Distinct/Discrete Element Method

Clay Wood, Daulet Sagzhanov, Xuanchi Li
Outline

- **Introduction**
 - What is DEM?
 - Brief Historical Background
 - Advantages/Disadvantages
 - Applications Overview

- **Governing Equations**
 - Newtonian Mechanics
 - Surface/Material Interactions
 - General DEM Workflow

- **DEM Simulations**
 - 1D Hand Calculation
 - 2D Example

- **Applications**
 - Simple Shear
 - Granular Avalanche
 - Mixing Concrete
 - Grains Falling in Hopper
Introduction
Introduction: What is DEM?

Distinct / Discrete Element Method (DEM)

- a way of simulating discrete matter
- a numerical model capable of describing the mechanical behaviour of assemblies of discs and spheres
- a particle-scale numerical method for modeling the bulk behavior of granular materials and many geomaterials (coal, ores, soil, rocks, aggregates)
- capture dual nature of materials
CONTINUUM

- Continuous matter
- Occupies entire space
- Continuum Mechanics
- FEM

DISCRETE

- Dis-continuous matter
- Each particle is a unique quantity
- Material = assembly of particles
- DEM
Characteristic example

CONTINUUM

DISCRETE
Historical Background

Molecular Dynamics (MD)

1956
Alder and Wainwright

Discrete Element Method (DEM)

1979
Cundall and Strack
Advantages and Disadvantages of DEM

Advantages:
- Modeling Movement of Individual Particles
- Full stress and strain tensors can be measured
- Time Steps
- Progressive Failure

Disadvantages:
- Complex Particle Geometries and Arrangements
- Roughness, Texture
- Grain Crushing, Particle Breakage
- Non-Idealized Contacts
DEM Applications

- Civil Engineering (Geotechnical Engineering)
- Chemical Engineering
- Oil and gas production
- Geomechanics
- Mineral processing
- Biochemical Engineering
- Powder metallurgy
- Agricultural Industry
Governing Equations: Newtonian Mechanics

\[\mathbf{F}_{\text{trans}} = m \mathbf{u} \]

\[\sum_{i = 1}^{n_{\text{part}}} \mathbf{F}_{\text{trans}, i} + \mathbf{F}_{\text{rot}, i} = \mathbf{F}_{\text{tot}} \]

\[\mathbf{F}_{\text{rot}} = \mathbf{T} = I \omega \]
Governing Equations: Other Interactions

\[F_{\text{fric}} = \mu F_{\text{normal}} \]

\[F_{\text{spring}} = k \Delta x \]

Generalised Hooke’s Law

\[
\begin{align*}
\epsilon_x &= \frac{1}{E} \left[\sigma_x - \nu(\sigma_y + \sigma_z) \right] \\
\epsilon_y &= \frac{1}{E} \left[\sigma_y - \nu(\sigma_x + \sigma_z) \right] \\
\epsilon_z &= \frac{1}{E} \left[\sigma_z - \nu(\sigma_x + \sigma_y) \right]
\end{align*}
\]

Shear stress-strain relations

\[
\begin{align*}
\gamma_{xy} &= \frac{1}{G} \tau_{xy} \\
\gamma_{yz} &= \frac{1}{G} \tau_{yz} \\
\gamma_{xz} &= \frac{1}{G} \tau_{xz}
\end{align*}
\]
Governing Equations: Conservation of Momentum

\[F = m \, u \]

\[\sum F = 0 \]

\[F = k \, u \]

\[m \, u \, t + k \, u \, t = 0 \quad \Rightarrow \quad u \, t = -\frac{k \, u \, t}{m} \]
Governing Equations (cont-d):

- Numerical Integration:

 Update particle velocities and positions every time step.

 \[
 x(t + \Delta t) = x(t) + v(t)\Delta t \\
 v(t + \Delta t) = v(t) + a(t)\Delta t
 \]
Model Workflow

- Newton’s Second Law of Motion
- Force Displacement Law

Force Displacement Laws (e.g. stiffness, friction)

