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@ What is DEM?

» Discrete Element Method

» Particle based

» Lagrangian

» Explicit time stepping

» Simulates behavior of granular materials

» Granular media are modelled with individual (discrete)

particles
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@ Origin of DEM

» Originated in geomechanics by Cundall (1971) -
Progressive movements of rock masses as 2D rigid

blocks
» Extended into a RBM code by Cundall (1974)

» Approximating the deformations of blocks of complex
2D geometry — code translated into FORTRAN by
Cundall (1978)

» Computer codes for 3D problems developed by Cundall
and Hart (1985)
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@ \Why DEM instead of Continuum?

» Continuum models do not capture:
» Relative movements of the particles

» Rotations of the particles

» Sophisticated constitutive models are required to

capture the behavior of the granular material

» In DEM many of the mechanical response features

associated with the granular materials are captured
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@ What is DEM?

» Discrete Element Method

» Particle based

» Lagrangian

» Explicit time stepping

» Simulates behavior of granular materials

» Granular media are modelled with individual (discrete)

particles
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@ DEM Strengths

» Loads and displacements can be applied to virtual
samples to simulate the physical lab tests

> Allows us to look inside the material

» Complex behavior is captured through the separately
acting physical process algorithms

» Allows analysis of the mechanisms that involve large
displacements
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@ DEM Weaknesses

» Realistic particle shapes and arrangements are difficult
to create and to calibrate
» Roughness, texture, and sharp edges of particles are

not modelled

» Particle breakage or chipping is usually disallowed
» ldealized contact models (Hertz-Mindlin, etc.)

» Computationally expensive
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@ DEM Applications

» Agriculture and food handling
» Civil Engineering

» Chemical Engineering

» Oil and gas

» Mining

» Mineral processing

» Pharmaceutical

» Powder metallurgy
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@ DEM Flow chart

Force/stress boundary . Displacement/velocity
- Initial "
conditions boundary conditions

1 Il

Dynamic <: Solution of constitutive equations <:| Kinematic

quantities: quantities:
Boundary I 7 Displacements

. | p ,
forces, and | Time step Af | velocities and
§tre§ses of accelerations of
interior blocks and/or

elements |:> Solution of equations of motion |:> interior nodes
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@ DEM Flow chart

T=0: input
Define system
geometry and contact
model

Identify contacting particlesand
calculate contactforces

Calculate resultantforce acting
on each particle

Calculate particle accelerations
and integrate them to determine
velocities

Calculate particle displacements
and rotations in currenttime
increment;

Update particle positions
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General Principles
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@ General Principles

» Developed to study dry granular materials

» granular mechanics uses standard contact law

» contact law to develop creep theory

» anisotropy of clays: contact laws + repulsive force
» particle crushing: contact laws for cementation

» strain localization: contact laws and granular rolling

» The one main feature:
» complex responses controlled by contact laws and
interparticle contacts.
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ﬁ Outline

> Linear normal contact model
» introduces initial boundary conditions

» Adhesive, elasto-plastic normal contact model
» takes into account plastic deformation

» Tangential forces

» Coupling example: sliding/stick slip model
» rolling model
» torsion model
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% Linear normal contact model

» Interaction of 2 particles: i and j

» assumptions
» only interact if they are in
contact
» displacement/overlap occurs ()

d=(ai+aj)-(ri-rj)n

» where n=(ri-r)/|ri-rj| vector

pointing from i to j
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% Linear contact model: Force

» The force fromiand j at the contact (f¢)
is split into:
» normal force (f")
» tangental force (f!)

fe=f"+f
» focusing on normal force

fn = k6 + yoVn

» Where k is the spring stiffness
» Yois a viscous damping coefficient
» Vn is the velocity in the normal direction
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= Adhesive, elasto-plastic normal contact model

» Takes into account plastic
deformation

» There will be memory effects
where force is

» loading: k16
» un/reloading: k2*(6-60)
» unload: -kcb

17
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@ Memory effects

» loading: f increases linearly
with & until 6max is reached

» Omax = memory parameter

» the line with slope ki defines

the maximum f for a given 6 :
6max
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= Memory effects continued

» unloading: f decreases down to f Ki5
0 at 6o along the line k2 !

» reloading at any instant leads
to an increase of f along the
same line

kz*(6-50)

....................................................................

