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Introduction  

Lattice Boltzmann Method is a dynamic method that simulates the macroscopic behavior 

of fluids by using a simple mesoscopic model. It inherited the main principles of Lattice 

Gas Automaton (LGA) and made improvements. From lattice gas automaton, it is possible 

to derive the macroscopic Navier-Stokes equations. 	



Introduction  

Specialty of Lattice Boltzmann Method & Difference from the traditional macroscopic 
numerical calculation method: 
  
1.  It is based on and starts from Non-equilibrium statistical mechanics and Discrete model 
 
2. It connected dynamic lattice model, whose time, space and velocity phase space are fully 
discrete, with  Boltzmann equation. 
 
3. The implementation of this method can describe the law of fluid motion without  
Solving Navier-Stokes equations  
  
 



Introduction  

Achievements of Lattice Boltzmann method from a macroscopic perspective  
 
1. It connected macroscopic and microscopic world; 
 
2. It connected continuous model and discrete model 
 
3. It is an all-new perspective to understand the nature of fluids. 
 
All in all, its successful application reflect a fundamental principle of scientific research. 
That is, conservation is the most fundamental law in the material world, which guides the 
movement and development of the material world. There are certain internal links between 
the macroscopic and microscopic world, which is in fact a dialectical unity. 
 



Introduction  
Compare LBM with CFD 
 

LBM     vs.    CFD (traditional) 

     CFD(traditional): Computational Fluid Dynamics, including Navier-
Stokes equations , Euler equation, Burnett equation. 

  
  LBM: Lattice-Boltzmann method	



Introduction  

The extent of gas rarefaction refers to the ratio of the average free path of gas 
molecule to the characteristic length. 
 
 
The Knudsen number ( ​k↓n ) represents:​   𝑘↓𝑛 = ​𝜆/𝐿  
 
𝜆 is the average free path of gas molecule; 
L is the characteristic length. 
 
 
The following figure will show that different CFD equations could be applied 
to different ranges of  ​𝑘↓𝑛 . 
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Introduction  

Compared with traditional computational fluid dynamics methods, Lattice-Boltzmann method has the 
following advantages: 
 
(1)  Its algorithm is simple, which can simulate various complicated nonlinear macroscopic phenomena; 
 
(2) It can handle complicated boundary conditions 
 
(3) The values of pressure in the lattice Boltzmann method can be directly solved by the state equation; 
 
(4) It is easy to program, and the processing before and after calculation is also very simple 
 
(5) It is easy to process and complete the parallel tasks based LBM; 
 
(6) It can directly simulate connected-domain flow fields with complex  
geometric boundaries, such as porous media. 



Historical Perspective 
 

Ludwig Eduard Boltzmann (February 20, 1844 
– September 5, 1906) was an Austrian physicist 
and philosopher whose greatest achievement 
was in the development of statistical mechanics, 
which explains and predicts how the properties 
of atoms (such as mass,  charge, and structure) 
determine the physical properties of matter (such 
as viscosity, thermal conductivity, and diffusion).	
 
 
	



Historical Perspective 

 	



LBM Derivation 

Novier-stokes	equation	

LBE	Boltzmann	equation	
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Historical Perspective 

The Lattice gas model meaning: 
 

Ø  to establish a simple model as far as possible to be able to simulate a system 
consisting of a large number of particles;  

 
Ø  reflecting the true collision of granules, so that we can get the fluid Macro 

features for a long time. 
 



Historical Perspective 

J·Hardy, Y·Pomeau and O·Pazzis (1973)-HPP Model 	

 

 

U·Frish, Y·Pomeau and B·HassIacher (1986)-FHP Model 	

 

 

McNamara and Zanetti(1988)-LB Model	

 

 

	Non-Galilean	invariance!!	

	Only	Four	Direction!!	

	Still	improving	!!	



Historical Perspective 

Lattice Gas Automata (LGA,1992): 	

•  Type of cellular automation used to simulate fluid flow	

•  Precursor to the Lattice Boltzmann Methods	
 

Disadvantages:	

•  Lack of Galilean invariance	

•  Statistical noise 	

•  Difficulty in expanding the model to handle three dimensional problems	



Why Lattice Boltzmann method? 