Force Boundary Condition

Newton’s Second Law of Motion

Displacement/Velocity Boundary Conditions
1D DEM
Hand Calculation Example (1-D DEM Example)

- 1-D Bouncing Ball Matlab Simulation
- Bouncing ball released from a height of 8m
- With air resistance particles are not assumed to be elastic
- Governing Equation

\[
F = \begin{cases}
mg & \text{for } x \geq 0 \\
mg - kx & \text{for } x < 0
\end{cases}
\]
Hand Calculation Example Continued, Matlab Code

clear, format compact

\[\text{height}=8; \quad % \text{Height in meters} \]
\[\text{v}_t=10; \quad % \text{Terminal velocity in meters per second} \]
\[g=9.8; \quad % \text{Gravitational Acceleration} \]
\[C_R=0.9; \quad % \text{Coefficient of restitution} \]
\[h(1)=% \text{Vertical height to release the ball from} \]
\[b=1; \quad % \text{Initialize bounce number} \]

\textbf{for} \text{ } b=1:8 \quad % \text{Loop through three bounces}

\[\text{v}_\text{impact}(b)=\text{v}_t\sqrt{1-\exp(-2g h(b)/(v_t^2))}; \]
\[\text{v}_r(b)=C_R \cdot \text{v}_\text{impact}(b) \cdot (1-0.01\cdot \text{rand}()); \]
\[h(b+1)=-((v_t^2)/g)\cdot \ln(\cos(\arctan(v_r(b)/v_t))); \]
\textbf{end}

\text{sprintf}('The height of the third bounce is \%0.3f meters.', h(4))

\[C_R = \frac{\text{v}_r}{\text{v}_i} \]
\[\text{v}_i = \text{v}_t \cdot \sqrt{1 - e^{\frac{-2gh}{v_t^2}}} \]

\[h_{\text{rebound}} = -\frac{\text{v}_t^2}{g} \cdot \ln(\cos(\tan^{-1}\frac{\text{v}_r}{\text{v}_t})) \]

\textbf{close all}
\textbf{plot}([0 length(h)],zeros(1,2),',k',',LineWidth',2) \% \text{plot the floor}
\textbf{hold on}
\textbf{ylim}([-0.05*height 1.2*height]); \% \text{set the vertical limits}
\% \text{Plot the first drop as a half parabola}
\text{traj}=@(x) h(1).*((x+0.5).*((x-0.5))./((0+0.5).*((0-0.5))));
\textbf{plot}(0:0.05:0.5,\text{traj}(0:0.05:0.5),',ro',',MarkerSize',15)
\% \text{Plot each bounce as a full parabola}
\textbf{for} \text{ } b=1:length(h)-1

\[\text{traj}=@(x) h(b+1).*((x-(b-0.5)).*((x-(b+0.5))./((b-(b-0.5)).*(b-(b+0.5)))); \]
\[\textbf{plot}((b-0.5):0.05:(b+0.5),\text{traj}(b-0.5):0.05:(b+0.5),',ro',',MarkerSize',15) \]
\textbf{end}
\textbf{title}('Solution of a Bouncing Ball');
\textbf{xlabel}('Time t');
\textbf{ylabel}('Vertical Position');
\textbf{legend}('Hand Calculation');
\[v_{\text{impact}} = [9.2690, 6.5921, 5.2813, 4.4716, 3.8854, 3.4507, 3.0959, 2.8033, 2.5628, 2.3651] \]

\[v_r = [8.7666, 6.2194, 4.9992, 4.2167, 3.6766, 3.2558, 2.9204, 2.6513, 2.4342, 2.2394] \]
2D DEM
2D DEM Example

Evolution of system of 25 particles

1. Particles have initial velocity tensor.
2. Particles fall, v_{initial} dominated by g.
3. Bouncing dictated by E (Young’s modulus) between particles and sides of box.
2D DEM Example

