrow k+1-u\downarrow i\uparrow k-1/2\Delta t & such that; i:x,y\\ u\downarrow i\uparrow k-1/(\Delta t)\uparrow 2 & ; & or \theta \end{array}$

 $\partial/\partial x (K\downarrow x \partial h/\partial x) + \partial/\partial y (K\downarrow y \partial h/\partial y) + \partial/\partial z (K\downarrow z \partial h/\partial z) + s=c$ $\partial h/\partial t + \rho \partial t^2 h/\partial t^2$



 $\begin{array}{l} q=\partial/\partial x \left(K \downarrow x \,\partial h/\partial x \,\right) + \partial/\partial y \left(K \downarrow y \,\partial h/\partial y \,\right) + \,\partial/\partial z \left(K \downarrow z \,\partial h/\partial z \,\right) + \,s \end{array}$

 $v = \partial h / \partial t$

 $q = cv + \partial v / \partial t$

 $\begin{aligned} q\downarrow o,t = K\downarrow x / (\Delta x) \uparrow 2 \quad [h\downarrow 1 - 2h\downarrow 0 + h\downarrow 2] \downarrow t + K\downarrow y / (\Delta y) \uparrow 2 \quad [h\downarrow 3 - 2h\downarrow 0 + h\downarrow 4] \downarrow t + \\ K\downarrow z / (\Delta z) \uparrow 2 \quad [h\downarrow 5 - 2h\downarrow 0 + h\downarrow 6] \downarrow t + s\downarrow o,t \end{aligned}$

 $RHS = c/2 \quad [v \downarrow o, t + \Delta t/2 + v \downarrow o, t - \Delta t/2] + \rho/\Delta t \quad [v \downarrow o, t + \Delta t/2 - v \downarrow o, t - \Delta t/2]$

 $h \downarrow o, t + \Delta t = h \downarrow o, t + (\Delta t) \nu \downarrow o, t + \Delta t/2$

$\begin{array}{l} \Delta t \leq \Delta t \uparrow c = 1/2 \ c/[\max (K \downarrow x, K \downarrow y, K \downarrow z)] \ [\min (\Delta x, \Delta y, \Delta z)] \uparrow 2 \end{array}$

 $\omega = 2\pi / N\Delta t \ (rad/s)$

1-D problem (elastic problems) :

 $zz = E\partial w/\partial z$

 $\partial zz/\partial z = \rho(\partial w/\partial t + K/\Delta t w)$

 $zz\downarrow k\uparrow r = E/\Delta z \ (w\downarrow k+1\uparrow r - w\downarrow k\uparrow r)$

 $zz\downarrow k\uparrow r - zz\downarrow k - 1\uparrow r /\Delta z = \rho/\Delta t \ (w\downarrow k\uparrow r + 1 - w\downarrow k\uparrow r) + k\rho/\Delta t . 1/2 \ (w\downarrow k\uparrow r + 1 + w\downarrow k\uparrow r)$

 $w \downarrow k \uparrow r+1 = 1/1 + K/2 [(1-K/2)w \downarrow k \uparrow r + \Delta t/\rho \Delta z (zz \downarrow k \uparrow r - zz \downarrow k-1 \uparrow r)]$

Stress/Strain relations:

 $xx = (\lambda + 2\mu)\partial u / \partial x + \lambda \partial v / \partial y$

 $yy = \lambda \partial u / \partial x + (\lambda + 2\mu) \partial v / \partial y$

 $xy = \mu(\partial u/\partial y + \partial v/\partial x)$

Dynamic damped equilibrium equations:

 $\rho(\partial u / \partial t + K / \Delta t . u) = \partial x x / \partial x + \partial x y / \partial y$

 $\rho(\partial v / \partial t + K / \Delta t \, . \, v) = \partial x y / \partial x + \partial y y / \partial y$

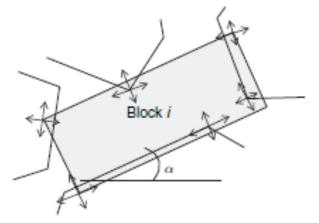
Simply, implicit solution for the same equations of motion and constitutive laws based on contacts.

Two major profound aspects:

- (1-) No consideration of viscous damping forces.
- (2-) Balance of forces for an object is considered

 $\Delta u \downarrow n \uparrow i = -\Delta u \downarrow x \uparrow i \sin \alpha \downarrow i + \Delta u \downarrow y \uparrow i \cos \alpha \downarrow i$

 $\Delta u \downarrow t \uparrow i = \Delta u \downarrow x \uparrow i \cos \alpha \downarrow i + \Delta u \downarrow y \uparrow i \sin \alpha \downarrow i$



 $\Delta F \downarrow x \uparrow i = -K \downarrow n (\Delta u \downarrow x \uparrow i sina \downarrow i - \Delta u \downarrow y \uparrow i cosa \downarrow i) sina \downarrow i + K \downarrow t (\Delta u \downarrow x \uparrow i cosa \downarrow i + \Delta u \downarrow y \uparrow i sina \downarrow i) cosa \downarrow i$

