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1 Introduction

Transport equations (for heat, mass, momentum) can be 
simulated on different scales.

Micro-Scale Macro-Scale

• Models each individual particle

• Behavior governed by Hamilton’s equation

• Too much data to handle in order to 
simulate a problem that is interesting.

• Would need to know position and velocity of 
each molecule

• One liter of air contains 1022 molecules

• Partial differential equations 
(PDE) such as Navier-Stokes 
are used

• Can be solved using numerical 
schemes

• Finite Difference Method 
(FDM)

• Finite Volume Method (FVM)
• Finite Element Method (FEM)



1 Introduction

Where does Lattice-Boltzmann Method lie? 

• Lattice-Boltzmann method is used to model on a scale that lies between micro and macro which is called mesoscopic 
scale.

• Considers the behavior of a collection of particles as a unit

• LBM is based on microscopic models and mesoscopic kinetic equations

• The property of the collection of particles is represented by a distribution function that is derived from the Boltzmann 
equation Image source: Igor Mele



1 Introduction

The Differences

Table source: Igor Mele



1 Introduction

LBM Advantages

• Ideal for parallel computing since the solutions are localized and the problem can be broken down to 
be solved by multiple computers simultaneously (computational clusters)

• Can be applied to micro-scale fluid flow problems since the Boltzmann equation is kinetic-based and 
the physics associated with molecular level interactions can be incorporated more easily

• Complex geometry, physics, and flow phenomena is not an issue

• Can efficiently model multi-phase flow



1 Introduction

LBM Disadvantages

• High memory is required and in many cases, the memory access 
can be more time consuming than performing arithmetic 
operations
• Modeling a problem with 8x8 points requires 8x8x9=576 variables

• The time-dependent Lattice Boltzmann Method is inefficient for 
solving steady-state problems, because its speed of convergence 
is dictated by acoustic propagation, which is very slow

• Standard models only work with Mach numbers up to ~0.2

• Largest pressure changes supported are of the order 𝛿𝛿𝛿𝛿
𝑃𝑃

~𝑀𝑀𝑎𝑎2

• Modeling larger pressure gradients requires modeling external forces 
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 = −∇𝑃𝑃

Image source: Bastien Chopard



2 Historical Perspective: Overview

Fundamentals
• Maxwell-Boltzmann Distribution (1860)
• Boltzmann Transport Equation (1872)

Prototype Models
• Broadwell (1964)
• Hardy, de Pazzis, and Pomeau (HPP) Model (1973)

Lattice Gas Automata (LGA)
• Frisch, Hasslacher, and Pomeau (1986) and 

Wolfram (1986)
• d’Humieries et al (1986)

Lattice Boltzmann Methods (LBM)
• McNamara & Zanetti (1988)
• Strumolo & Viswanathan (1997)
• Chen & Doolen (1998)
• Boon et al (1996)
• Zhong et al (2006)



2 Historical Perspective: Fundamentals

Maxwell-Boltzmann Distribution
• Result of kinetic theory of gases

• Applies to classical ideal gases
• Distribution of particle speeds indicates 

which speeds are more probable
• Derived heuristically by Boltzmann in 

1860

𝑓𝑓 𝑣𝑣 𝑑𝑑3𝑣𝑣 =
𝑚𝑚

2𝜋𝜋𝜋𝜋𝜋𝜋

3
2
𝑒𝑒−

𝑚𝑚 𝑣𝑣 2

2𝑘𝑘𝑘𝑘 𝑑𝑑3𝑣𝑣

Image source: Krishnavedala



2 Historical Perspective: Fundamentals

Boltzmann Transport Equation (1872)
• Considers probability distribution of position and momenta of particles rather than 

explicit positions and momenta
• Can determine how physical properties change (heat, momentum, energy) as well 

as fluid characteristics (viscosity, thermal conductivity) 

𝑑𝑑3𝑟𝑟 𝑑𝑑3𝑝𝑝 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑝𝑝𝑥𝑥 𝑑𝑑𝑝𝑝𝑦𝑦 𝑑𝑑𝑝𝑝𝑧𝑧

𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡 + 𝑣𝑣 � ∇𝑓𝑓 +

𝐹𝐹
𝑚𝑚 �

𝜕𝜕𝑓𝑓
𝜕𝜕𝑣𝑣 =

𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Phase Space

Boltzmann Transport Equation

Principal Statement
𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡 =

𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



2 Historical Perspective: Prototype Models

• Broadwell (1964)
• Boltzmann equation was solved for a few 

discrete velocities to study aerodynamics
• Molecular velocities restricted to eight equal 

speeds
• Hardy, de Pazzis, and Pomeau (HPP) Model (1973)

• Square lattice
• Particle movement restricted to four cells that 

share a common edge (no diagonal 
movement)

• Lacked rotational invariance – highly 
anisotropic

Image source: SimsContPics



2 Historical Perspective: Lattice Gas Automata

• Hexagonal lattice
• Particles modeled with discrete velocities and can only 

move to other lattice nodes
• Boolean true/false variables to model whether or not a 

particle is at each lattice node
• Frisch, Hasslacher, and Pomeau (1986) and Wolfram 

(1986) proposed the first 2D LGA model for CFD
• Reproduced correct Navier-Stokes equations

• d’Humieries et al (1986) introduced the first 3D model
• Problems with LGA:

• Statistical noise from Boolean variables
• Viscosity limitations – limited Re range
• Potential unphysical solution due to simple 

symmetries in hexagonal grid
Image source: Bao & Meskas



2 Historical Perspective: Lattice Gas Automata

• Hexagonal lattice
• Particles modeled with discrete velocities and can only 

move to other lattice nodes
• Boolean true/false variables to model whether or not a 

particle is at each lattice node
• Frisch, Hasslacher, and Pomeau (1986) and Wolfram 

(1986) proposed the first 2D LGA model for CFD
• Reproduced correct Navier-Stokes equations

• d’Humieries et al (1986) introduced the first 3D model
• Problems with LGA:

• Statistical noise from Boolean variables
• Viscosity limitations – limited Re range
• Potential unphysical solution due to simple 

symmetries in hexagonal grid

Fixed with Lattice Boltzmann Method!
• 9 node square lattice with diagonal movement
• Boolean variables replaced with particle 

distribution function
Image source: Bao & Meskas



2 Historical Perspective: Lattice Boltzmann Method

Since its inception by McNamara & Zanetti in 1988, LBM techniques have been used to model many 
interesting physical situations
• Strumolo & Viswanathan (1997)

• Turbulent external flow over structures with complicated boundaries
(flow over a Ford Taurus)

• Chen & Doolen (1998)
• Multi-phase, multi-component flow through porous media

• Boon et al (1996)
• Chemical reactive flows

• Zhong et al (2006)
• Simulation of the Schrödinger equation
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3 General Principles: LGA Formulation

𝑛𝑛𝑖𝑖 𝑥𝑥 + 𝑒𝑒𝑖𝑖𝛿𝛿𝛿𝛿, 𝑡𝑡 + 1 = 𝑛𝑛𝑖𝑖 𝑥𝑥, 𝑡𝑡 + Ω𝑖𝑖 𝑛𝑛 𝑥𝑥, 𝑡𝑡

Boolean true/false
• 0 if no particle at location
• 1 if particle at location
• Two particles cannot 

occupy same node

Local 
particle 
velocity

Collision operator
• -1 if particle destroyed
• 0 if particle unchanged
• 1 if particle created



3 General Principles: LGA Formulation

At each time step, the configuration of particles evolves in two sequential sub-steps
• Streaming step

• Each particle moves to the nearest node in the direction of its velocity
• Collision step

• Particles arrive at node and interact by changing their velocity direction according to scattering 
rules

Image source: Bao & Meskas



3 General Principles: LGA to LBM

Replace Boolean 𝒏𝒏𝒊𝒊 values with single particle distribution functions, 𝒇𝒇𝒊𝒊
• 𝒇𝒇𝒊𝒊 can be any value between 0 and 1
• 𝒇𝒇 𝒙𝒙, 𝒆𝒆, 𝒕𝒕 -- distribution function depends on position vector 𝒙𝒙, velocity vector 𝒆𝒆, and time 𝒕𝒕

• represents the number of particles with mass 𝒎𝒎 at time 𝒕𝒕 positioned between 𝒙𝒙 + 𝒅𝒅𝒅𝒅 which 
have velocities between 𝒆𝒆 + 𝒅𝒅𝒅𝒅

• After time 𝒅𝒅𝒅𝒅, position and velocity values update such that
• 𝒙𝒙 → 𝒙𝒙 + 𝒆𝒆𝒆𝒆𝒆𝒆