Simplicity	and	efficiency	
	
ü  When	solving	compressible	Navier-Stokes	equations,	 LBM	resembles	a	pseudo-compressible	method,	

increasing	its	simplicity	and	extensibility	through	artificial	compressibility.	
	
ü  Similar	pseudo-compression	method,	LBM	does	not	involve	Poisson	equation	
	
ü  Most	of	the	calculations	in	LBM	are	local	and	more	suitable	for	parallel	
	
Ø  LBM	requires	a	lot	of	memory	to	store	the	distribution	function,	which	is	also	the	main	bottleneck	of	

LBM	
	
Ø  The	nature	of	LBM	is	time-dependent,	so	calculating	steady	flow	is	not	particularly	efficient	



Geometry 
ü  LBM is well suited for mass-conservative fluid simulation of complex boundaries (e.g. 

porous media) 
ü  LBM can well realize mass-conserving mobile boundary problems and it is very attractive 

for soft material simulation 
Thermal effect 

ü  Thermal disturbances originate from the microscopic and average macroscopic, LBM 
includes them in the mesoscopic description 

Ø  Simulation of energy conservation in LBM is not straightforward 
Sound generation 

Ø  LBM is not suitable for direct simulation of long-distance acoustic transmission under real 
adhesion 

Ø  LBM does not adapt to strong compressible (eg ultrasonic and transonic) fluids 
 

Why Lattice Boltzmann method? 



Multiphase flow and multicomponent flow 
 

ü  Many methods for solving multiphase flow and multicomponent flow using LBM 
ü  LBM is suitable for simulation of multi-phase flow and multi-component flow in complex 

boundary 
Ø  The lattice-based method has the existence of spurious currents between fluid-fluid interface 
Ø  The current multiphase flow and multicomponent flow methods of LBM do not make good 

use of the kinetics principle. 
Ø  In the simulation of multi-phase flow and multi-component flow, the values ​ ​of viscosity and 

density are limited. 
 

Why Lattice Boltzmann method? 



General Principles 



General Principles 

Lattice Gas Automata (LGA) 

C3	

C1	

C2	

C4	

C5	
C6	



General Principles 

https://www.youtube.com/watch?v=8qorVDJS1QA&t=314s	



General Principles 

Lattice Gas Automata (LGA) 

Single-Particle	Distribution	Function	
(Boolean	Variables)	

Averaged	Particle	Distribution	
(Mesoscopic	Variables)	



General Principles 

Lattice Arrangement 

DnQm	

D3Q15	

ωi	=	4/6,	1/6,	
1/6	

ωi	=	2/6,	1/6*4	ωi	=	1/4	



General Principles 

Bounce Back 
Good	For	Porous	Media	



Governing Equation 

​𝑑𝑓/𝑑𝑡 =�(𝑓) 	
Boltzmann Transport Equation 



Governing Equation 

The Bhatnagar, Gross, Krook and Welander (BGKW) Approximation 



Governing Equation 

LBM	Equation	

After	discretizing	

Streaming	 Collision	



Governing Equation 

Chapman-Enskog Expansion 



Governing Equation 

Relative to Macroscopic View 



Hand-Calculation Example 
 

1.  Our calculation example is a long pipeline of oil, whose initial pressure 
is zero (t=0; P=0). 

 
2. The pressure of the pipeline’s left boundary changes to one (P=1) when 
time goes by (t>0). 
 
3.This example is aimed to simulate the pressure variations of the whole 
pipeline as time goes by. 
 
4. This example is based on this assumption that the surroundings outside 
the pipeline have no influences on the pipeline’s pressure changes. 

Model & Example Introduction  



Hand-Calculation Example 
 

Model & Example Introduction  

Our example could be processed and  regarded  as D1Q3 model 
 
1.  For this example,  it would obey this following equation : 
​𝝏𝑷/𝝏𝒕 =𝜶​​𝝏↑𝟐 𝑷/𝝏​𝒙↑𝟐  	
	
        In addition, it is feasible to set that : 
𝜶= ​𝑨​𝒌↓𝒇 /​𝝁↓𝒈 ​𝒄↓𝒈 ​𝑽↓𝒃 ​𝑪↓𝒕  =𝟏/𝟑	
 
  