 $\Delta F \downarrow y \uparrow i = -K \downarrow n (\Delta u \downarrow x \uparrow i sina \downarrow i - \Delta u \downarrow y \uparrow i cosa \downarrow i) cosa \downarrow i + K \downarrow t (\Delta u \downarrow x \uparrow i cosa \downarrow i + \Delta u \downarrow y \uparrow i sina \downarrow i) sina \downarrow i$

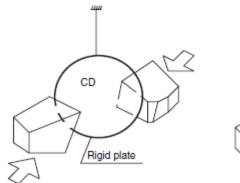
 $\{\blacksquare \Delta u \downarrow x \uparrow c @\Delta u \downarrow y \uparrow c @\Delta \theta \uparrow c \} \downarrow k = [\blacksquare k \downarrow 11 \& k \downarrow 12 \& k \downarrow 13 @k \downarrow 21 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \downarrow 22 \& k \downarrow 23 @k \downarrow 31 \& k \sqcup 31$

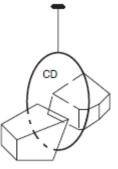
 $F \downarrow x = \sum_{i=1}^{\infty} f \downarrow x \uparrow i + F \downarrow x \uparrow e$

 $T = \sum_{i=1}^{T} \int M = F \downarrow y \uparrow i [x \uparrow i - x \uparrow c] - \sum_{i=1}^{T} \int M = F \downarrow x \uparrow i [y \uparrow i - F \downarrow y \uparrow c] + F \downarrow y \uparrow c$;

Contact Types and Detection in DEM

Block shape	Contact type
General 2D polygons (convex or concave, singly or multiply connected)	Vertex-to-vertex Vertex-to-edge Edge-to-edge
Convex 3D polyhedra	Vertex-to-vertex Vertex-to-edge Vertex-to-face Edge-to-edge Edge-to-face Face-to-face





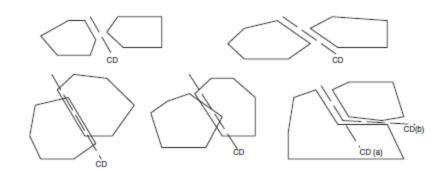


Table 8.3	Contact	types	associated	with	the	common	plane
-----------	---------	-------	------------	------	-----	--------	-------

Number of vertices in contact, Block A	Number of vertices in contact, Block B	Contact types
0	0	null
1	1	vertex-to-vertex
1	2	vertex-to-edge
1	>2	vertex-to-face
2	1	edge-to-vertex
2	2	edge-to-edge
2	>2	edge-to-face
>2	1	face-to-vertex
>2	2	face-to-edge
>2	>2	face-to-face

Hand Calculation Example

4. Hand-Calculation Examples

The discrete element method (DEM) is a finite difference scheme.

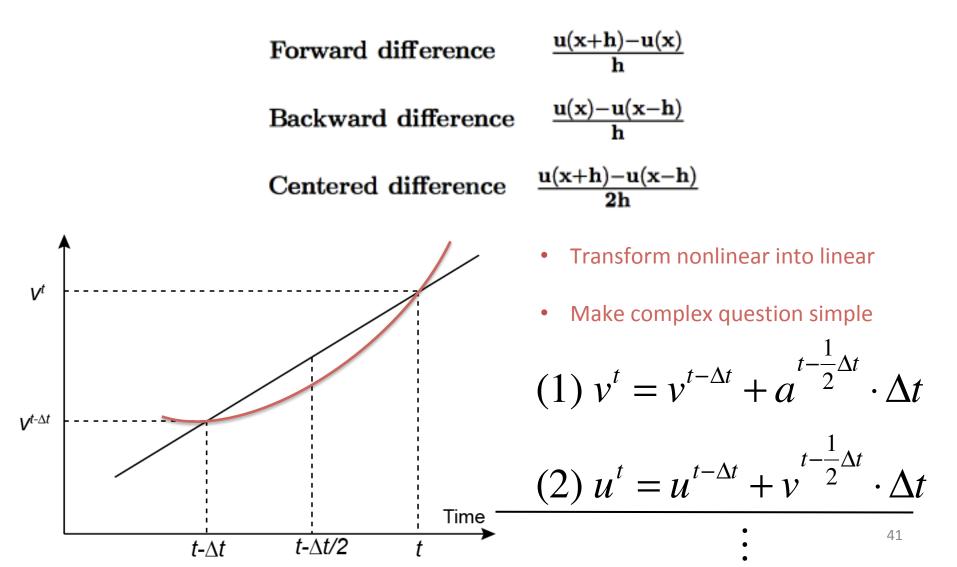
- 1-D examples:
- 1. Pendulum Motion
- 2. Heat Transfer

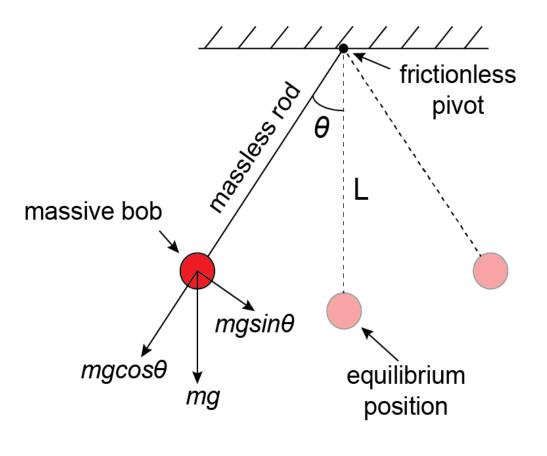
Strategy:

- Nonlinear becomes linear
- Continuous becomes discrete

Finite Difference Scheme

- A method to approximate differential equation.