• 𝒆𝒆 → 𝒆𝒆 + 𝑭𝑭
𝒎𝒎
𝒅𝒅𝒅𝒅

This formulation simplifies Boltzmann’s 
original idea of gas dynamics by 
reducing the number of particles 
and confining them to the nodes of 
a lattice

Image source: Igor Mele



3 General Principles: Lattice Notation and Types

Many possible lattices can be modeled of the form DnQm
• Lattice has n spatial dimensions and m discrete velocities

D2Q9 D3Q15 D3Q19

Image source: Alexander Wagner



3 General Principles: Lattice Notation and Types

Many possible lattices can be modeled of the form DnQm
• Lattice has n spatial dimensions and m discrete velocities

D2Q9

Image source: Alexander Wagner

• D2Q9 lattice has two spatial dimensions and 9 discrete velocities 
• Eight distribution functions 𝒇𝒇𝒊𝒊 associated with particles moving to 

the neighboring cells and one distribution function 𝒇𝒇𝒊𝒊
corresponding to the resting particles

• Discrete (microscopic) velocities are given by:  

𝑒𝑒𝑖𝑖 = �
0,0 , 𝑖𝑖 = 0

1,0 , 0,1 , −1,0 , 0,−1 , 𝑖𝑖 = 1,2,3,4
1,1 , −1,1 , −1,−1 1,−1 , 𝑖𝑖 = 5,6,7,8



3 General Principles: Streaming and Collision

At each time step, the configuration of particles evolves in two sequential sub-steps (same idea as in LGA)
Collision step

Particles arrive at node and interact 
by changing their velocity direction 
according to scattering rules

Streaming step
Each particle moves to 
the nearest node in the 
direction of its velocity

𝒕𝒕 → 𝒕𝒕 + 𝜹𝜹𝜹𝜹 Animation source: Bastien Chopard



4 Governing Equations: Problem Formulation

Begin with result from Boltzmann Transport Equation

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 � ∇𝑓𝑓 +
𝐹𝐹
𝑚𝑚
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

Neglecting external forces (when is this assumption valid?), we get that

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 � ∇𝑓𝑓 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• Note that 𝒗𝒗 is macroscopic velocity, whereas 𝒆𝒆 is discrete particle velocity



𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

, the collision operator, is generally a complex, non-linear integral. To simplify this term, we 

use the Bhatnagar, Bross, Krook (BGK) operator model:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= −
1
𝜆𝜆
𝑓𝑓 − 𝑓𝑓𝑒𝑒𝑒𝑒

• BGK operator is valid (conserves mass and momentum) for single-phase flow where Mach number 
is small (𝑴𝑴𝑴𝑴 ≤ 𝟎𝟎.𝟐𝟐)

4 Governing Equations: Collision Operator

Maxwell-Boltzmann equilibrium 
distribution function

Relaxation time

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 � ∇𝑓𝑓 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



For the BGK model, 𝒇𝒇𝒊𝒊
𝒆𝒆𝒆𝒆 is defined as 

𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒 𝑥𝑥, 𝑡𝑡 = 𝑤𝑤𝑖𝑖𝜌𝜌 + 𝜌𝜌𝑠𝑠𝑖𝑖 𝑣𝑣 𝑥𝑥, 𝑡𝑡

where 𝒔𝒔𝒊𝒊 𝒗𝒗 is defined as

𝑠𝑠𝑖𝑖 𝑣𝑣 = 𝑤𝑤𝑖𝑖 3
𝑒𝑒𝑖𝑖 � 𝑣𝑣
𝑐𝑐 +

9
2
𝑒𝑒𝑖𝑖 � 𝑣𝑣 2

𝑐𝑐2 −
3
2
𝑣𝑣 � 𝑣𝑣
𝑐𝑐2

For a D2Q9 Lattice, common values chosen for 𝒘𝒘𝒊𝒊 are

4 Governing Equations: Collision Operator
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= −
1
𝜆𝜆
𝑓𝑓 − 𝑓𝑓𝑒𝑒𝑒𝑒

𝑤𝑤𝑖𝑖 =

4
9 , 𝑖𝑖 = 0
1
9 , 𝑖𝑖 = 1,2,3,4

1
36 , 𝑖𝑖 = 5,6,7,8

𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒 = 𝜌𝜌𝑤𝑤𝑖𝑖 1 + 3

𝑒𝑒𝑖𝑖 � 𝑣𝑣
𝑐𝑐 +

9
2
𝑒𝑒𝑖𝑖 � 𝑣𝑣 2

𝑐𝑐2 −
3
2
𝑣𝑣 � 𝑣𝑣
𝑐𝑐2

Lattice speed 𝑐𝑐 = Δ𝑥𝑥
Δ𝑡𝑡

where, generally,
Δ𝑥𝑥 = Δ𝑡𝑡



Substituting the BGK operator for 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄

and discretizing the Boltzmann transport equation, we get that

𝑓𝑓𝑖𝑖 𝑥𝑥 + 𝑒𝑒𝑖𝑖Δ𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡 − 𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡 = −
1
τ
𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡 − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒 𝑥𝑥, 𝑡𝑡

4 Governing Equations: Streaming and Collision 𝜏𝜏 =
𝜆𝜆
Δ𝑡𝑡

Streaming Collision

𝑓𝑓𝑖𝑖∗ 𝑥𝑥, 𝑡𝑡 = 𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡 −
1
τ 𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡 − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒 𝑥𝑥, 𝑡𝑡𝑓𝑓𝑖𝑖 𝑥𝑥 + 𝑒𝑒𝑖𝑖 , 𝑡𝑡 + Δ𝑡𝑡 = 𝑓𝑓𝑖𝑖∗ 𝑥𝑥, 𝑡𝑡

Usually broken 
into two steps:



4 Governing Equations: Streaming and Collision 𝜏𝜏 =
𝜆𝜆
Δ𝑡𝑡

Streaming Collision

𝑓𝑓𝑖𝑖∗ 𝑥𝑥, 𝑡𝑡 = 𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡 −
1
τ 𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡 − 𝑓𝑓𝑖𝑖

𝑒𝑒𝑒𝑒 𝑥𝑥, 𝑡𝑡𝑓𝑓𝑖𝑖 𝑥𝑥 + 𝑒𝑒𝑖𝑖 , 𝑡𝑡 + Δ𝑡𝑡 = 𝑓𝑓𝑖𝑖∗ 𝑥𝑥, 𝑡𝑡

Usually broken 
into two steps:

In these equations, 𝑓𝑓𝑖𝑖∗ is the distribution of values after collision 
(but before propagation) and 𝑓𝑓𝑖𝑖 are the values after collision and 
propagation, with 𝑓𝑓𝑖𝑖 𝑥𝑥 + 𝑒𝑒𝑖𝑖 , 𝑡𝑡 + Δ𝑡𝑡 entering the neighboring 
cell as data for the next time step.



4 Governing Equations: Macroscopic Calculations

From the Boltzmann equation, macroscopic values for 𝝆𝝆 and 𝒗𝒗 can be calculated readily as

𝜌𝜌 𝑥𝑥, 𝑡𝑡 = �
𝑖𝑖=0

𝑁𝑁

𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡

𝑣𝑣 𝑥𝑥, 𝑡𝑡 =
1

𝜌𝜌 𝑥𝑥, 𝑡𝑡
�
𝑖𝑖=0

𝑁𝑁

𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡



4 Governing Equations: Bounce-back Boundary Conditions

• Macroscopically equivalent to no-slip conditions at the boundary

• In numerical applications, one should use a Boolean mask for the boundary and interior nodes. 

The boundary of the fluid domain is aligned with the lattice points and the incoming directions of the 
distribution functions are reversed when encountering a boundary node, such that

𝑓𝑓𝑖𝑖 𝑥𝑥 + 𝑒𝑒𝑖𝑖 , 𝑡𝑡 + Δ𝑡𝑡 = 𝑓𝑓𝑖𝑖∗ 𝑥𝑥, 𝑡𝑡 = 𝑓𝑓 ̅𝚤𝚤 𝑥𝑥, 𝑡𝑡

with 𝑒𝑒 ̅𝚤𝚤 = −𝑒𝑒𝑖𝑖 and 𝑓𝑓 ̅𝚤𝚤 𝑥𝑥, 𝑡𝑡 = 𝑓𝑓 𝑥𝑥, 𝑒𝑒 ̅𝚤𝚤, 𝑡𝑡 = 𝑓𝑓 𝑥𝑥,−𝑒𝑒𝑖𝑖 , 𝑡𝑡 .