» once fmax is exceeded, the force 8o Smax
follows the slope ki1 and Smaxis
adjusted
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= Memory effects continued

» below &0 = negative attractive f

forces until the f = -kcbmin k1d
» ki1 and -k define the range of ‘kZ*(5'50)
possible force values 5
> deviation from thattakes 2 /) """"" .5
place in un/reloading Omax

phases and follows k3
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= Tangential forces

» For the tangential degrees of freedom, there are three different
force and torque laws

» Friction
» dynamic and static sliding behavior

» Rolling resistance
» distance two particles roll over each other without sliding
» activates torque (2 particles rotating anti-parallel)

» Torsion resistance
» when two particles are rotating anti-parallel with spins
parallel to the normal direction
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@ Sliding/stick-slip model

» One example of how they can be coupled is through a sliding/
stick slip model

» The ftis coupled with the f" through Coulomb’s law:
» ft<fc=usfn

» Where, for the sliding case, the dynamic friction is:
> ft=ftc = ydf"
> With ud< us

» For an adhesive contact (seen earlier), the Coulomb law is
modified so that
» fh=1"+ kb
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@ Sliding/stick-slip model

» If you have an active contact, need to project a tangential spring
into the tangential plane

» &§=¢ -n(nf)
» where & is the spring in the previous step
» to compute the changes in the spring, a tangential test force is
computed:
» flo= -kt &+ yivi

> If ol < fcs with fc® = us(f" + ke8) you have static friction

» if fot > fcS then sliding friction becomes active
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= Summary

» The four parameters in the friction law are ks, us, ¢ = us/uq, and yx

» accounting for tangential stiffness
|. project tangential spring into the tangential plane
Il. compute the changes in the spring via tangential test force

lll. continuously iterate at time steps and plug the equations into
each other for each step and track the state of friction
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= Summary

» The rolling resistance model
» the three new parameters (kr, ur, yr with ¢r = ¢dq) will be used
like in the friction law
» these parameters account for a rolling stiffness, static rolling
friction coefficient, and a rolling viscosity

» The torsion resistance model
» the three new parameters (ko, Uo, yo with ¢r = ¢o) will be used
like in the friction law
» these parameters account for a torsion stiffness, static torsion
friction coefficient, and a torsion viscosity
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@ Other applications

» This was only looking at 2 grains...

» real applications look at thousands of grains to analyze:
propagation and mechanics of fractures

Mine structure and rock reinforcement
underground civil structure

glacial loading/unloading

crustal deformation

VVV VY

» All of these examples need to look at the stress state, strength, and
stiffness of the material
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Governing Equations




PENNSTATE
ﬁ Damping:

Mass proportional damping:

adliTm= —aduli /0t m

Stiffness proportional damping:

adlils =4 Klij ouly /ot

Ratio of cntical
damping, AMA\min

\min

0.5\

~~._Stifiness-proportional

Mass-proportional

Critical damping ratio using Bathe and Wilson equation:

A=1/2 (a/w+Lfw)

Admin =vOa/f =wimin

min=wimin /2

fin Frequancy

28
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@ Dynamic Relaxation:

elements ||::>

!_ Force/stress boundary | initial | Displacementivelocity

: conditions boundary conditions

1 11l
Dynamic (:: Solution of constitutive equations C: Kinematic
quantities: quantities:
Boundary Displacaments,
forces, and | Time step At | velocities and
stresses of accelerations of
interior blocks andor

Solution of equations of motion

From Newton’s Second Law:

malx+ amvix=Flx

From Hooke’s Law:

FU =K [(wdiThk+1 — wdi—=1Tk+1 )+ (wdiTh — wli—=1Tk)
— wli=1T1 ) ]=AKi [ J/=1TA+1#(wdiT) —udi=1T))]

Fli+1l = KA1 [ J)=1TA+1

:> intenor nodes

I
I
I
—

maly +amviy =Fly

Kv-1‘:; K|_|o;:pu
S 3
K«u-l[; K.,,.}_::]u
| |
W4 Wiy
K..g% @) K..=7[;l:1~ b)

#(udity — ULi+11))]

1d12 812 Jdt12 +al
dé/dt=T

........... +(udiTl

29
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= Dynamic Relaxation (cont'd):