Simple Pendulum Motion Assumption: No damping is considered

Calculate:

- 1. angular displacement ϑ
- 2. angular velocity ω
- 3. angular acceleration α

Fundamental Relations

PENNSTATE

100

angular velocity:
$$\omega = \dot{\theta} = \frac{\partial \theta}{\partial t}$$

angular acceleration: $\alpha = \ddot{\theta} = \frac{\partial^2 \theta}{\partial t^2} \approx \frac{\Delta \omega}{\Delta t}$
linear displacement: $u = L\theta$
linear velocity: $v = L\omega$
linear acceleration: $a = L\alpha$

The only force for driving the motion: (3) $F=-mg \cdot sin\theta$

According to F=ma, we have: (4) $Lm\alpha^t = -mg \cdot \sin\theta^t$

$$L \cdot \frac{\partial^2 \theta}{\partial t^2} + g \sin \theta = 0$$

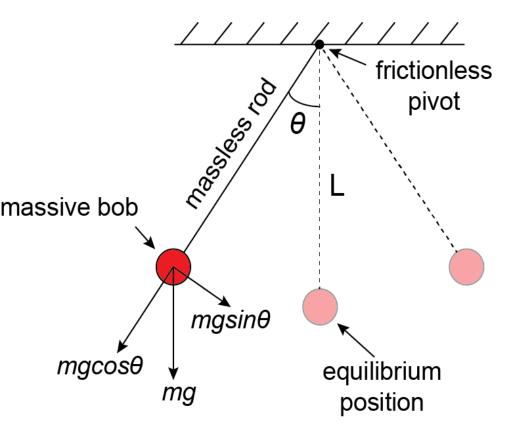
By Forward Difference we get:

(5)
$$\omega^{t} = \omega^{t-\Delta t} + \alpha^{t-\Delta t} \cdot \Delta t$$

(6)
$$\theta^{t} = \theta^{t-\Delta t} + \omega^{t-\Delta t} \cdot \Delta t$$

(7)
$$\alpha^t = -\frac{mg\sin\theta^t}{L}$$

Initial Conditions



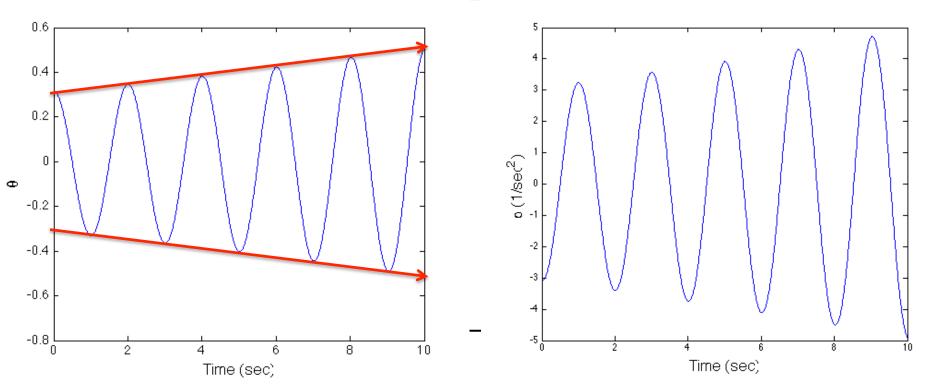
Bob is held at $t=0^-$ but released at $t=0^+$