Hand-Calculation Example 
 

Model & Example Introduction  

For this D1Q3 model, it has following character and definition: 
 
1. In this model, each element has corresponding distribution functions, 
the weight factors corresponding to the distribution function ​𝑓↓0,    ​𝑓↓1,   ​𝑓↓2  	
are showed below: 

 ​𝒘↓𝒐 = ​𝟒/𝟔 ;     ​   𝒘↓𝟏 = ​𝟏/𝟔  ;      ​𝒘↓𝟐 = ​𝟏/𝟔    	
2. The velocity vectors are defined as follow: 
​𝑪↓𝟎 =𝟎;       ​𝑪↓𝟏 =𝟏;        ​𝑪↓𝟐 =−𝟏	
3. The displacement and time interval are defined as follow: 
∆𝒕=𝟏;      ∆𝒙=𝟏	
 
	
 
	
 



Hand-Calculation Example 
 

The flow chart of hand-calculation  



Hand-Calculation Example 
 

Initialization  

1.  Initialize macroscopic properties : 

As assumed before, when time goes by, the pressure of the left boundary is one 
(PBoundary=1)  
 
 
2.Start the iteration calculation with suitable initialization of distribution function: 
 
For this case, distribution function ​𝑓↓𝑖  is set as ​𝑤↓𝑖  in first element, and in the second and 
third elements distribution function ​𝑓↓𝑖  set as ​𝐶↓𝑖  initially. 
 
 
 
  



Hand-Calculation Example 
 

Initialization Calculation------Equilibrium Distribution  Function Calculation  
As initialization: 
​𝑓↓0 (1,0)= ​4/6 ;​𝑓↓1 (1,0)=​1/6 ;​𝑓↓2 (1,0)=​1/6 ;	
Because,  
𝑃(𝑥,𝑡)=∑𝑖=1↑3▒​𝑓↓𝑖 (𝑥,𝑡)  
So, 

𝑃(1,0)= ​𝑓↓0 (1,0)+​𝑓↓1 (1,0)+​𝑓↓2 (1,0)=1; 
In addition, the same as the process above: 



​𝑓↓0 (2,0)=0;​𝑓↓1 (2,0)=1;​𝑓↓2 (2,0)=−1;	
​𝑓↓0 (3,0)=0;​𝑓↓1 (3,0)=1;​𝑓↓2 (3,0)=−1;	

	
Therefore: 
	
𝑃(2,0)=0;𝑃(3,0)=0	



Hand-Calculation Example 
 

Initialization Calculation------Equilibrium Distribution  Function Calculation  
Because,  
​𝒇↓𝒊↑𝒆𝒒 (𝒙,𝒕)= ​𝒘↓𝒊 𝑷(𝒙,𝒕)	
So,	

	 ​𝒇↓𝟎↑𝒆𝒒 (𝟏,𝟎)= ​𝒘↓𝟏 ×𝑷(𝟏,𝟎)= ​𝟒/𝟔 ×𝟏= ​𝟒/𝟔 ;		
	

In the same way, the following the result values of equilibrium distribution function could be obtained: 
 

​𝒇↓𝟏↑𝒆𝒒 (𝟏,𝟎)= ​𝟏/𝟔 ;	 ​𝒇↓𝟐↑𝒆𝒒 (𝟏,𝟎)= ​𝟏/𝟔 ; 
 

​𝒇↓𝟎↑𝒆𝒒 (𝟐,𝟎)= ​𝒇↓𝟏↑𝒆𝒒 (𝟐,𝟎)= ​𝒇↓𝟐↑𝒆𝒒 (𝟐,𝟎)=0;	
	

​𝒇↓𝟎↑𝒆𝒒 (𝟑,𝟎)= ​𝒇↓𝟏↑𝒆𝒒 (𝟑,𝟎)= ​𝒇↓𝟐↑𝒆𝒒 (𝟑,𝟎)=0; 
 
 
	



Hand-Calculation Example 
 

Collisions Calculations 
1.  When calculate collisions, the following equation is obeyed: 

​𝑓↓𝑖↑∗ (𝑥,𝑡)=(1-𝜔) ​𝑓↓𝑖 (𝑥,𝑡)+𝑤​𝑓↓𝑖↑𝑒𝑞 (𝑥,𝑡)	
	