Doing a force balance:

d12 wlith Jdt12 =wlithe+1 — 2udith + wliTRAAfFm wbiTht 1 = wliTh=1 /20t

wxTik+1 =(1+At/2 a)T-1 {fIxTi—1 (A)T2 /m +2ulxTk
—(1-A¢/2 @)udxTh—1 }

wyTk+1 =(14+A¢/2 )11 {flyThk—1 (A T2 /m +2ulyTk
—(1-A¢/2 @)ulyTi—1 }
OTk+1 =(1+A2 a)T-1 {TTk—1 AOT2 /7 +28Tk —(1-At/
2 a)fdTk—1}
adi =udith+1 — 2udith + Vi=udiTh+1 — wliTh—1 /2A¢
wlith—1 /(ML) T2 , ord

such that; Lxy
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E Dynamic relaxation for fluid flow in porous media:

d/0x (Kix 0h/ox )+3/0y (Kly dh/dy )+ d/0z (Klz dh/0z )+ s=c _T
oh/ot +pdT2 h/0tT2 [(—T{o}—7]
=
qg=0/0x (Kix 0h/ox )+3/0y (Kly dh/dy )+ d/0z (
Klzo0h/0z )+ s
v=0h/0t
g=cv+dv/ot

glot =Klx /(Ax )T2 [l — 2240 + 442 it +KLy /(Ay)T2 [hi3 — 2440 +414 [t +
Klz/(DAz)T2 [R5 — 2440 + A6 [t + slot

RHS=c/2 [vio, t+At/2 +vio, t—At/2 [+p/At [vio, t+
At/2 —vio, t—At/2 |

hlo, t+At =hlot +(At)vio, t+AL/2
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ﬁ Dynamic relaxation for fluid flow in porous media: (cont’d)

At<AtTc=1/2 ¢/[maxO0(Kix ,Kly ,Alz) | [minOJ(Ax,
Ay, Az) ]T2

w=2m/NAt (rad/s)

c=2pw
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% Dynamic relaxation for Solid Mechanics:

1-D problem (elastic problems) :

zz=Fow/0z

0zz/0z=p(0w /0t +K/At w )

22k Tr=E£/0z (Wik+1Tr —wlkTr)

ZZkTr —zzlk—1Tr /Az=p/At (W IkTr+1 —w lkTr)
+hkp/At 12 (WikTr+1 +w lklr)

wilkTr+1 =1/1+K/2 | 1—=K/2 )wlkTr +At/pAz
(zzlkTr —zzlk—1Tr )]
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% Dynamic relaxation for Solid Mechanics: (cont’d):

Stress/Strain relations:

xx=(A+2u)0u/dx +Adv/dy

vy= Adu/0x + (A+2u)dv/dy

xy=u(ou/dy +dv/ox )

Dynamic damped equilibrium equations:

p(Ou /ot +K/A\¢t. u )=0xx/0x +dxy/dy

p(0v /0t +K/At. v )=0xy/0x +yy/dy
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ﬁ Static Relaxation:

Simply, implicit solution for the same equations of motion and constitutive laws
based on contacts.

Two major profound aspects:
(1-) No consideration of viscous damping forces.
(2- ) Balance of forces for an object is considered
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ﬁ Static Relaxation (cont’d):

Awinli= —AulxTi sinali + AulyTi cosali

AwltTi=AulxTi cosali + AulyTi sinali

AFIxTi= —Kin (AulxTi sinali — AulyTi cosali )sinali + Kt (AulxTi cosali
+ AwlyTi sinali )cosali

AFLyTi= —Kin (AwdxTi sinali — AulyTi cosali )cosali + Kt (AulxTi cos
adi+ AulyTi sinali )sinali

36
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% Static Relaxation (cont’d):

[WI11 &KI12 &AL13 @KI21 &KI22 &AL23 @KhI31 &A132 &4U33 [{MAulxTc @AulyTc

(WAl xTc @AulyTc @AOTC }i=[Milll &kl12 &kI13 @Ki21 &KI22 &KI23 @KI31 ¢
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ﬁ Contact Types and Detection in DEM