m=1kg g=10m/s² L=1m $\vartheta^{(0)}=\pi/10$

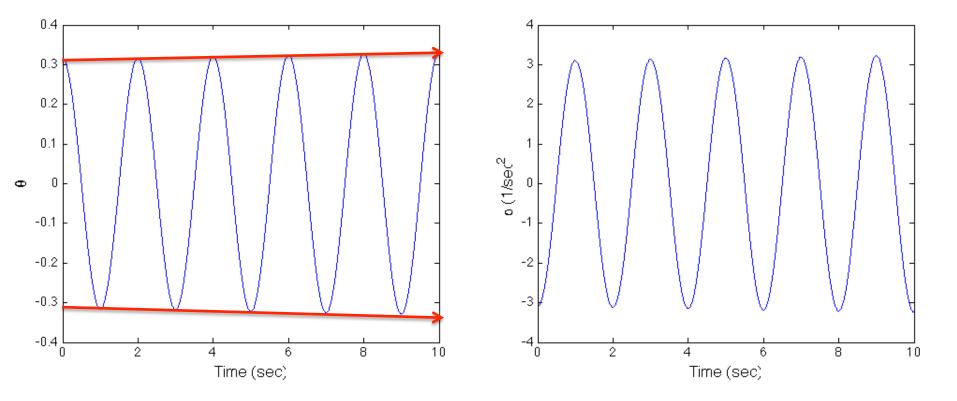
Calculation Results

Time step: Δt =0.01s

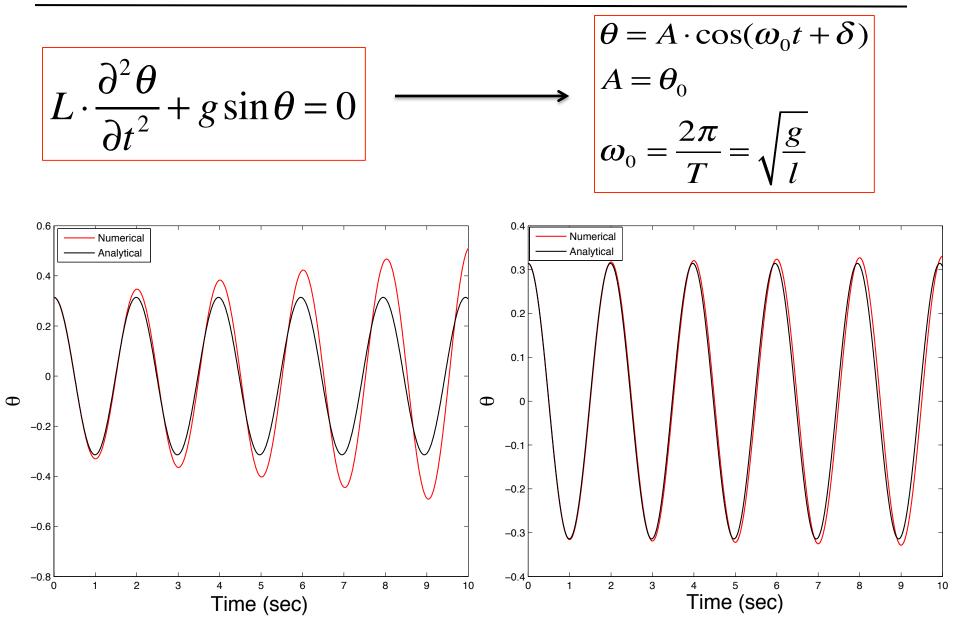
t	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
θ	0.3142	0.3142	0.3139	0.3132	0.3123	0.3111	0.3095	0.3077	0.3055	0.3031	
ω	0	-0.039	-0.062	-0.093	-0.124	-0.154	-0.185	-0.215	-0.276	-0.306	
α	-3.090	-3.090	-3.087	-3.081	-3.073	-3.061	-3.046	-3.029	-3.001	-2.985	



t	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008	0.009	
θ	0.3142	0.3142	0.3142	0.3141	0.3141	0.3141	0.3141	0.3141	0.3140	0.3140	
ω	0	-0.0031	0.0062	-0.0093	-0.0124	-0.0155	-0.0185	-0.0216	-0.0247	-0.0278	
α	-3.0902	-3.0896	-3.0901	-3.0901	-3.0900	-3.0899	-3.0897	-3.0896	-3.0893	-3.0891	



Numerical Solution vs. Analytical Solution



It is important to have the <u>error</u> within an acceptable level!

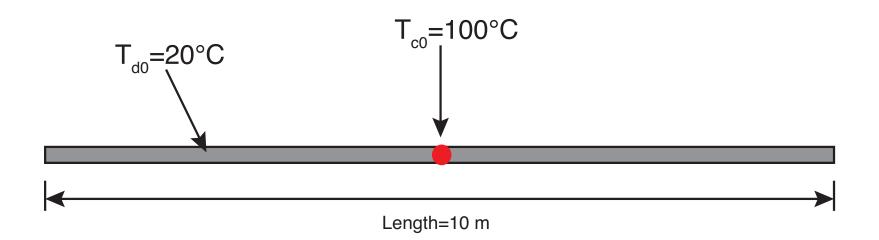
Forward Backward

$$u(x+h) = u(x) + hu'(x) + \frac{1}{2}h^2u''(x) + \frac{1}{6}h^3u'''(x) + \cdots$$
$$u(x-h) = u(x) - hu'(x) + \frac{1}{2}h^2u''(x) - \frac{1}{6}h^3u'''(x) + \cdots$$

Truncation Error

The forward and backward difference are both first order accurate. Because {item} as a leading error has first power of h, which is the time interval (step) in this example.

Heat Transfer Within a Pyrolytic Graphite



Assumptions:

The surface of the bar is perfectly thermally insulated.

Consider the 1-D, transient heat conduction equation without heat generating sources:

(1)
$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} (k \cdot \frac{\partial T}{\partial x})$$

 ρ : density

- c_p : heat capacity
- k: thermal conductivity
- T: temperature
- x: distance
- t: time

If we have constant density, heat capacity, thermal conductivity over the model domain, we can simplify the Eq. (1).