This BC effectively rotates the distribution functions on the node and thus
they return back to the fluid with opposite momentum in the next time step. 
This results in zero velocities at the wall and ensures that there is no flux 
across the wall. 

Image source: Bao & Meskas



4 Governing Equations: Bounce-back Boundary Conditions

There are also mid-grid bounce back boundary conditions in addition to those just discussed (on-grid 
bounce back boundary conditions) 

• Introduces fictitious nodes and places the boundary wall centered between fictitious nodes and 
boundary nodes of the fluid

• Leads to second order accuracy, whereas on-grid bounce back is first order

Image source: Bao & Meskas



4 Governing Equations: Zou-He Boundary Conditions

Used to prescribe velocity or density at the boundary

In the case where a velocity is prescribed at the left boundary, after streaming, 
we have that 𝒇𝒇𝟎𝟎, 𝒇𝒇𝟐𝟐, 𝒇𝒇𝟑𝟑, 𝒇𝒇𝟒𝟒, 𝒇𝒇𝟔𝟔, and 𝒇𝒇𝟕𝟕 are known. 

With Zou-He BCs, we want to form a linear system of our unknowns  𝒇𝒇𝟏𝟏, 𝒇𝒇𝟓𝟓, 𝒇𝒇𝟖𝟖, 
and 𝝆𝝆:

𝑓𝑓1 + 𝑓𝑓5 + 𝑓𝑓8 = 𝜌𝜌 − 𝑓𝑓0 + 𝑓𝑓2 + 𝑓𝑓4 + 𝑓𝑓3 + 𝑓𝑓6 + 𝑓𝑓7

𝑓𝑓1 + 𝑓𝑓5 + 𝑓𝑓8 = 𝜌𝜌𝑣𝑣𝑥𝑥 + 𝑓𝑓3 + 𝑓𝑓6 + 𝑓𝑓7

𝑓𝑓5 − 𝑓𝑓8 = 𝜌𝜌𝑣𝑣𝑦𝑦 − 𝑓𝑓2 + 𝑓𝑓4 − 𝑓𝑓6 + 𝑓𝑓7

Image source: Bao & Meskas



4 Governing Equations: Zou-He Boundary Conditions

We can solve these equations to get 

𝜌𝜌 =
1

1 − 𝑣𝑣𝑥𝑥
𝑓𝑓0 + 𝑓𝑓2 + 𝑓𝑓4 + 2 𝑓𝑓3 + 𝑓𝑓6 + 𝑓𝑓7

To close the system, we assume that the bounce-back rule holds for the non-
equilibrium part of the particle distribution normal to the boundary, such that

𝑓𝑓1 − 𝑓𝑓1
𝑒𝑒𝑒𝑒 = 𝑓𝑓3 − 𝑓𝑓3

𝑒𝑒𝑒𝑒

Thus, we get that

𝑓𝑓1 = 𝑓𝑓3 +
2
3𝜌𝜌𝑣𝑣𝑥𝑥

𝑓𝑓5 = 𝑓𝑓7 −
1
2 𝑓𝑓2 − 𝑓𝑓4 +

1
6 𝜌𝜌𝑣𝑣𝑥𝑥 +

1
2 𝜌𝜌𝑣𝑣𝑦𝑦

𝑓𝑓8 = 𝑓𝑓6 +
1
2 𝑓𝑓2 − 𝑓𝑓4 +

1
6 𝜌𝜌𝑣𝑣𝑥𝑥 −

1
2 𝜌𝜌𝑣𝑣𝑦𝑦 Image source: Bao & Meskas



4 Governing Equations: Summary of LBM Algorithm

Initialize Variables: 
𝜌𝜌, 𝑣𝑣, 𝑓𝑓𝑖𝑖



4 Governing Equations: Summary of LBM Algorithm

𝜌𝜌 𝑥𝑥, 𝑡𝑡 = �
𝑖𝑖=0

𝑁𝑁

𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡

𝑣𝑣 𝑥𝑥, 𝑡𝑡 =
1

𝜌𝜌 𝑥𝑥, 𝑡𝑡
�
𝑖𝑖=0

𝑁𝑁

𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖 𝑥𝑥, 𝑡𝑡
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Calculation of 
Macroscopic 𝜌𝜌 and 𝑣𝑣
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Initialize Variables: 
𝜌𝜌, 𝑣𝑣, 𝑓𝑓𝑖𝑖