Table 8.2 Types of contacts for 2D polygons and 3D polyhedral blocks \ N E—
< \<

Block shape Contact type Q \ : (B R
CcD co

General 2D polygons (convex or concave, singly Vertex-to-vertex ~—
or multiply connected) Vertex-to-edge > @
Edge-to-edge
Convex 3D polyhedra Vertex-to-vertex \ XO
Vertex-to-edge co

Vertex-to-face
Edge-to-edge
Edge-to-face
Face-to-face

Table 8.3 Contact types associated with the common plane

Number of vertices in Number of vertices in Contact types
contact, Block A contact, Block B
T 0 0 null
1 1 vertex-to-vertex
1 2 vertex-to-edge
1 >2 vertex-to-face
2 1 edge-to-vertex
2 2 edge-to-edge
2 >2 edge-to-face
>2 1 face-to-vertex
>2 2 face-to-edge
>2 >2 face-to-face

38
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Hand Calculation Example
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@ 4. Hand-Calculation Examples

The discrete element method (DEM) is a finite difference
scheme.

1-D examples:
1. Pendulum Motion

2. Heat Transfer

Strategy:
- Nonlinear becomes linear

« Continuous becomes discrete

40
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ﬁ Finite Difference Scheme

V(—At

- A method to approximate differential equation.

Forward difference u(x+hla_u(x)

Backward difference “(x)_;("‘h)

u(x+h)—u(x—h)
2h

Centered difference

 Make complex question simple

t 1—At t_lAt
(Hv =v"+a °

1
——At

e Transform nonlinear into linear

At

At

i Qu =u"+v 2

FAT t-AL/2 f

41
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@ 1-D Example (1): Simple Pendulum Motion

S S S S LSS S S Simple Pendulum Motion

| ‘\ . N
'~ frictionless

' ivot S
2 P Assumption:
g}q’ E ] No damping is considered
Y E
massive bob € |
N
mgsine \ \ CaICUIate
mgcose equilibrium 1. angular displacement 0
mg position 2. angular velocity w

3. angular acceleration o

42
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@  Fundamental Relations

angular velocity: @ =0 = ?)_?
: . 9’0 Ao

angular acceleration: ¢ =0 =— = ——

ot At

linear displacement: u = L6

linear velocity: v= L

linear acceleration: a = Lo

43
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& Newton’s 2" Law: F=ma

The only force for driving the motion:
(3) F=-mg-sin6

According to F=ma, we have:

(4) Lmot' =—mg -sin 0’

9%
ot”

L -gsinf =0
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@ PDiscrete time-step based equations:

By Forward Difference we get:

(5) a)t — wt—At _l_at—At At

(6) Gt — Gt—At _I_wt—At At

45
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3 Initial Conditions

VAV Ve ayevi

SN Bob is held at t=0 but
BN frictionless

released at t=0"

pivot
| Lo m=1kg
massive bob |
g=10m/s?
: [=Im
\ 19(0)=n/1 0
mgcoso equilibrium

position

46
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Calculation Results

Time step: At=0.01s

10

t 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
19 0.3142 0.3142 0.3139 0.3132 0.3123 0.3111 0.3095 0.3077 0.3055 0.3031
w 0 -0.039 -0.062 -0.093 -0.124 -0.154 -0.185 -0.215 -0.276 -0.306
o -3.090 -3.090 -3.087 -3.081 -3.073 -3.061 -3.046 -3.029 -3.001 -2.985
5 T T
4 m
3 -
2 _
= 1 -
N\_}
g 0 1
o - §
-2 -
-3 -
-4 .
1 1 1 1 - .5 1 1
2 4 6 8 10 = §
Time (sec; Time (sec)
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Time step: At=0.001s

t 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

19 0.3142 0.3142 0.3142 0.3141 0.3141 0.3141 0.3141 0.3141 0.3140 0.3140

w 0 -0.0031 0.0062 -0.0093 -0.0124 | -0.0155 -0.0185 -0.0216 -0.0247 -0.0278

o -3.0902 -3.0896 -3.0901 -3.0901 -3.0900 | -3.0899 -3.0897 -3.0896 -3.0893 -3.0891
04 T T T 4 T T T T
03 3t -
02} 2t -
01 F 1+ -

Nu
o} & o} i

01 b °at 1
02t -2} -
-03L -3
_04 1 1 1 _4 1 1 1 1

0 2 4 6 0 2 4 6 8 10

Time (sec; Time (sec;
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@ Numerical Solution vs. Analytical Solution
0 =A-cos(w,t+90)
0’0 , A=6,
L-?+gsm9=0 » 5 "
t a)o = — = —_—
T [

0.2

0.1

-0.1f

-0.2

-0.6

-0.31

—0.8 1 1 1 1 1 1 1 1 1 _0.4 1 1 1
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3

4
Time (sec) Time

I
5

(secﬁ)
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It is important to have the error within an
acceptable level!

