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Introduction

> Finite Element Method (FEM)

O A numerical tool to obtain approximate solutions of PDEs.

O Steps: )
* Discretization of the solution region; .
* Derivation of equations; T
* Assemble all the elements; o1 d

* Solving equations.
_ Nodes
O Requirements:

* the mesh has to conform to the geometry;

1 El
* Remeshing at each step. ements

Mesh in FEM

Allan F. Bower, “Applied Mechanic of Solids”
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Introduction

> Extended Finite Element Method (XFEM)

O A powerful tool for discontinuous problems.
O Enables accurate capture of non-smooth features.

O Avoid using a mesh that conforms to cracks with overcoming remeshing difficulties
as in FEM.

O Enrich the elements near the crack tip and along the crack faces.
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Introduction

>FEM vs. XFEM Performance

(a) (b) (©)
treeetttteeett
' Enriched elements 7
Weak discontinuity 3
(Bimaterial interface) -X |
Ve
l‘dl
of
rd2 {b'
Strong discontinuity 4
(Crack interface) Enriched nodes ~
—————————————————|

Modeling of discontinuities in FEM and XFEM. (a) Crack propagation in a plate with a
hole; (b) FEM using adaptive mesh refinement; (c) XFEM with enrichment of the elements.

Extended Finite Element Method: Theory and Applications, First Edition. Amir R. Khoei.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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Introduction

> Comparisons

o XFEM vs. FEM

* XFEM : useful for discontinuities problems since enrichment functions are added to
FEM; cracks can propagate along a natural arbitrary path.

* FEM: poor for arbitrary discontinuities problems; cracks only propagate along the
element edge.

o Boundary Element Method (BEM) vs. XFEM

* [t is applicable for multi-material/ phase problems.

6
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Introduction

> Advantages of XFEM

O Cracks with complex geometry can be modeled
O No need of remeshing

O Less expensive

>Shortcomings of XFEM

O Hard to localize the initial fracture

O Only for linear elastic fracture mechanics
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Historical Perspective
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Historical Perspective

>Ted Belytschko and Tom Black (1999)

O A improved technique for finite elements based on a partition-of-unity which
involves minimal remeshing.

O Not yet applicable for long cracks and 3D.

>Nicolas Moés, John Dolbow, and Ted Belytschko (1999)

O Incorporating a discontinuous field across the crack faces away from the crack tip.

O Independent of remeshing
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Historical Perspective

>Stolarska et al. (2001 )

O Apply level set method within the framework of X-FEM

O The level set method is used to represent the crack location, including the location of
crack tips

>Sukumar et al. (2001 )

O Proposed enrichment function for holes and inclusion
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Historical Perspective

>Réthoré et al (2005)
O Discuss the mathematical properties of X-FEM

O Prove the stability of the numerical scheme in the linear case

> (Chessa and Belytschko (2004-2005 )

O Extent the enriching shape function in time axis

O space-time extended finite element method

> Belytschko (2006)

O mesh-free method

O no additional unknowns are introduced at the nodes whose supports are crossed by
discontinuities

@ PennState

11




Historical Perspective

> Gravouil(2007)

O Model of frictional contact along crack faces via X-FEM

>Fang and Jin(2007)

O X-FEM algorithm was coupled with commercial software ABAQUS

12
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General Principles
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Enrichment Function

>Goal

O Increase the accuracy of the approximation by including information of
the analytical solution.

>Ways of enrichment

O Intrinsic enrichment: Enrich the basic vector

O Extrinsic enrichment: Enrich the approximation

14
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Enrichment Function

.>Intrinsic Enrichment

o Enhance the approximation space u(x) by including the new basis functions.
o u(x) =X Nz  N() = (N (x), N (x))

o NSt4(x) - Standard polynomial functions N;(x)
N®™" (x) - Enriched shape functions obtained from N; (x)p;(x)
O @ - A vector of coefficients obtained from one of the least-squares techniques

@)

No additional unknowns
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Enrichment Function

> Extrinsic Enrichment

O Enrich the approximation by adding the enrichment functions to the standard
approximation.

O *Local* extrinsic enrichment, instead of enriching whole domain of the solution.

O Shows a systematical error in partially enriched elements.