(2)
$$\frac{\partial T}{\partial t} = \kappa \frac{\partial T}{\partial x^2}$$

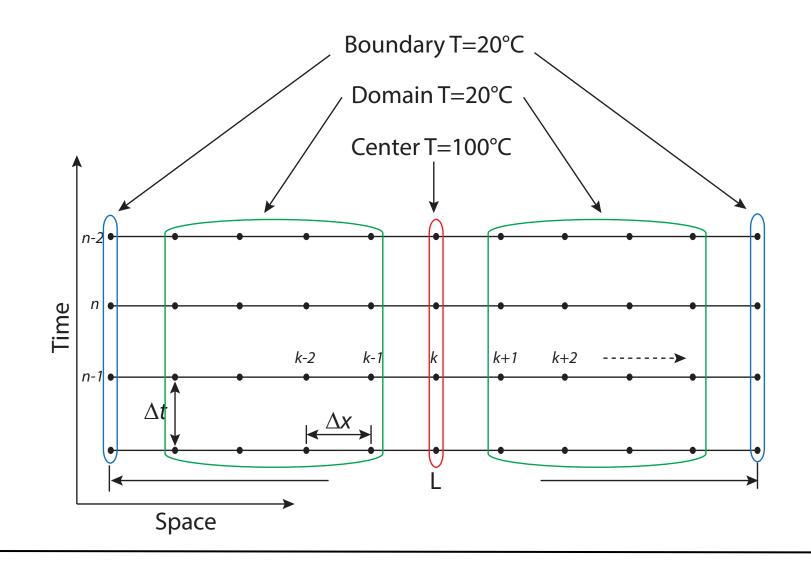
where: $\kappa = \frac{k}{\rho c_p}$ is the thermal diffusivity

 \mathbf{T}

 $\mathcal{I}^2 \mathbf{T}$

The temperature here becomes a function of space and time, which satisfies Eq. (2).

The first step use DEM is to construct a grid with points (called discretization).



Forward difference approximation of Eq. (2):

PENNSTATE

(3)
$$\frac{\partial T}{\partial t} \approx \frac{T_k^{new} - T_k^{current}}{t^{new} - t^{current}} = \frac{T_k^{n+1} - T_k^n}{t^{n+1} - t^n} = \frac{T_k^{n+1} - T_k^n}{\Delta t}$$

(4) $\frac{\partial^2 T}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial x}\right) \approx \frac{\frac{T_{k+1}^n - T_k^n}{\Delta x} - \frac{T_k^n - T_{k-1}^n}{\Delta x}}{\Delta x}$

Combine Eq. (3) and Eq. (4), we will get Eq. (5):

$$T_{k}^{n+1} = T_{k}^{n} + \kappa \cdot \Delta t \cdot \frac{T_{k+1}^{n} - 2T_{k}^{n} + T_{k-1}^{n}}{(\Delta x)^{2}}$$

let
$$\alpha = \frac{\kappa \cdot \Delta t}{(\Delta x)^2}$$
, then

 $T_{k}^{n+1} = \alpha \cdot (T_{k+1}^{n} + T_{k-1}^{n}) + (1 - 2\alpha)T_{k}^{n}$

Stability Condition:

$$(1-2\alpha) > 0$$
 and $\alpha = \frac{\kappa \cdot \Delta t}{(\Delta x)^2} > 0$

Physical Parameters:

Parameters	Values	Physical Meaning
<i>L</i> [m]	10	Length
kappa [m²/sec]	1e-3	Thermal Diffusivity
<i>T_c</i> [°C]	100	Temperature of Central Point
<i>T_d</i> [°C]	20	Temperature of Domain
<i>T_b</i> [°C]	20	Temperature of Boundaries
t _{final} [sec]	1500	Total Time of Heat Conduction

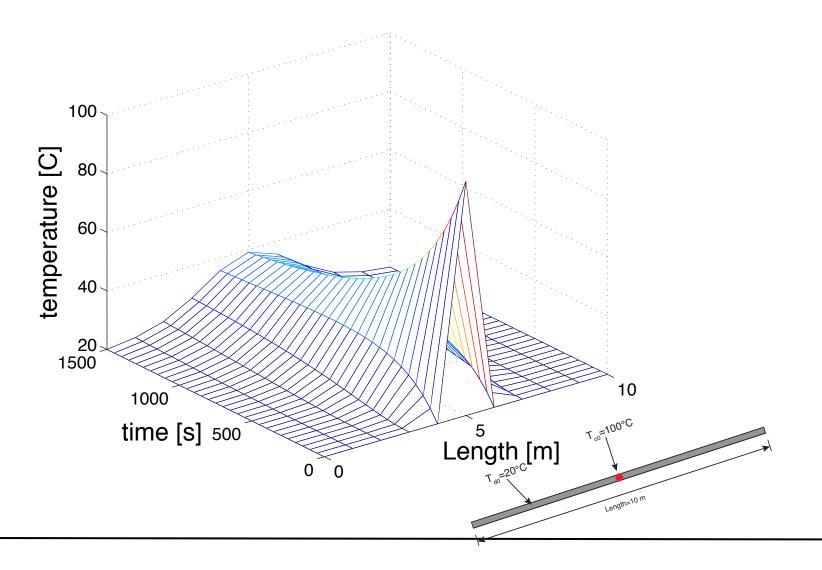
Physical Parameters:

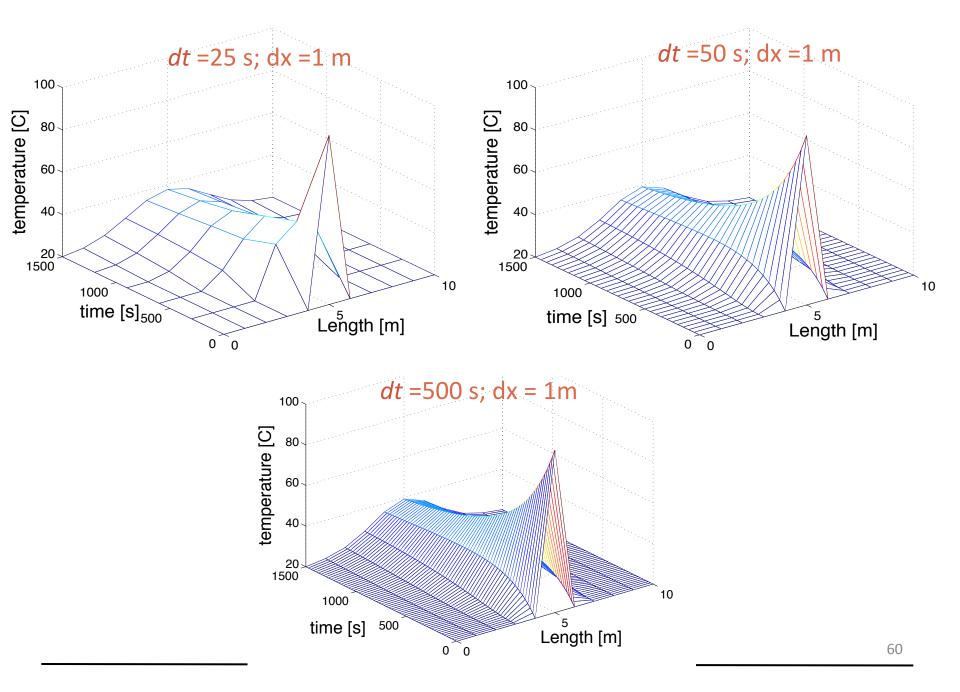
Parameters	Values	Numerical Meaning
kx	10	Number of Space Steps
dx	1	Space Step
nx	11	Number of Gridpoints
nt	30	Number of Time Steps
dt	50	Time Step

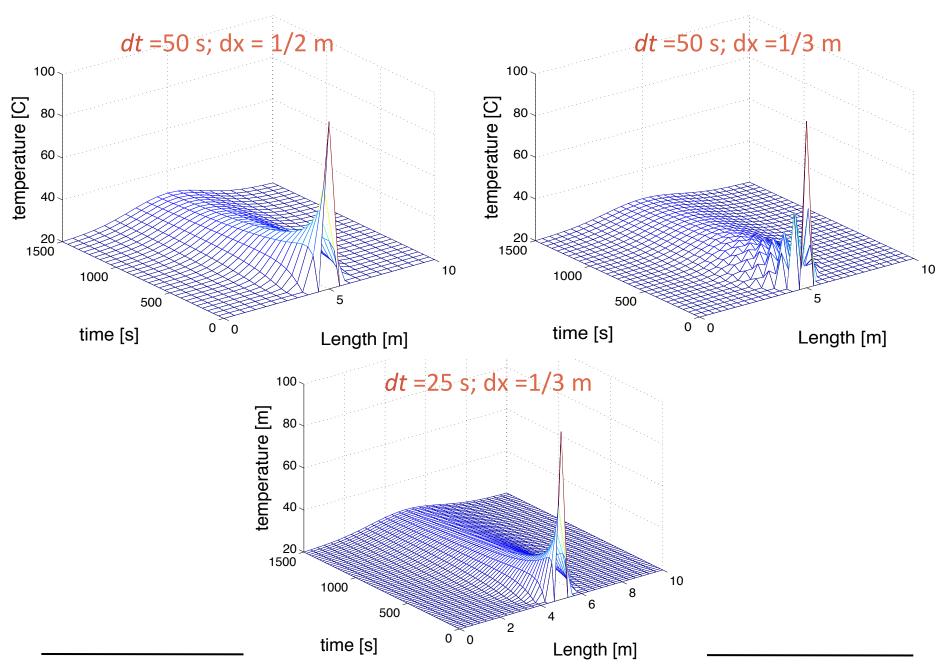
Calculation:

T(°C)	n=1	n=2	n=3	n=4	n=5	n=6	n=7
k=1	20	20	20	20	20	20	20
k=2	20	20	20	20	20.0005	20.0023	20.0061
k=3	20	20	20	20.01	20.0360	20.0811	20.1465
k=4	20	20	20.2	20.54	20.9740	21.4670	21.9926
k=5	20	24	27.2	29.75	31.7720	33.3652	34.6105
k=6	100	92	85.2	79.40	74.4350	70.1687	66.4884

Temperature Evolution







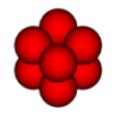
- 1. <u>Solving the right equations</u>
 - Use right/best equations that best describe the physical laws.

- 2. Solving the equations right
 - Appropriate initial/boundary conditions
 - Control the numerical error and see how the output depends on the input.
 - Accuracy and stability.