Forward u(z + h) = u(z) + hu'(z) + %hzu”(:n) %hau"'(x) + .
Backward u(z — h) = u(z) — hv'(z) Hir* (z) | th°W"(z) + - -

\ J
[}

Truncation Error

The forward and backward diffqrence are both
first order accurate. Because {item} as a
leading error has first power of h, which is the
time interval (step) in this example.

50
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@ 1-D Example (2): Heat Transfer

Heat Transfer Within a Pyrolytic Graphite

) T =100°C
T =20°C l
|« >
Length=10 m

Assumptions:
The surface of the bar is perfectly thermally insulated.

51
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Consider the 1-D, transient heat conduction
equation without heat generating sources:

of o , dT
1) pc, — = —(k-—
| () pe, ot ax(k ax)
p: density

¢, heat capacity

k: thermal conductivity

T. temperature

x: distance

t: time

If we have constant density, heat capacity, thermal

conductivity over the model domain, we can simplify
the Eq. (1).
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of 0T
2) — =K
©) ot ox’
where: Kk = —— 1s the thermal diffusivity

pc,

The temperature here becomes a function of
space and time, which satisfies Eq. (2).




PENNSTATE  The first step use DEM is to construct a grid
@ with points (called discretization).

Boundary T=20°C

Domain T=20°C
A /CenterT 100°C \
N

n-2 . ® PY

w| nle o o 0 0 o o o o o o
£
= k-2 k-1 k+1 k+2  --------- >
n-1le o o o o 0 o o o o o
B N
o o 0 o o
—
< L
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ﬁ Time and Space Discretization

Forward difference approximation of Eq. (2):

aT Tnew churrent B Tkn+1 . Tkn B Tkn+1 . Tkn

O = =
tnew . tcurrent tn+1 . tn At

Tk’il - Tkn _ Tkn - Tkn—l
o°T o (0T Ax Ax
) === -
ox~ oJdx\ dx Ax
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Combine Eq. (3) and Eq. (4), we will get Eq. (5):

T" —2T; g
Tkn+1 — Tkn + K- At Tkt k 2+ Tk—l
(Ax)

K - At
let o= —, then

(Ax

T = (T, +T" )+ (1-20)T/

56
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Stability Condition:

(1-20)>0 and a=%>0

Physical Parameters:

Physical Meaning

L [m] 10 Length

kappa [m?/sec] le-3 Thermal Diffusivity

T. [°C] 100 Temperature of Central Point
T,[°C] 20 Temperature of Domain

T, [°C] 20 Temperature of Boundaries

tina [SEC] 1500 Total Time of Heat Conduction

57
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Physical Parameters:

Parameters Values Numerical Meaning

Number of Space Steps

kx
ax
nx

nt
dt

Calculation:

10
1

11
30
50

Space Step

Number of Gridpoints

Number of Time Steps

Time Step

(0 ln=l _In2 =3 n-d__|n=s ns |7
k=1 20 20 20 20 20 20 20

k=2
k=3
k=4
k=5
k=6

20
20
20
20
100

20
20
20
24
92

20
20
20.2
27.2
85.2

20

20.01
20.54
29.75
79.40

20.0005
20.0360
20.9740
31.7720
74.4350

20.0023
20.0811
21.4670
33.3652
70.1687

20.0061
20.1465
21.9926
34.6105
66.4884



Temperature Evolution
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@ oSummaryfrom these examples

1. Solving the right equations

» Use right/best equations that best describe the
physical laws.

2. Solving the equations right

» Appropriate initial/boundary conditions

e Control the numerical error and see how the output
depends on the input.

* Accuracy and stability.