16
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Enrichment Function

.>Extrinsic Enrichment

O The general enhanced solution field in the X-FEM:

Additional unknowns
/

N p My
u(x) = Z Ny (x)T; + kzl,z N, ()i ()@

O Mj € N - sets of nodal points, enriched by functions ¥ (x)

O Yy (x) - Enrichment functions

@ PennState



Enrichment Function

> Different techniques used for enrichment function

O Signed distance function
O Level set function

O Heaviside jump function
@

>Dependency on the conditions of problem

O Ex. Discontinuity - - .
 Different types of material properties — Level Set Function

 Different displacement fields on — Heaviside Function
either sides of the discontinuity

18
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Enrichment Function

>Level Set Method

O Definition: A numerical technique for tracking moving interfaces.

O The interface is represented as the zero level set of a function
* One dimension (time) higher than the dimension of the interface
* Evolved by solving the hyperbolic conservation laws

* Independent of element mesh

O Most common function: signed distance function

19
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Enrichment Function

>>Signed Distance Function

o @(x) = |lx - x*|lsign(nr,(x — x*))
O x* - the closest point projection of x onto the discontinuity I'

O mnr, - the normal vector to the interface at point x*

O |lx — x*|| - specifies the distance of point x to discontinuity I' 4
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Enrichment Function

>Heaviside Function

0, if ep(x) <0 -1 ife(x) <0
© H(x) = {1, if 9(x) > 0 H(x) = {+1, if 9(x) > 0

o The approximation field can be written as Signed distance function
o u(x) =X, Ni(0)u; + IJLy N;(x)H(x)a;

O Basis of definition of the kinematics of the strong discontinuity (a jump in the
displacement field).

21
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Enriched Shape Function

> Describing a Strong Discontinuity Surface

o u(x) =Y, Ni(@u; + X1y NjOHF(x)a;(t) HIi-1 Ne()P(x)by(£)

Crack-embedded

O a;, by - Enriched DOFs at the element node

-1, ifx<0

° Hw)= {+1, if x>0

o f(x) = min|x — x*[|sign(nr,(x — x7))

. . ) 0 0 . .
o ¢(x)= [\/Fsmg,ﬁsmgsme,\ﬁ"cosi,\/FcosEsme

22

@ PennState



Enriched Shape Function

> Describing a Weak Discontinuity Surface
O Displacement field continues at the interface

O Derivative of displacement field (strain field) is discontinues
* Material difference

o u(x,t) = XLy N;(0)u(t) I Nj(x)p(x)q;
Interface

O ¢(x) = Xilf(x)| Ni(x) — [ Xl FCx) | Ny ()]

O gj - the new added DOF at the node

@ PennState
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Governing Equations
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Governing Equation

» Strong Form of the Equilibrium Equation:

V-o+b=0 in Q

» Boundary Conditions:

* Displacement (Dirichlet) B.C.: u=tonly
* Traction (Neumann) B.C.: o-npr=tonTl;
e Internal B.C.: o-nr, =tgonly

*  For domain with strong discontinuity,
og-nr, =0

(gt
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Governing Equation

» Weak Form formulation of the Equilibrium Equation:

V-o+b=0  Multiplying by the test functions, éu(x,t), and integrate over the domain Q

Weak Discontinuities

J [(‘)’u-a]nrddl":J [6u-fd]dl"=J (du*ty —du~t;)dl'=0
Iy r,

Iy

J V&u:adQ+J—W—J 5u-idr-J Su-bdQ=0
Q t Q

Ly " Strong Discontinuities

l J [(Su-a]nrddF=J [6u-id]dI“=J (du* = Su™)iydr'=0
| Iy I'a

J ou(x, 1) (V-6+b)dQ=0
Q

l Divergence theorem

J V(‘}u:adQ—J 6u-de—J ou-bdQ=0
Q I Q
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Governing Equation

J V(SuzadQ-J 6u-de“-J Su-bdQ=0 , _
Q r, Q * K, total stiffness matrix
» F, external force vector
l « U, vector of degrees of nodal
freedom (classical and enriched)
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Governing Equation

T K!lll Kuu u
a-re0 = [ K2

J B* Id D B* std 4o J B¢ Id D B dQ \ ) - ’
K= Q (N*) tdF+J (N) b dQ
J )" DBdQ J(B )" DB dQ F=) " @
o .