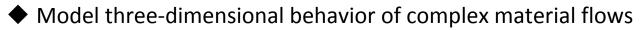
Numerical Example

5. Numerical Example

A DEM commercial software was used to develop the example models:



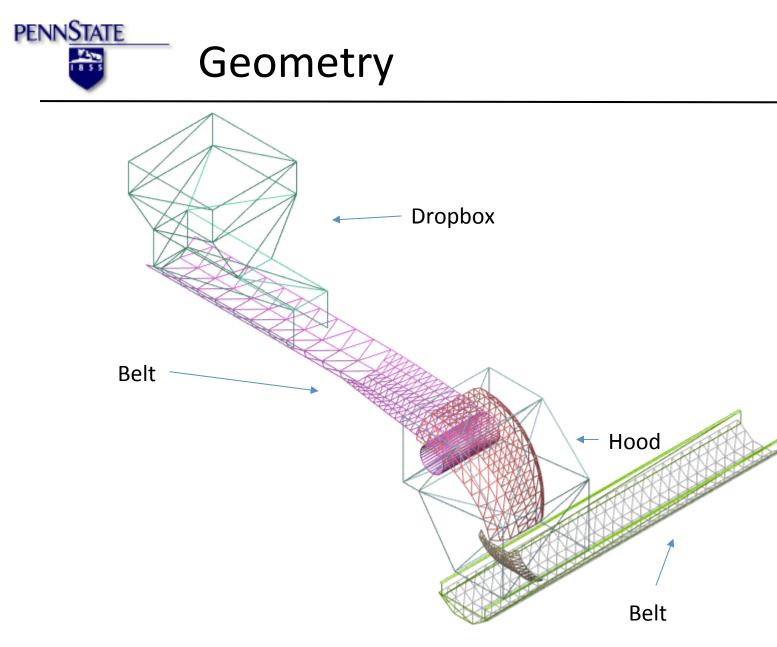
What it can do...



Analyze various material properties and fundamental parameters

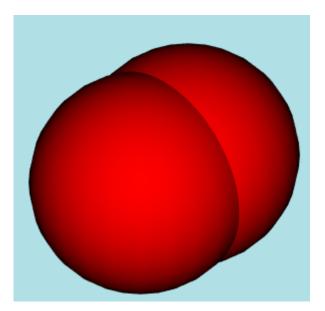
Two groups of particle flow simulations:

- > Dry and wet particle flow on declines
- Belt transport problem with dry and wet particles

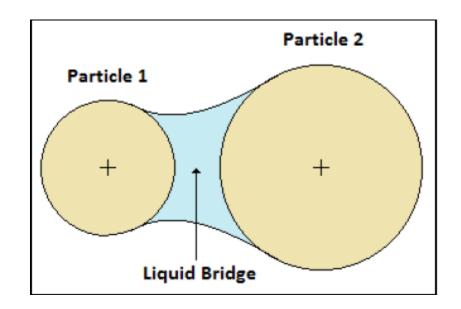


- Particle-Particle Friction Coefficient
- Coefficient of Restitution
- Rotational Damping
- Particle-Particle Cohesion Factor

- Normally, virtual spring is created when two particles overlap
- Ratchet effect can create a second spring to pull the two particles back



- Moisture between two particles
- Small force applied on this bridge
- Bridge collapse when one particle moves apart



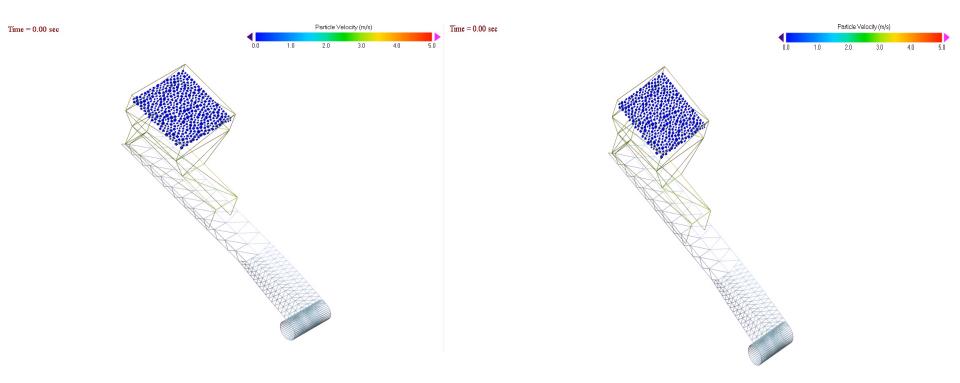
Input Parameters

Wet Particles

General Properties	Α
Particle-Particle Friction Coefficient (0-1)	0.85
Particle-Boundary Friction Coefficient (0-1)	0.75
Coefficient of Restitution (0.075-1)	0.100
Rotational Damping (0-10)	1.00
Ratchet Effect	
Use Ratchet Effect	YES
Particle-Particle Cohesion Factor (0-0.25)	0.150
Particle-Boundary Cohesion Factor (0-0.25)	0.150
Liquid Bridge	
Use Liquid Bridge	YES
Surface Tensions (0.05 - 0.50 J/m²)	0.50
Water Content (%)	15.0
Boundary Surface Tension Multiplier (0-10)	2.00
Equivalent Sphere Size Ratio	15.00