Evolution of system of 25 particles

1. Particles have initial velocity tensor.
2. Particles fall, v_{initial} dominated by g.
3. Bouncing dictated by E (Young’s modulus) between particles and sides of box.
% physical parameters → global definitions
n_part=25;
% number of particles
% initialize radius, mass, & gravity
global rad, rad(1:n_part)=0.5;
global m, m(1:n_part)=1;
global g, g=-9.81;
% Young’s modulus
global E, E=10000;
% size of “bounding box” → global definitions
global lmaxx, lmaxx=n_part/2+1;
global lminx, lminx=0;
global lmaxy, lmaxy=n_part/2+1;
global lminy, lminy=0;

% initialize positions and velocities
% random number generator
rng('shuffle','combRecursive');
% create/sort particle centers: x,y
r0_x=2*mod([1:n_part],5)+1;
r0_y=sort(r0_x);
% give each particle initial random velocity
v0_x=rand(size(r0_x))-0.5;
v0_y=rand(size(r0_y))-0.5;
% array of spatial vector components
y0(1:4:4*n_part-3)=r0_x;
y0(2:4:4*n_part-2)=v0_x;
y0(3:4:4*n_part-1)=r0_y;
y0(4:4:4*n_part)=v0_y;

% initialize positions and velocities
% set timescale for simulation (arb units)
t_end=5;
% create vector of time and particle position.
Use ode13 to solve function ‘dem2D’.
See ‘dem2D’ for details of particle physics
[t,y]=ode13('dem2D',[0:0.05:t_end],y0);
Define Physical Parameters:

- # particles
- Mass
- Radius
- Gravity
- Elasticity

% size of "bounding box" → global definition
\[
\text{global } I_{\text{maxx}}, I_{\text{maxy}} = \text{n_part}/2+1;
\]
\[
\text{global } I_{\text{minx}}, I_{\text{miny}} = 0;
\]
\[
\text{global } I_{\text{maxxy}}, I_{\text{maxy}y} = \text{n_part}/2+1;
\]
\[
\text{global } I_{\text{minxy}}, I_{\text{miny}y} = 0;
\]

% initialize positions and velocities
% random number generator
rng('shuffle','combRecursive');
% create/sort particle centers: x,y
r0_x = 2*mod([1:n_part],5)+1;
r0_y = sort(r0_x);
% give each particle initial random velocity
v0_x = rand(size(r0_x))-0.5;
v0_y = rand(size(r0_y))-0.5;
% array of spatial vector components
y0(1:4:4*n_part-3) = r0_x;
y0(2:4:4*n_part-2) = v0_x;
y0(3:4:4*n_part-1) = r0_y;
y0(4:4:4*n_part) = v0_y;

% initialize positions and velocities
% set timescale for simulation (arb units)
t_end = 5;
% create vector of time and particle position.
Use ode113 to solve function ‘dem2D’.
See ‘dem2D’ for details of particle physics
\[
[t,y] = \text{ode113}('\text{dem2D}', [0:0.05:t_end], y0);
\]
Define Physical Parameters:

- # particles
- Mass
- Radius
- Gravity
- Elasticity

Define System Size:

\((X,Y): 0 \rightarrow \text{#part/2 +1}\)

...% initialize positions and velocities% random number generatorrng('shuffle','combRecursive');% create/sort particle centers: x,yr0_x=2*mod([1:n_part],5)+1;r0_y=sort(r0_x);% give each particle initial random velocityv0_x=rand(size(r0_x))-0.5;v0_y=rand(size(r0_y))-0.5;% array of spatial vector componentsy0(1:4:4*n_part-3)=r0_x;y0(2:4:4*n_part-2)=v0_x;y0(3:4:4*n_part-1)=r0_y;y0(4:4:4*n_part)=v0_y;

% initialize positions and velocities% set timescale for simulation (arb units)t_end=5;% create vector of time and particle position.Use ode13 to solve function ‘dem2D’.See ‘dem2D’ for details of particle physics[t,y]=ode13('dem2D',[0:0.05:t_end],y0);
Define Physical Parameters:

- # particles
- Mass
- Radius
- Gravity
- Elasticity

Set Particle Position/Velocity:

create grid of particle centers, \(r0 \)
randomize velocities, \(v0 \)
\[y0 = [r0_{x1}, v0_{x1}, r0_{y1}, v0_{y1}, ...] \]

Define System Size:

\((X,Y): 0 \rightarrow \text{#part}/2 + 1\)

% initialize positions and velocities
% set timescale for simulation (arb units)
t_end=5;
% create vector of time and particle position.
Use ode113 to solve function ‘dem2D’.
See ‘dem2D’ for details of particle physics

\[[t,y]=\text{ode113}('dem2D',[0:0.05:t_end],y0); \]
Define Physical Parameters:
- # particles
- Mass
- Radius
- Gravity
- Elasticity

Define System Size:
(X,Y): 0 → #part/2 +1

Set Particle Position/Velocity:
create grid of particle centers, \(r_0 \)
randomize velocities, \(v_0 \)
\(y_0 = [r_{0x_1} v_{0x_1} r_{0y_1} v_{0y_1} \ldots] \)

Solve for \(u, \frac{du}{dt}, \frac{du^2}{dt^2} \) for each \(\Delta t \):
Define physical interactions as \(\text{physics_func} \)
solveODE(\(\text{physics_func} \), (\(t_0 \):\(\Delta t \):\(t_{\text{end}} \)), \(y_0 \))
→ \([t \ y]\)
\(y = [x_i \ x_i \ y_i \ y_i \ldots] \)
function [dydt]=dem2D(t,y);
 global m rad E lmaxx lmaxy lminx lminy lmax lmin g n_part
 a=zeros(2,n_part);
 for i_part=1:n_part
 r1=[y(4*i_part-3)
 y(4*i_part-1)]; % position of first particle
 rad1=rad(i_part);
 % Particle-Particle Interaction
 for j_part=i_part+1:n_part
 r2=[y(4*j_part-3)
 y(4*j_part-1)]; % position of second particle
 rad2=rad(j_part);
 if (norm(r1-r2)<(rad1+rad2))
 forcemagnitude=E*abs(norm(r1-r2)-(rad1+rad2));
 forcedirection=(r1-r2)/norm(r1-r2);
 f=forcemagnitude*forcedirection;
 a(:,i_part)=a(:,i_part)+f;
 a(:,j_part)=a(:,j_part)-f;
 end
 end
 end
 a(2,:)=a(2,:)+g;
 dydt=zeros(4*n_part,1);
 dydt(1:4:4*n_part-3)=y(2:4:4*n_part-2);
 dydt(2:4:4*n_part-2)=a(1,:)./m;
 dydt(3:4:4*n_part-1)=y(4:4:4*n_part);
 dydt(4:4:4*n_part)=a(2,:)./m;
 return

% Particle-wall Interaction
 if (r1(1)-rad1)<lminx
 a(1,i_part)=a(1,i_part)-E*((r1(1)-rad1)-lminx);
 end
 if (r1(1)+rad1)>lmaxx
 a(1,i_part)=a(1,i_part)-E*((r1(1)+rad1)-lmaxx);
 end
 if (r1(2)-rad1)<lminy
 a(2,i_part)=a(2,i_part)-E*((r1(2)-rad1)-lminy);
 end
 if (r1(2)+rad1)>lmaxy
 a(2,i_part)=a(2,i_part)-E*((r1(2)+rad1)-lmaxy);
 end
 a(2,:)=a(2,:)+g;
 dydt=zeros(4*n_part,1);
 dydt(1:4:4*n_part-3)=y(2:4:4*n_part-2);
 dydt(2:4:4*n_part-2)=a(1,:)./m;
 dydt(3:4:4*n_part-1)=y(4:4:4*n_part);
 dydt(4:4:4*n_part)=a(2,:)./m;
 return
2D DEM: “Particle Physics Engine”

Pull in global variables.
Create **accel** vector: [x-comp y-comp; 1 : #part]

populate list of particle radii = \(r_1 \)

populate list of adjacent particles radii = \(r_2 \)