62
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Numerical Example
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@ 5. Numerical Example

A DEM commercial software was used to develop the example models:

AGTek

Advanced Conveyor Technolagies

What it can do...
€ Model three-dimensional behavior of complex material flows

€ Analyze various material properties and fundamental parameters

64
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@ Model Proposed

Two groups of particle flow simulations:

» Dry and wet particle flow on declines
» Belt transport problem with dry and wet particles
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«— Dropbox

Geometry

PENNSTATE
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@ Particle Properties

> Particle-Particle Friction Coefficient
» Coefficient of Restitution
» Rotational Damping

> Particle-Particle Cohesion Factor
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@ Ratchet Effect

* Normally, virtual spring is
created when two particles
overlap

* Ratchet effect can create a
second spring to pull the two
particles back
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Liquid Bridge Effect

Moisture between two
particles

Small force applied on
this bridge

Bridge collapse when one
particle moves apart

Particle 1

Liquid Bridge

Particle 2
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Input Parameters

Wet Particles

Dry Particles

General Properties A
Particle-Particle Friction Coefficient (0-1) 0.30
Particle-Boundary Friction Coefficient (0-1) 0.20
Coefficient of Restitution (0.075-1) 0.150
Rotational Damping (0-10) 2.00

Ratchet Effect
Use RatchetEffect NO
Particle-Particle Cohesion Factor (0-0.25)
Particle-Boundary Cohesion Factor (0-0.25)

Liquid Bridge
Use Liquid Bridge NO

Surface Tensions (0.05 -0.501/mz)

Water Content (%)

Boundary Surface Tension Multiplier (0-10)

General Properties A
Particle-Particle Friction Coefficient (0-1) 0.85
Particle-Boundary Friction Coefficient (0-1) 0.75
Coefficient of Restitution (0.075-1) 0.100
Rotational Damping (0-10) 1.00

Ratchet Effect
Use RatchetEffect YES
Particle-Particle Cohesion Factor(0-0.25) 0.150
Particle-Boundary Cohesion Factor (0-0.25) 0.150
Liquid Bridge
Use Liquid Bridge YES
Surface Tensions (0.05 -0.503/m32) 0.50
Water Content (%) 15.0
Boundary Surface Tension Multiplier (0-10) 2.00
Equivalent Sphere Size Ratio 15.00

Equivalent Sphere Size Ratio

70
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@ Animation Results

Time = 0.00 sec Particle Velocity (m/s) > Time = 0.00 sec

Dry particles on 20 7o decline

Particle Velocity (m/s)
<«
00 10 20 30

Wet particles on 20 7o decline

40

71
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Animation Results

Time = 0.00 sec Particle Velocity (m/s) Time =0.00 sec

4 = . >

00 1.0 20 3.0 40 5.0

««««««

Dry particles on 30 7o decline

Particle Velocity (m/s)
0.0 10 20 30

Wet particles on 30 7o decline

72

40
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@ Animation Results

Time = 0.00 sec Particle Velocity (m/s)
4 - . >
0.0 1.0 2.0 30 4.0 5.0

Dry particles transport on belt with a velocity of 2m/s
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@ Animation Results
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@ 6. Example Applications

DEM has been used in many applications:

* Geophysics/Seismology
 Rock fracture
* Soil mechanics

* Ice blocks floating into bridge supports

* Industrial/commercial applications
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& Example 1

e Various cases of DEM simulation

https://www.youtube.com/watch?

v=y20tlge YaY&list=LL5LLRt-
U8nlyfRhpm5IBEHQ&index=2
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DEM results are much more than cartoons.

 The animations and videos are the visual display of a large

amount of data

* Particle data

- Position

- Stress

. Micro-cracks Acoustic emissions Momenttensors
- VEIOClty (black: tensile failure recorded (red : maximum pressuredirection
red :shearfailure) green: maximumtension direction)

e System boundary data

« All data is available to the user for further analysis
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What kind of problems can DEM predict?

* Plugging

* Material loss

* Material stagnation

e Dust production

* Wear on machine/structure
* Mixing

* Other inadequacies
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& Example 2

 Thermal flow simulation & melting simulation
in twin screw extruder

https://www.youtube.com/watch?
v=v4aMrxJOdUOQ
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& Example 3

* Rotating Bullet simulation

https://www.youtube.com/watch?

v=qFHWO0Q6wWRY8
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Thank you !