Dry Particles

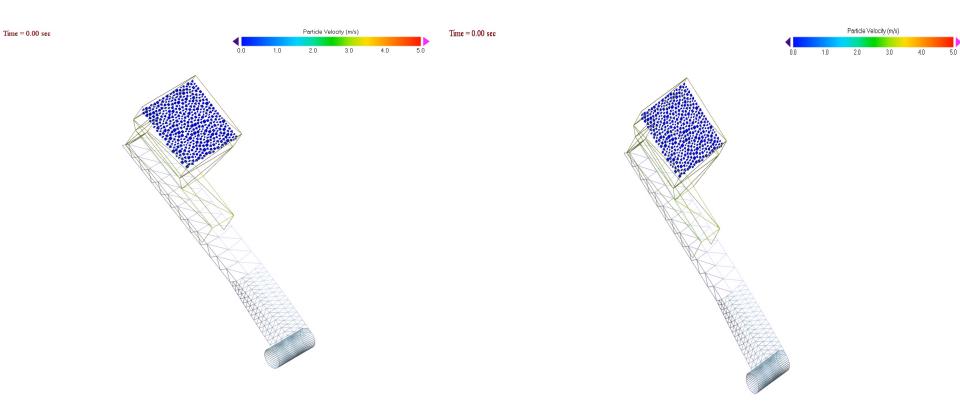
General Properties	Α
Particle-Particle Friction Coefficient (0-1)	0.30
Particle-Boundary Friction Coefficient (0-1)	0.20
Coefficient of Restitution (0.075-1)	0.150
Rotational Damping (0-10)	2.00
Ratchet Effect	
Use Ratchet Effect	NO
Particle-Particle Cohesion Factor (0-0.25)	
Particle-Boundary Cohesion Factor (0-0.25)	
Liquid Bridge	
Use Liquid Bridge	NO
Surface Tensions (0.05 - 0.50 J/m ²)	
Water Content (%)	
Boundary Surface Tension Multiplier (0-10)	
Equivalent Sphere Size Ratio	



Dry particles on 20 to decline

Wet particles on $20 \uparrow o$ decline

Animation Results

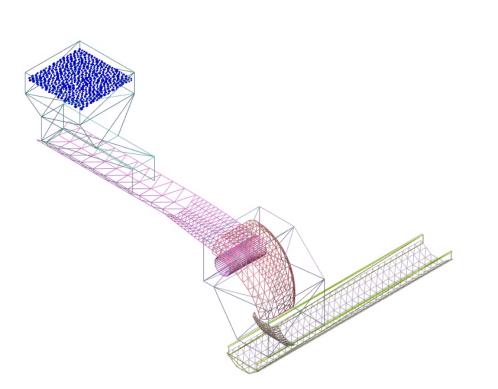


Dry particles on 30 to decline

Wet particles on 30 to decline

Animation Results

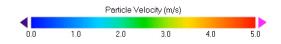
Time = 0.00 sec

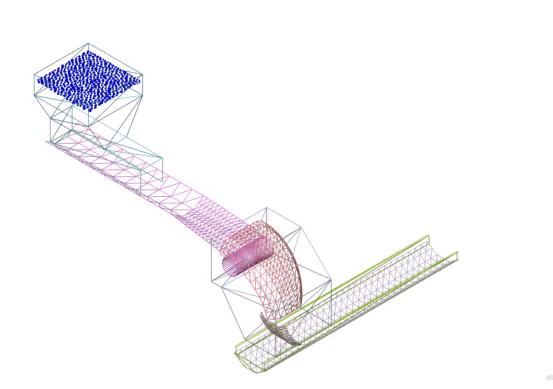


Dry particles transport on belt with a velocity of 2m/s

Animation Results

Time = 0.00 sec





Wet particles transport on belt with a velocity of 2m/s

DEM has been used in many applications:

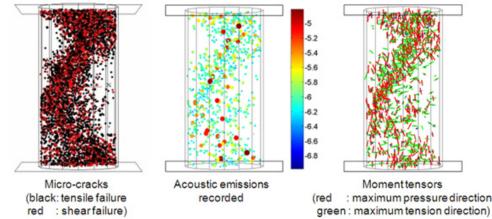
- Geophysics/Seismology
- Rock fracture
- Soil mechanics
- Ice blocks floating into bridge supports
- Industrial/commercial applications

Various cases of DEM simulation

https://www.youtube.com/watch? v=y2Otlge_YaY&list=LL5LLRt-U8nlyfRhpm5IBEHQ&index=2

DEM results are much more than cartoons.

- The animations and videos are the visual display of a large amount of data
- Particle data
 - Position
 - Stress
 - Velocity
- System boundary data
- All data is available to the user for further analysis



What kind of problems can DEM predict?

- Plugging
- Material loss
- Material stagnation
- Dust production
- Wear on machine/structure
- Mixing
- Other inadequacies

 Thermal flow simulation & melting simulation in twin screw extruder

https://www.youtube.com/watch? v=v4aMrxJOdU0

Rotating Bullet simulation

https://www.youtube.com/watch?
v=qFHW0Q6wRy8

Thank you !