If \(r_1 - r_2 < \) particle radius
- \(F_{mag} = \) Young’s Mod * amount of particle overlap
- \(F_{dir} = \) particle overlap / norm(particle overlap)
- \(F = F_{mag} * F_{dir} \)
- Populate **accel** vector

% Particle-wall Interaction
if \((r1(1)\text{-}rad1)<lminx\)
\[
a(1,i_part)=a(1,i_part)\cdot E*\((r1(1)\text{-}rad1)\text{-}lminx)\numix);
end
\]
if \((r1(1)\text{+}rad1)>lmaxx\)
\[
a(1,i_part)=a(1,i_part)\cdot E*\((r1(1)\text{+}rad1)\text{-}lmaxx)\numaxx);
end
\]
if \((r1(2)\text{-}rad1)<lminy\)
\[
a(2,i_part)=a(2,i_part)\cdot E*\((r1(2)\text{-}rad1)\text{-}lminy)\numix);
end
\]
if \((r1(2)\text{+}rad1)>lmaxy\)
\[
a(2,i_part)=a(2,i_part)\cdot E*\((r1(2)\text{+}rad1)\text{-}lmaxy)\numaxx);
end
\]
end
end
a(2,:)\text{=}a(2,:)+g;
dydt=\text{zeros}(4*n_part,1);
dydt(1:4\cdot n_part-3)\text{=}y(2:4\cdot n_part-2);
dydt(2:4\cdot n_part-2)\text{=}a(1,:)\text{/}m;
dydt(3:4\cdot n_part-1)\text{=}y(4:4\cdot n_part);
dydt(4:4\cdot n_part)\text{=}a(2,:)\text{/}m;
return
2D DEM: “Particle Physics Engine”

Pull in global variables.
Create **accel** vector: [x-comp y-comp; 1 : #part]

populate list of particle radii = r_1

populate list of adjacent particles radii = r_2

If $r_1 - r_2 < $ particle radius
- $F_{mag} = $ Young’s Mod * amount of particle overlap
- $F_{dir} = $ particle overlap / norm(particle overlap)
- $F = F_{mag} * F_{dir}$
- Populate **accel** vector

Particle-wall interaction:

If particle center – particle radius < wall coordinate
- $F_{mag} = $ Young’s Mod * amount of particle overlap
- $F_{dir} = $ particle overlap / norm(particle overlap)
- $F = F_{mag} * F_{dir}$
- Repopulate **accel** vector

Add g to all **accel**, & / particle mass

Populate dydt vector = $\left[x_i \dot{x}_i y_i \dot{y}_i \ldots \right]$
2D DEM: High E
2D DEM: Low E
2D DEM Example: Limitations

Made the following assumptions/simplifications:

- No dissipative forces
 - Friction: (Amontons’ Law or Hertzian Contact Theory)
 - Ambient fluid resistance (air/liquid)
- No particle rotation
 - Would need to calculate torque, moment of inertia...
Applications: Real Systems
Applications: Shearing Jammed Granular System
Applications: Granular Avalanche
Applications: Granular Force Networks
Applications: Concrete Mixing

Simulation – Concrete mixing
Applications: Grains Falling into Hopper
Applications: Real Systems

OBSS 3
Vessel: Brave Wind
Coal Type: Walkworth Steam
Date: 09/06/09

Helix DEM Chute Design - www.helixtech.com.au
Thank you
Citations

Slides 5-7&13: Diagrams from EDM™ Webinar

1D DEM: adapted from MATLAB “Bouncing Ball” Example

2D DEM: adapted from “Understanding the Discrete Element Method”, Matuttis, H., Chen, J.

Slide 34: https://www.youtube.com/watch?v=ruFsRGAw2Rw

Slide 37: SimulationLABWeimar, https://www.youtube.com/watch?v=2szJ38qcZro

Slide 38: https://www.youtube.com/watch?v=3EbE45qGG6s

Extras...
Governing Equations:

DEM uses two types of governing laws:

- Newton’s Second Law of Motion
 \[F = MA \]

- Force-Displacement Law
 Hooke’s law, friction etc…

- Time Step