This model uses BGK Approximation for the collision calculation . 
For this example, 
∵𝛼=𝜏− ​∆𝑡/2 = ​1/3 ; ∆𝑡=1; 𝜔= ​∆𝑡/𝜏 ;  
∴	𝜔= ​6/5  
Therefore, 
​𝑓↓0↑∗ (1,0)=(1− ​6/5 )× ​𝟒/𝟔 + ​6/5 × ​𝟒/𝟔 = ​2/3 ; 
​𝑓↓1↑∗ (1,0)=(1− ​6/5 )× ​𝟏/𝟔 + ​6/5 × ​𝟏/𝟔 = ​1/6 ; 
​𝑓↓2↑∗ (1,0)=(1− ​6/5 )× ​𝟏/𝟔 + ​6/5 × ​𝟏/𝟔 = ​1/6 ; 
 



Hand-Calculation Example 
 

Collisions Calculations 

In the same way, the following values could be calculated: 
​𝑓↓0↑∗ (2,0)=(1− ​6/5 )×0+ ​6/5 ×0=0; 
​𝑓↓1↑∗ (2,0)=(1− ​6/5 )×1+ ​6/5 ×0=− ​1/5 ; 
​𝑓↓2↑∗ (2,0)=(1− ​6/5 )×−1+ ​6/5 ×0= ​1/5 ; 
And, 
​𝑓↓0↑∗ (3,0)=(1− ​6/5 )×0+ ​6/5 ×0=0; 
​𝑓↓1↑∗ (3,0)=(1− ​6/5 )×1+ ​6/5 ×0=− ​1/5 ; 
​𝑓↓2↑∗ (3,0)=(1− ​6/5 )×−1+ ​6/5 ×0= ​1/5 ; 
 
	



Hand-Calculation Example 
 

Streaming Calculations 
 When calculate streaming, the following equation is obeyed:	

​𝑓↓𝑖 (𝑥+ ​𝑐↓𝑖 ∆𝑡, 𝑡+∆𝑡)= ​𝑓↓𝑖↑∗ (𝑥,𝑡)	
​𝑪↓𝟎 =𝟎;       ​𝑪↓𝟏 =𝟏;        ​𝑪↓𝟐 =−𝟏	
	
	
Therefore, 
​𝑓↓0 (1,1)= ​𝑓↓0↑∗ (1,0)= ​2/3 ;	
​𝑓↓0 (2,1)= ​𝑓↓0↑∗ (2,0)=0;	
​𝑓↓0 (3,1)= ​𝑓↓0↑∗ (3,0)=0;	
Similarly, 
	
​𝑓↓1 (3,1)= ​𝑓↓1↑∗ (2,0)=− ​1/5 ;	
​𝑓↓1 (2,1)= ​𝑓↓1↑∗ (1,0)= ​1/6 ;	

​𝑓↓1 (1,1)= ​𝑓↓1↑∗ (1,0)= ​1/6 ; (Boundary	Condition)	
	



Hand-Calculation Example 
 

Streaming Calculations 
 

Similarly, 
​𝑓↓2 (3,1)= ​𝑓↓2↑∗ (3,0)= ​1/5 ;	

	 ​𝑓↓2 (2,1)= ​𝑓↓2↑∗ (3,0)= ​1/5 ;	
​𝑓↓2 (1,1)= ​𝑓↓2↑∗ (1,0)= ​1/6 ; (Boundary Condition)	
	

Because they are under boundary condition: 
 
​𝑓↓1 (1,1)= ​𝑓↓1↑∗ (1,0)= ​1/6 ; (Boundary Condition)	
​𝑓↓2 (1,1)= ​𝑓↓2↑∗ (1,0)= ​1/6 ; (Boundary Condition)	
	
 



Hand-Calculation Example 
 

Re-Calculation of Macroscopic Properties  
As presented above: 
𝑃(𝑥,𝑡)=∑𝑖=1↑3▒​𝑓↓𝑖 (𝑥,𝑡) 	
Submit the latest value of ​𝑓↓𝑖 (𝑥,𝑡) into this equation,  
Therefore, 
𝑃(1,1)= ​𝑓↓0 (1,1)+​𝑓↓1 (1,1)+​𝑓↓2 (1,1)= ​2/3 + ​1/6 + ​1/6 =1; 
 