(N“)tdr + J (N“")Th dQ
Q

ONJox 0 o
B‘;’d= 0 9N,-/3y:| N — [Ni(x) O ]
N3y  ONi/ox Tl 0 M)
|:3[M(x)(‘l’(x)"l’(x1))]/‘7x 0 } Ni(x) (v (x) -y (x;)) 0
B = 0 IN;(x) (w(x) -y (x;))] /oy Ni"'=
! 0 N;(x) (y(x)—y(x;
ST )l iy IR0 o)) ) =)
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Hand-Calculation
Examples
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Hand-Calculation

Consider a 1D bar of length 3L.
Let E be the elastic moduli and A be the cross- - |

=

sectional area of the bar. 3L R

A

The bar is subjected to a prescribed displacement
at the end while the other end of the bar is fixed.
The bar is cracked at its mid length, L=1.5L.
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Hand-Calculation

N M
XFEM Solution with Non-aligned Mesh  wen = ) N+ ) NH(g,
i=1 j=1

Enriched basis function for a strong discontinuity in 1D

X X

N=[1-= =
B @a@ : /[][LL

2 Nsrp
¢ +1 x—x7>0
— — H(x) =<0 X = X
. . . . . . . / -1 x— xO <0
H, = sign (§(x)) H; = sign (¢(x))

\/ NENR2: N, * Hy(x) NENR3= N; * Hy(x) \

u(x) = I M@ + Ti=1 Nie(X) ()b (1)
@ PennState




Hand-Calculation

» XFEM Solution with Non-aligned Mesh

= EA (B YTBY, dx = = 1 ]
Element No.1 K, sta) Bstq dx = I l-1 1
u u u u EAr—1
S L S Ky = EA j (Bl) By dx = —| ]
. ° ® ° )
7 & T
' ’ Koy = Kyq

The step function H(x) = —1 L EA
Koo = EAJ (Bénr)" Bénr dx = T
X X 0
sutd_ 1_Z Z] Nenr = H ) . )
Ke1 = ?[—1 1 1 ]

-1 1 1

_[.1 1 BE =H

u —
std | L L

@ PennState
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Hand-Calculation

» XFEM Solution with Non-aligned Mesh

t . EAr1 -1
Element No.3 Ky = EAJ (Bsta) Bstadx =—| 1 4 ]
o i
u u u u L EAr—1
—1> 1 —2> 2 —3> 3 —4> Kya = EAj (Bstd)TBgnr dx = 7 L1 ]
° ® ® ° )
a0 “a, T
. ? Kou = Kua

The step function H(x) = +1 EA
Koo = EAf (Benr)TBeanr dx = —

L
u _x X a —pli_X=[1-2%
Ngtq = 1 I L] Ne"T_H_l L]_[l L -1 -1
Ks:=—|-
L, [ 11 1 1 e’ L[l ! 1]
B L R
std 7 L L | L L
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Hand-Calculation

XFEM Solution with Non-aligned Mesh

v X X
Element No.2 Nea =|1=7 1
X X +
U, 1 u, ) Us U, . X x [1—Z Z X = Xg
S —> —— 3 — NenT=H[1—Zz= x x ~
. . . ° [— 1——] X = Xg
—_— —_— L L
a; a;
1 1
Bsta !—z z]
+
The enrichment function H(x) = +1 X =% 1
_1 x_)xo 1 1 +
—= T X =X
enr L L 1 x| _
i
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Hand-Calculation

XFEM Solution with Non-aligned Mesh

Element No.2 L
u T pu EA 1 -1
Ky = EA o (Bstd) Bsta dx = T [_1 1

u, u, u; U,
—_— 1 — 2 — 3 -
[ 4 L 4 ®
a—1> _az> Kya = Klta + K

Koy = KC-I.'—U + Kqu

Kaa = Kc-{a + Ka_a
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Hand-Calculation

XFEM Solution with Non-aligned Mesh

Integrating on +, the enrichment function H(x) = +1
Element No.2 L
2 EAT1 =1
Kia= B4 | "Bl By dx =57 [ 1 T
Uy ] u; ) Uz Uy L
— —> o 3 o 2 EAT 1]
B ° * ° Kiq = EA[ (Bénr)" Bény dx = 5L 11 11
0 L — i
—- —
a; a;
Integrating on -, the enrichment function H(x) = —1
_ " pu \Tpa EAT1 -1
Kya = EAL (Bsta) Benr dx = 2Ll-1 1|
2
- ‘ a \TpRa EA —1 1]
Kaa = EA L (Benr)" Benr dx = 2Ll1 =1

N
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Hand-Calculation

XFEM Solution with Non-aligned Mesh

Element No.2

Uy u, Us

—_— 1 — —

. 13 .
o >
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Hand-Calculation

XFEM Solution with Non-aligned Mesh

Not a nodal interpolant.