Calculation of 
Macroscopic 𝜌𝜌 and 𝑣𝑣

Zou-He BCs
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1 − 𝑣𝑣𝑥𝑥
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4 Governing Equations: Summary of LBM Algorithm

Initialize Variables: 
𝜌𝜌, 𝑣𝑣, 𝑓𝑓𝑖𝑖

Calculation of 
Macroscopic 𝜌𝜌 and 𝑣𝑣

Zou-He BCs

Collision Step

Bounce-Back BC

𝑓𝑓𝑖𝑖 𝑥𝑥 + 𝑒𝑒𝑖𝑖 , 𝑡𝑡 + Δ𝑡𝑡 = 𝑓𝑓𝑖𝑖∗ 𝑥𝑥, 𝑡𝑡 = 𝑓𝑓 ̅𝚤𝚤 𝑥𝑥, 𝑡𝑡

with 𝑒𝑒 ̅𝚤𝚤 = −𝑒𝑒𝑖𝑖 and 𝑓𝑓 ̅𝚤𝚤 𝑥𝑥, 𝑡𝑡 = 𝑓𝑓 𝑥𝑥, 𝑒𝑒 ̅𝚤𝚤, 𝑡𝑡 = 𝑓𝑓 𝑥𝑥,−𝑒𝑒𝑖𝑖 , 𝑡𝑡



4 Governing Equations: Summary of LBM Algorithm

Initialize Variables: 
𝜌𝜌, 𝑣𝑣, 𝑓𝑓𝑖𝑖

Calculation of 
Macroscopic 𝜌𝜌 and 𝑣𝑣

Zou-He BCs

Collision Step

Bounce-Back BC

Streaming Step 𝑓𝑓𝑖𝑖 𝑥𝑥 + 𝑒𝑒𝑖𝑖 , 𝑡𝑡 + Δ𝑡𝑡 = 𝑓𝑓𝑖𝑖∗ 𝑥𝑥, 𝑡𝑡

𝑡𝑡 → 𝑡𝑡 + 𝛿𝛿𝛿𝛿



• D1Q3 model
• 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 60,𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 0|Boundary Conditions: bounce back
• Initial Conditions: 
• 𝜌𝜌 = 1.0, 𝜏𝜏 = 2.0, 𝛿𝛿𝛿𝛿 = 1.0

Problem: Calculate the change in T as a function of time throughout 
the length of the pipe.

5 Hand Calculation: Problem Formulation

=60



Each element has 3 nodes

Weight Factors:

• 𝑤𝑤0 = 0.5,𝑤𝑤1 = 𝑤𝑤2 = 0.25
Distribution Function:

• 𝑐𝑐0 = 0, 𝑐𝑐1 = 1, 𝑐𝑐2 = −1

• Where 𝑇𝑇 𝑥𝑥, 𝑡𝑡 = ∑𝑓𝑓𝑖𝑖(𝑥𝑥, 𝑡𝑡)

CELL A CELL B CELL C
F0= 30
F1=15
F2=15

𝑇𝑇 𝑎𝑎, 𝑡𝑡 = ∑𝐹𝐹𝑖𝑖 =60

F0=0
F1=60
F2=-60

𝑇𝑇 𝑏𝑏, 𝑡𝑡 = ∑𝐹𝐹𝑖𝑖 =0

F0=0
F1=60
F2=-60

𝑇𝑇 𝑐𝑐, 𝑡𝑡 = ∑𝐹𝐹𝑖𝑖 =0
Equilibrium Distribution Functions

𝑓𝑓0
𝑒𝑒𝑒𝑒 =30

𝑓𝑓1
𝑒𝑒𝑒𝑒 = 15
𝑓𝑓2
𝑒𝑒𝑒𝑒 = 15

𝑓𝑓0
𝑒𝑒𝑒𝑒 =0
𝑓𝑓1
𝑒𝑒𝑒𝑒 =0
𝑓𝑓2
𝑒𝑒𝑒𝑒 =0

𝑓𝑓0
𝑒𝑒𝑒𝑒 =0
𝑓𝑓1
𝑒𝑒𝑒𝑒 =0
𝑓𝑓2
𝑒𝑒𝑒𝑒 =0

5 Hand Calculation: Initialization

=60



BJK Approximation  Collision Operator

Here, 𝜔𝜔 = 𝛿𝛿𝛿𝛿
𝜏𝜏

= 1
2

= 0.5

Sample Calculation for Cell A:
𝑓𝑓0∗ 𝑎𝑎, 𝑡𝑡 = 1 − 0.5 ∗ 30 + 0.5 ∗ 30 = 30
𝑓𝑓1∗ 𝑏𝑏, 𝑡𝑡 = 1 − 0.5 ∗ 60 + 0 ∗ 15 = 30
𝑓𝑓2∗ 𝑐𝑐, 𝑡𝑡 = 1 − 0.5 ∗ −60 + 0 ∗ 15 = −30