𝑃(2,1)= ​𝑓↓0 (2,1)+​𝑓↓1 (2,1)+​𝑓↓2 (2,1)=0+0+​1/5 =​1/5 ; 
 
𝑃(3,1)= ​𝑓↓0 (3,1)+​𝑓↓1 (3,1)+​𝑓↓2 (3,1)=0−​1/5 + ​1/5 =0; 
 
	



Hand-Calculation Example 
 Re-Calculation------Equilibrium Distribution  Function Calculation 

As	presented	above: 
​𝒇↓𝒊↑𝒆𝒒 (𝒙,𝒕)= ​𝒘↓𝒊 𝑷(𝒙,𝒕)	
​𝒘↓𝒐 = ​𝟒/𝟔 ;     ​   𝒘↓𝟏 = ​𝟏/𝟔  ;      ​𝒘↓𝟐 = ​𝟏/𝟔    	
Submit the latest value of 𝑷(𝒙,𝒕)  into this equation, therefore: 
​𝒇↓𝟎↑𝒆𝒒 (𝟏,𝟏)= ​𝒘↓𝟎 𝑷(𝟏,𝟏)= ​𝟒/𝟔 ×𝟏= ​𝟒/𝟔  
​𝒇↓𝟏↑𝒆𝒒 (𝟏,𝟏)= ​𝒘↓𝟏 𝑷(𝟏,𝟏)= ​𝟏/𝟔 ×𝟏= ​𝟏/𝟔  
​𝒇↓𝟐↑𝒆𝒒 (𝟏,𝟏)= ​𝒘↓𝟐 𝑷(𝟏,𝟏)= ​𝟏/𝟔 ×𝟏= ​𝟏/𝟔  
Similarly: 
​𝒇↓𝟎↑𝒆𝒒 (𝟐,𝟏)= ​𝒘↓𝟎 𝑷(𝟐,𝟏)= ​𝟒/𝟔 × ​𝟏/𝟓 = ​𝟐/𝟏𝟓  
​𝒇↓𝟏↑𝒆𝒒 (𝟐,𝟏)= ​𝒘↓𝟏 𝑷(𝟐,𝟏)= ​𝟏/𝟔 × ​𝟏/𝟓 = ​𝟏/𝟑𝟎  
​𝒇↓𝟐↑𝒆𝒒 (𝟐,𝟏)= ​𝒘↓𝟐 𝑷(𝟐,𝟏)= ​𝟏/𝟔 × ​𝟏/𝟓 = ​𝟏/𝟑𝟎  
 



Hand-Calculation Example 
 

Re-Calculation------Equilibrium Distribution  Function Calculation 
And similarly: 
​𝒇↓𝒊↑𝒆𝒒 (𝒙,𝒕)= ​𝒘↓𝒊 𝑷(𝒙,𝒕) 
 
​𝒇↓𝟎↑𝒆𝒒 (𝟑,𝟏)= ​𝒘↓𝟎 𝑷(𝟑,𝟏)= ​𝟒/𝟔 ×𝟎=𝟎 
​𝒇↓𝟏↑𝒆𝒒 (𝟑,𝟏)= ​𝒘↓𝟏 𝑷(𝟑,𝟏)= ​𝟏/𝟔 ×𝟎=𝟎 
​𝒇↓𝟐↑𝒆𝒒 (𝟑,𝟏)= ​𝒘↓𝟐 𝑷(𝟑,𝟏)= ​𝟏/𝟔 ×𝟎=𝟎 
 
 
 
That is a whole process of one iteration, aiming to obtain the final result, more iterations 
are needed, here is just an example. When the latest macroscopic properties are pretty 
closed to the previous macroscopic result, get out of the iterations and output the final 
result.  
 