— —

1 -1 0 0 -1 0 U1 0 u(r) = u =0
-1 2 -1 0 1 0 _ Uy 3 u
Kui—F=0 2 uX) = Newi+ HNja; o oy(ay) = ug+ H(za)ar =z — - =0
= — - u Uu _
Llo 0o -1 1 0 1 u =0 g i u(xs) = ug+ H(xs)ay = 5+ (=1) <—§> =u
Uy =1u _a
-1 1 0 0 2 -1 | 2 u(ry) = ug=1u
0 0 -1 1 -1 2 (2] | —3]

Enriched displacement approximation
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Hand-Calculation

Standard Finite Element Method

Ki—F =0
- 7 1
] [ R
Ll‘ 3L N — o0 - - -
| | I =1 0 0] |w fi
BA|-1 2 —1 0| |u| |fe
The finite element mesh has to be aligned Lo -1 2 -1 |us fs
with the crack. 0 0 -1 1 " 1
U, u, Us Uy 1 U =0u, =1
—_— —_— — —
. B . ) . @ 20 o
uy =V, Ug = 3) Uz = 3 ; Uy = U

39
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Hand-Calculation

Compare XFEM Solution with Standard Finite Element Method

Numerical solution of displacement field using XFEM and FEM

6 6
5

5 :

'.
4 ) -~
3 o
eeescedbonnanar ——— EXACT . -
r— . ustd 3 /, ——— EXACT
) [ S S — L uenr 5 S e FEM
-
0 Y T ux) -~
’ o
| 5 10 15 20 1 °
’.
2 0 42
"""" 0 5 10 15 20

3
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Hand-Calculation

4 4
()= T 0 Tk (R I S )| [ S )
iel iel i€k, 1=1 ek, I=1
| a C
o ] isthe set of nodes in the mesh. oy is the classical (vectorial) degree of freedom at node i. (o o o]
o Nis the scalar shape function associated to node i. p \ t 3‘1\
o [ clisthe subset of nodes enriched by the Heaviside function. The corresponding (vectorial) DOF are
denoted a,. 1m I 1
o K, clandK, care the set of nodes to enrich to model crack tips numbered 1 and 2, respectively. The & T T
corresponding degrees of freedom are 5, and b),,/=1,....4.
¢ Functions F/ (x),l =1,...,4 modeling the crack tip are given in elasticity by :
. .
(F! (x)}={ﬁsin(%}ﬁcos(%],ﬁsin[% )sin (0),ﬁcos[§)sin 0y _ . .. . .- )
Vector Enrichment: Scalar Enrichment:
u=YuN,+Y KNG, (r0)+ XK NG, (n0)  u=YuN,+YaNF (r8)+ LONE (8)+ TN (18)+ SdANF, (-6 Source: Dibakar Datta

4
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Hand-Calculation

Solution for Stress Field:

s )

Plastic
Zone

Fig 2.11: Crack tip circular region

0 (Rad.)
Fig 2.9: Normalized Stress Distribution for

Mode 1.

Solution for Displacement Field: 2u.K, 08 M
N2mE 0.4 'jy//
]—singsinﬁ ‘\/;COSQ[(I—‘U)+ (1+v)sin2 g:l z‘uf"K’ 0 t.’.’..’- ....... \.? .............
o 272 L 2 2 2mE
O'” _ K, COSE 1+Sinﬁsinﬁ u, :J221<_IE J;sing[Z—(Hv)]coszg 2uk, [ r o He Forv=0.3
w2 27 2 m & B 6 EB J J2r 08
T ] 30 ——=C0s— -1 T T
sin —cos — Vr o rr 2 3 4 1
22 0 (rad.)
Fig 2.10: Normalized Displacement Distribution
for Mode 1.
Source: Dibakar Datta
(gt
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Hand-Calculation