CELL A CELL B CELL C

𝑓𝑓0
𝑒𝑒𝑒𝑒 =30

𝑓𝑓1
𝑒𝑒𝑒𝑒 = 15
𝑓𝑓2
𝑒𝑒𝑒𝑒 = 15

𝑓𝑓0
𝑒𝑒𝑒𝑒 =0
𝑓𝑓1
𝑒𝑒𝑒𝑒 =0
𝑓𝑓2
𝑒𝑒𝑒𝑒 =0

𝑓𝑓0
𝑒𝑒𝑒𝑒 =0
𝑓𝑓1
𝑒𝑒𝑒𝑒 =0
𝑓𝑓2
𝑒𝑒𝑒𝑒 =0

Collision Term:
𝑓𝑓0∗ =30
𝑓𝑓1∗ = 15
𝑓𝑓2∗ = 15

𝑓𝑓0∗ =0
𝑓𝑓1∗ = 30
𝑓𝑓2∗ = −30

𝑓𝑓0∗ =0
𝑓𝑓1∗ = 30
𝑓𝑓2∗ = −30

=60

5 Hand Calculation: Collision



This step takes in account the B.C. applied to 
the system.
Sample Calculation:

𝑓𝑓0 𝑎𝑎, 𝑡𝑡 + 𝑑𝑑𝑑𝑑 = 𝑓𝑓0∗ 𝑎𝑎, 𝑡𝑡 =30

𝑓𝑓1 𝑏𝑏, 𝑡𝑡 + 𝑑𝑑𝑑𝑑 = 𝑓𝑓1∗ 𝑎𝑎, 𝑡𝑡 = 15

𝑓𝑓2 𝑐𝑐, 𝑡𝑡 + 𝑑𝑑𝑑𝑑 = 𝑓𝑓2∗ 𝑏𝑏, 𝑡𝑡 = 15

CELL A CELL B CELL C

𝑓𝑓0
𝑒𝑒𝑒𝑒 =30

𝑓𝑓1
𝑒𝑒𝑒𝑒 = 15
𝑓𝑓2
𝑒𝑒𝑒𝑒 = 15

𝑓𝑓0
𝑒𝑒𝑒𝑒 =0
𝑓𝑓1
𝑒𝑒𝑒𝑒 =0
𝑓𝑓2
𝑒𝑒𝑒𝑒 =0

𝑓𝑓0
𝑒𝑒𝑒𝑒 =0
𝑓𝑓1
𝑒𝑒𝑒𝑒 =0
𝑓𝑓2
𝑒𝑒𝑒𝑒 =0

Collision Term:
𝑓𝑓0∗ =30
𝑓𝑓1∗ = 15
𝑓𝑓2∗ = 15

𝑓𝑓0∗ =0
𝑓𝑓1∗ = 30
𝑓𝑓2∗ = −30

𝑓𝑓0∗ =0
𝑓𝑓1∗ = 30
𝑓𝑓2∗ = −30

Streaming Term:

𝑓𝑓0 =30
𝑓𝑓1 = 15

𝑓𝑓2 = 15 (B.C.)

𝑓𝑓0 =0
𝑓𝑓1 = 30
𝑓𝑓2 = −15

𝑓𝑓0 =0
𝑓𝑓1 = 15 (B.C.)
𝑓𝑓2 = −15

*𝑐𝑐0 = 0, 𝑐𝑐1 = 1, 𝑐𝑐2 = −1

5 Hand Calculation: Streaming



CELL A CELL B CELL C

Streaming Term:

𝑓𝑓0 =30
𝑓𝑓1 = 15

𝑓𝑓2 = 15 (B.C.)

