How you like DEM apples

EGEE 520

By: Abby Kenigsberg
Ben Madara

What is DEM

- Discrete Element Method
- Particle Based
- Explicit Time Steps
- Useful for:
- Modeling Movement of Individual Particles
- Rotation of Particles
- Time Steps
- Progressive Failure
- Not Useful for:
- Complex Particle Geometries and Arrangements
- Roughness, Texture
- Grain Crushing, Particle Breakage
- Non-Idealized Contacts

Historical perspective

- First developed by Cundall in his 1971 thesis- "A computer model for simulating progressive largescale movements in blocky rock systems"
- Modeled the movement of particles as a collapse of cylinders and toppling of blocks
- Modified into a RBM (restricted Boltzmann machines) code (Cundall 1974), FORTRAN code (Cundall 1978), and a 3D model including fluid and pore pressure (Cundall and Hart 1985)
- Current Uses:

- Agriculture
- Food Transport
- Pharmaceutical
- Civil Engineering
- Powder Metallurgy
- Chemical Engineering

General Principles

- Newton's Second Law of Motion
- Force Displacement Law

> Force Displacement Laws (e.g. stiffness, friction)

Force Boundary
Conditions

Governing Equations

- DEM uses two types of governing laws:
- Force-Displacement Law
- Hooke's law, friction etc...
- Newton's Second Law of Motion

- $\mathrm{F}=\mathrm{MA}$
- Time Step
- Discrete
- Critical Time Step

DEM Process Flow

Hand Calculation

Time Step
$\Delta \mathrm{T}=\sqrt{ }(\mathrm{M} / \mathrm{K})$

Forces on Grains
$\Delta \mathrm{F}_{\mathrm{n}}=\mathrm{K}_{\mathrm{n}}(\Delta \mathrm{n})_{\mathrm{t} 1}=\mathrm{K}_{\mathrm{n}}(\mathrm{V})(\Delta \mathrm{t})$

Newton's Second Law
$\mathrm{F}=\mathrm{ma}$
$\ddot{X}=F_{(x)} / m$

Integrate to find velocity
$\dot{X}_{\mathrm{t} 2}=\left(\mathrm{F}_{\mathrm{x}} / \mathrm{m}\right) \Delta \mathrm{t}$

Integrate again to find relative displacements

$$
\begin{aligned}
& \left(\Delta \mathrm{n}_{(\mathrm{A})}\right)_{\mathrm{t} 2}=\left(\mathrm{v}-\left[\mathrm{F}_{(\mathrm{x})} / \mathrm{m}\right] \Delta \mathrm{t}\right) \Delta \mathrm{t} \\
& \left(\Delta \mathrm{n}_{(\mathrm{B})}\right)_{\mathrm{t} 2}=\left(\left[\mathrm{F}_{(\mathrm{x})} / \mathrm{m}_{(\mathrm{x})}\right] \Delta \mathrm{t}-\left[\mathrm{F}_{(\mathrm{y})} / \mathrm{m}_{(\mathrm{y})}\right] \Delta \mathrm{t}\right) \Delta \mathrm{t} \\
& \left(\Delta \mathrm{n}_{(\mathrm{C})}\right)_{\mathrm{t} 2}=([\mathrm{F}(\mathrm{y}) / \mathrm{m}(\mathrm{y})] \Delta \mathrm{t}-[-\mathrm{v}]) \Delta \mathrm{t}
\end{aligned}
$$

Pennstate Realistic Grain Orientation

Unit Vector-Normal Direction
$e_{i}=\left(y_{i}-x_{i}\right) / D=(\cos \alpha, \sin \alpha)$
Shear Direction
$\mathrm{t}_{\mathrm{i}}=\left(\mathrm{e}_{2},-\mathrm{e}_{1}\right)$

Velocity:
$\dot{X}_{i}=\left(\dot{x}_{i}-\dot{y}_{\mathrm{i}}\right)-\left(\dot{\theta}_{(\mathrm{x})} \mathrm{R}_{(\mathrm{x})}+\theta_{(\mathrm{y})} \mathrm{R}_{(\mathrm{y})}\right) \mathrm{t}_{\mathrm{i}}$

Velocity Components:

$$
\begin{aligned}
& \dot{n}=\dot{X}_{i} e_{i}=\left(\dot{x}_{i}-\dot{y}_{\mathrm{i}}\right) \mathrm{e}_{\mathrm{i}}-\left(\dot{\theta}_{(x)} \mathrm{R}_{(\mathrm{x})}+\dot{\theta}_{(\mathrm{y})} \mathrm{R}_{(\mathrm{y})}\right) t_{\mathrm{i}} \\
& \dot{\mathrm{~s}}=\dot{X}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}=\left(\dot{x}_{\mathrm{i}}-\dot{y}_{\mathrm{i}}\right) \mathrm{t}_{\mathrm{i}}-\left(\dot{\theta}_{(\mathrm{x})} \mathrm{R}_{(\mathrm{x})}+\dot{\theta}_{(\mathrm{y})} \mathrm{R}_{(\mathrm{y})}\right) \mathrm{t}_{\mathrm{i}} \mathrm{t}_{\mathrm{i}}
\end{aligned}
$$