Fig 2.11:Comparison of error for different scalar type of Fig 2.12: Comparison of error for different vector type
enrichment radius for polynomial degree 1 of enrichment radius for polynomial degree 1
0.5 . . .
1 ' Enrichment Type: Enrichment Type:
7 70  SCALAR 7 70 VECTOR
=== Enrichment —_ _._En:il(:hm::to
) Radius: 0.10 o a .IUS. :
S01 —* =#=Enrichment ] =@=Enrichment
L . N . .
oo Radius: 0.30 oo Radius: 0.30
o Enrichment - Enrichment
Radius: 0.50 Radius: 0.50
—>Enrichment ==¢=Enrichment
0.01 Radius: 1.0 0.05 Radius: 1.0
log(1/mesh size) log(1/mesh size)
Source: Dibakar Datta
43
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Numerical Example
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Numerical Example

2D Static Edge Crack
Un-cracked Domain:
* 2D Planar,

(—=2,2) (2,2)
(-2,-2) (2,-2)

e 41x41
Aluminum

E =70 Gpa
v =0.33

Max. Principle Stress: 500 Mpa

45
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Numerical Example

Uniform Pressure loading

Uniform Pressure loading

Roller B.C.:
u;=uy;=0
2D Static Edge Crack
Cracked Domain:
e 2D Planar with wire
 [(—=2,0) (—1,0)] for the crack
Fixed B.C.:

u;=u,=u;=0

46
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Numerical Example

S, Mises

{Avg: 75%)
+6.773e+00
+6.210e+00
+5.648¢+00
+5.085¢+00
+4.522¢+00
+3.960e+00
+3.297e+00
+2.835e+00
+2.272e+00
+1.709¢+00
+1.147e+00
+5.842¢-01
+2.161e-02

ODB: EdgeCrack.odb  Abaqus/Standard 3SDEXPERIENCE R2017x  Sun Apr 07 15:51:59 EDT 2019

Step: Loading

Increment  1: Step Time =  1.000

Primary Var: S, Mises

Deformed Var: U Deformation Scale Factor: +3.720e+00

(gt
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Numerical Example

U, Magnitude
+1.165e-01
+1.06%e-01
+9.626e-02
+8.663e-02
+7.701e-02
+6.738e-02
+6.776e-02
+4.813e-02
+3.850e-02
+2.888e-02
+1.926e-02
+9.626e-03
+0.000e+00

ODB: EdgeCrack.odb  Abaqus/Standard 3ADEXPERIENCE R2017x Sun Apr 07 15:51:59 EDT 2019

Step: Loading

Increment  1: Step Time =  1.000

Primary Var: U, Magnitude

Deformed Var: U Deformation Scale Factor: +3.720e+00

48
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Numerical Example

+4.216e-02 +1.075¢-01
+3.676e-02 [ +9.328e-02
+3.136e-02 ] : +7.902¢-02
+2.5950-02 [ - +6.4760-02
+2.055e-02 +5.050e-02
+1.515¢-02 1+3.6240-02
+9.750e-03 +2.198e-02
+4.3480-03 +7.7222-03
-1.054¢-03 -6.538¢-03
-B.45650-03 -2.080e-02
-1.186e-02 -3.506¢-02
-1.726e-02 -4.932e-02
-2.266e-02 -6.358e-02

()
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Numerical Exam

S, Mises
{Avg: 75%)

+6.773e+00
+6.208e+00
+6.644e+00
+65.080e+00
+4.516e+00
+3.9561e+00
+3.386e+00
+2.822e+00
+2.268e+00
+1.693e+00
+1.12%e+00
+6.644e-01

+0.000e+00

G <

- X

ODB: EdgeCrack.odb  Abaque/Stan

Step: Loading
Increment  1: Step Time = 1.000

Primary Var: S, Mises

Deformed Var: U Deformation Scale Factor: +3.720e+00

Factor:

w

+0.00

PennState




Example Applications
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Example Applications

2 cracks in a blade

i w
AR AT BN

Duflot, Marc, et al. "Application of XFEM to multi-site crack
propagation.” Engng Fract Mech, submitted for publication(2008).

52
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Example Applications

Abaqus XFEM simulation for tensile test

https://www.youtube.com/watch?v=QJws0SaGdl|

S, Mises
(Avg: 75%)

+4.497e+08
+4.122e+08
+3.748e+08
+3.373e+08
+2.998e+08
+2.623e+08
+2.249e+08
+1.874e+08
+1.499e+08
+1.124e+08
+7.495e+07
+3.748e+07
+0.000e+00

Step: Step-1
Increment 39: Step Time = 3.900
Il »I" o 0027005

53
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https://www.youtube.com/watch?v=QJws0SaGdII

Thank you!
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