𝑓𝑓0 =0
𝑓𝑓1 = 30
𝑓𝑓2 = −15

𝑓𝑓0 =0
𝑓𝑓1 = 15 (B.C.)
𝑓𝑓2 = −15

∑𝑓𝑓𝑖𝑖=60 ∑𝑓𝑓𝑖𝑖=15 ∑𝑓𝑓𝑖𝑖=0

Equilibrium Term for t+𝛿𝛿𝛿𝛿:wi ∗ ∑𝐹𝐹𝑖𝑖
𝑓𝑓0
𝑒𝑒𝑒𝑒 =30

𝑓𝑓1
𝑒𝑒𝑒𝑒 = 15
𝑓𝑓2
𝑒𝑒𝑒𝑒 = 15

𝑓𝑓0
𝑒𝑒𝑒𝑒 =7.5

𝑓𝑓1
𝑒𝑒𝑒𝑒 = 3.75
𝑓𝑓2
𝑒𝑒𝑒𝑒 = 3.75

𝑓𝑓0
𝑒𝑒𝑒𝑒 =0

𝑓𝑓1
𝑒𝑒𝑒𝑒 = 0
𝑓𝑓2
𝑒𝑒𝑒𝑒 = 0

Weight Factors:
𝑤𝑤0 = 0.5,𝑤𝑤1 =0.25, 𝑤𝑤2 = 0.25
Distribution Function:

𝑐𝑐0 = 0, 𝑐𝑐1 = 1, 𝑐𝑐2 = −1

5 Hand Calculation: Update Macroscopic Distribution



6 Numeric Example: Case 1 – Prescribed Rate (Inlet), Prescribed Density (Outlet)



6 Numerical Example: Code for Problem Formulation

Initialize Variables: 
𝜌𝜌, 𝑣𝑣, 𝑓𝑓𝑖𝑖
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6 Numerical Example: Code for Problem Formulation

Initialize Variables: 
𝜌𝜌, 𝑣𝑣, 𝑓𝑓𝑖𝑖
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Macroscopic 𝜌𝜌 and 𝑣𝑣

Zou-He BCs

Collision Step

Bounce-Back BC

Streaming Step



6 Numeric Example: Case 1 Results



6 Numeric Example: Case 2: – Prescribed Rate (Inlet), Prescribed Density (Outlet), Bounce-back Cylinder



6 Numeric Example: Case 2 Results

The time-dependent Lattice Boltzmann Method is inefficient for solving steady-state problems, 
because its speed of convergence is dictated by acoustic propagation, which is very slow



6 Numeric Example: Case 3: – Prescribed Density (Inlet), Prescribed Density (Outlet), BB Cylinder



6 Numeric Example: Case 3 Results

Solution is unstable! Why? 

• Largest pressure changes supported are of the order 𝜹𝜹𝜹𝜹
𝑷𝑷

~𝑴𝑴𝒂𝒂𝟐𝟐

• Density difference too large – gives resultant  𝒗𝒗𝒙𝒙 such that Mach number > 0.2

• Solution: model with smaller density change OR model as an external force:

𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝒗𝒗 � 𝜵𝜵𝜵𝜵 +
𝑭𝑭
𝒎𝒎
�
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

=
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄



7 Example Applications: Bifurcated Flow in Human Lungs

• Particle flow in human lung important in treatment 
of asthma and lung cancer

• Important to know where particles deposit 
depending on their seize



7 Example Applications: Cross Flow in Filtration Processes

• In filtration processes, performance diminishes 
over time due to particles blocking the 
membrane and forming a filter cake

• Flow tangential to the membrane is induced to 
avoid this process and increase filtration 
efficiency

• Induced flow prevents deposition, but exposes 
particles to large shear forces that may destroy 
them 



7 Example Applications: Magnetic Separation

• High-gradient magnetic fishing (HGMF) can be used for 
downstream processing of proteins

• Magnetic particles are coated with a layer that contains 
specific ligands for a certain target molecule

• The particles are then introduced into a medium 
containing the target molecule and these molecules 
adsorb to the ligands

• The particles are then separated on a magnetized wire 
and transferred to another medium

• Coupled DEM-LBM approach



7 Example Applications: Fluid Flow Through a Safety Valve

• Chattering can occur when bleeding off pressure, 
causing the valve disc to oscillate up and down at a 
high frequency, reducing pressure dissipation 
capability and possibly destroying the valve

• Model flow to determine what types of flow cause 
chatter 

• Parallelized LBM to handle unsteady flow
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