 
 
 
	



Matlab Implementation 

Define Velocity Vector  



Matlab Implementation 

%  D2Q9 LATTICE CONSTANTS 
t = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36]; 
Cx= [0, 1, 0, -1, 0, 1, -1, -1, 1];	
Cy= [0, 0, 1, 0, -1, 1, 1, -1, -1];	
Opp=[1, 4, 5, 2, 3, 8, 9, 6, 7]; 
col = [2:(ly-1)];	
[y,x]= mesggrid(1:ly,1:lx);	
obst = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2; 	
obst(:,[1,ly]) = 1;	
bbRegion = find(obst);	
 	
% INITIAL CONDITION: (rho=0, u=0) ==> fIn(i) = t(i)	
fIn = reshape( t' * ones(1,lx*ly), 9, lx, ly);	
 	
 



Matlab Implementation 

% MAIN LOOP (TIME CYCLES)	
for cycle = 1:maxT	
 	
% MACROSCOPIC VARIABLES	
rho = sum(fIn); % Density 	
Ux = reshape ( ...	
(cx * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho; 	
Uy = reshape ( ...	
(cy * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho 	



Matlab Implementation 

% MACROSCOPIC (DIRICHLET) BOUNDARY 
CONDITIONS	
% Inlet: Poiseuille profile 	
L = ly-2; y = col-1.5;	
ux(:,1,col) = 4 * uMax / (L*L) * (y.*L-y.*y); 	
uy(:,1,col) = 0； 
rho(:,1,col) = 1 ./ (1-ux(:,1,col)) .* ( ...          sum(fIn([1,3,5],
1,col)) + 2*sum(fIn([4,7,8],1,col))  );	
 
% Outlet: Zero gradient on rho/ux 	
rho(:,lx,col) = rho(:,lx-1,col); 	
uy(:,lx,col) = 0;	
ux(:,lx,col) = ux(:,lx-1,col);	



Matlab Implementation 

% COLLISION STEP	
 
for i=1:9	

cu = 3*(cx(i)*ux+cy(i)*uy); 	
fEq(i,:,:) = rho .* t(i) .* ...	
( 1 + cu + 1/2*(cu.*cu) ...	
-3/2*(ux.^2+uy.^2) );	
 fOut(i,:,:) = fIn(i,:,:) - ...	
omega .* (fIn(i,:,:)-fEq(i,:,:));	

end	
	



Matlab Implementation 

% MICROSCOPIC BOUNDARY CONDITIONS	
for i=1:9	
 

% Left boundary	
fOut(i,1,col) = fEq(i,1,col) + ...	
18*t(i)*cx(i)*cy(i)* ( fIn(8,1,col) - ...	
fIn(7,1,col)-fEq(8,1,col)+fEq(7,1,col) );	
 
  % Right boundary 	
fOut(i,lx,col) = fEq(i,lx,col) + ...	
18*t(i)*cx(i)*cy(i)* ( fIn(6,lx,col) - ...	
fIn(9,lx,col)-fEq(6,lx,col)+fEq(9,lx,col) ); 
	
% Bounce back region	
fOut(i,bbRegion) = fIn(opp(i),bbRegion);	

 
end	



Matlab Implementation 
% STREAMING STEP	
 
for i=1:9	

fIn(i,:,:) = ...	
circshift(fOut(i,:,:), [0,cx(i),cy(i)]);	

end 
% VISUALIZATION	
if (mod(cycle,tPlot)==0)	

u = reshape(sqrt(ux.^2+uy.^2),lx,ly); 
u(bbRegion) = nan;	
imagesc(u');	
axis equal off; drawnow 

end	
end 
%	end	main	loop	



Results   



Other simulation  



Flow around moving boundary 



Field Application 

•  Stimulate Material crystal condensation and diffusion	

•  Application of urban development planning 

 



Stimulation Changing Process 
 
 

Simulate rules of the surface growth process, the 
probability cellular automata rules of the model 
forest fire, and the sand pile rules, even simulating 
the basic accumulation and collapse of particles like 
sand grains.	
 
This method has been widely used in studying the 
recrystallization of metallic materials and dendritic 
growth of metal solidification process .	



Field Application 
 

Application of Lattice-Boltzmann method:	
 
1. Land-cover variations	
 

2. Human-land relationships	
 
3. Urban development planning	
 

The lattice Boltzmann method is based on the same idea of cellular automata.	



Field Application 
 

Fig. Numerical simulation of the different forms of the rock cranny	

Fig. The arching phenomenon in crowd pedestrian flow	

Fig. Simulation result on things of one kind come together	



Thank You! 