Putting it all Together

Force-Displacement
$\Delta \mathrm{F}_{\mathrm{n}}=\mathrm{K}_{\mathrm{n}}(\Delta \mathrm{n})_{\mathrm{t} 1}$
$=\mathrm{K}_{\mathrm{n}}(\mathrm{V})(\Delta \mathrm{t})$
$=\mathrm{K}_{\mathrm{n}}\left[\left(\dot{\mathrm{x}}_{\mathrm{i}}-\dot{\mathrm{y}}_{\mathrm{i}}\right) \mathrm{e}_{\mathrm{i}}\right] \Delta \mathrm{t}$
$\Delta \mathrm{F}_{\mathrm{s}}=\mathrm{K}_{\mathrm{s}}\left[\left(\dot{\mathrm{x}}_{\mathrm{i}}-\dot{\mathrm{y}}_{\mathrm{i}}\right) \mathrm{t}_{\mathrm{i}}-\left(\dot{\theta}_{(\mathrm{x})} \mathrm{R}_{(\mathrm{x})}+\dot{\theta}_{(\mathrm{y})} \mathrm{R}_{(\mathrm{y})}\right) \Delta \mathrm{t}\right.$

Force Increment Sum
$\left(\mathrm{F}_{\mathrm{n}}\right)_{\mathrm{N}}=\left(\mathrm{F}_{\mathrm{n}}\right)_{\mathrm{N}-1}+\Delta \mathrm{F}_{\mathrm{n}} ;\left(\mathrm{F}_{\mathrm{s}}\right)_{\mathrm{N}}=\left(\mathrm{F}_{\mathrm{s}}\right)_{\mathrm{N}-1}+\Delta \mathrm{F}_{\mathrm{s}}$

Failure

$\left(\mathrm{F}_{\mathrm{s}}\right)_{\max }=\mathrm{F}_{\mathrm{n}} \tan \Phi_{\mu}+\mathrm{c}$
Damping-Contact
$\mathrm{C}_{\mathrm{n}}=\beta \mathrm{K}_{\mathrm{n}} ; \mathrm{C}_{\mathrm{s}}=\beta \mathrm{K}_{\mathrm{s}}$
Damping-Global
$\mathrm{C}=\alpha \mathrm{m}_{(\mathrm{x})} ; \mathrm{C}^{*}=\alpha \mathrm{I}_{(\mathrm{x})}$

Numerical Model

Input:

- Stiffness:
- K=0.002N/m
- Mass
- $1.5 \mathrm{e}-5 \mathrm{~kg}$
- Time Step
- 0.08s
- Velocity-initial
- $1 \mathrm{e}-5 \mathrm{~m} / \mathrm{s}$
- Radius
- 0.001 m

Output:

Time (\mathbf{s})	Displacement (\mathbf{m})	Velocity $(\mathbf{m} / \mathbf{s})$	Acceleration $\left(\mathbf{m} / \mathbf{s}^{\mathbf{2}}\right)$
0.1732	$-5.20 \mathrm{E}-06$	$4.00 \mathrm{E}-05$	$2.31 \mathrm{E}-04$
15.0688	-4.5621	0.3028	0.0201
29.7047	-34.947	1.1765	0.0396

Other Approaches

- Varying Contact Types
- Utilize Thousands of Grains
- Propagation and Mechanics of Fractures

Table 8.2 Types of contacts for 2D polygons and 3D polyhedral blocks

Block shape	Contact type
General 2D polygons (convex or concave, singly	Vertex-to-vertex
or multiply connected)	Vertex-to-edge
	Edge-to-edge
Convex 3D polyhedra	Vertex-to-vertex
	Vertex-to-edge
	Vertex-to-face
	Edge-to-edge
	Edge-to-face
	Face-to-face

ESyS-Particle

Input Parameters

Wet Particles

Dry Particles

General Properties	A
Particle-Particle Friction Coefficient(0-1)	0.85
Particle-Boundary Friction Coefficient (0-1)	0.75
Coefficient of Restitution (0.075-1)	0.100
Rotational Damping(0-10)	1.00
Ratchet Effect	YES
Use Ratchet Effect	0.150
Particle-Particle Cohesion Factor(0-0.25)	0.150
Particle-Boundary Cohesion Factor(0-0.25)	
Liquid Bridge	YES
Use Liquid Bridge	0.50
Surface Tensions (0.05 -0.50 J/m²)	15.0
Water Content (\%)	2.00
Boundary Surface Tension Multiplier(0-10)	15.00
Equivalent Sphere Size Ratio	

General Properties	A
Particle-Particle Friction Coefficient(0-1)	0.30
Particle-Boundary Friction Coefficient(0-1)	0.20
Coefficient of Restitution (0.075-1)	0.150
Rotational Damping (0-10)	2.00
Ratchet Effect	NO
Use Ratchet Effect	
Particle-Particle Cohesion Factor(0-0.25)	
Particle-Boundary Cohesion Factor(0-0.25)	
Liquid Bridge	NO
Use Liquid Bridge	
Surface Tensions (0.05-0.50 $\mathbf{~ J / m}$	
Water Content $\%$)	
Boundary Surface Tension Multiplier(0-10)	
EquivalentSphere Size Ratio	

Animation Results

Dry particles on 20 个o decline
Wet particles on 20 个o decline

Animation Results

Dry particles on 30 个o decline
Wet particles on 30 个o decline

PennState
Example Animations

L-shaped box and Funnel

Bruising on Pears

Fault Motion

国 PennState
Thank You!

