
Extended Finite Element Method

Yijie Li
Fangya Niu
Ruiqi Wang

Jiayi Yu
Yiming Zhang

1



Introduction

2



Introduction
➢Finite Element Method (FEM)

○ A numerical tool to obtain approximate solutions of PDEs.

○ Steps:
• Discretization of the solution region;
• Derivation of equations;
• Assemble all the elements;
• Solving equations.

o Requirements: 
• the mesh has to conform to the geometry;
• Remeshing at each step.
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Mesh in FEM

Allan F. Bower, “Applied Mechanic of Solids”.



Introduction
➢Extended Finite Element Method (XFEM)

○ A powerful tool for discontinuous problems.

○ Enables accurate capture of non-smooth features.

○ Avoid using a mesh that conforms to cracks with overcoming remeshing difficulties 
as in FEM.

○ Enrich the elements near the crack tip and along the crack faces.
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Introduction
➢FEM vs. XFEM Performance

(a)                                  (b)                                                (c)
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Modeling of discontinuities in FEM and XFEM. (a) Crack propagation in a plate with a
hole; (b) FEM using adaptive mesh refinement; (c) XFEM with enrichment of the elements.

Extended Finite Element Method: Theory and Applications, First Edition. Amir R. Khoei.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



Introduction
➢Comparisons

o XFEM vs. FEM

• XFEM : useful for discontinuities problems since enrichment functions are added to 
FEM; cracks can propagate along a natural arbitrary path.

• FEM: poor for arbitrary discontinuities problems; cracks only propagate along the 
element edge.

o Boundary Element Method (BEM) vs. XFEM 

• It is applicable for multi-material/ phase problems.
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Introduction
➢Advantages of XFEM

o Cracks with complex geometry can be modeled

o No need of remeshing

o Less expensive

➢Shortcomings of XFEM

o Hard to localize the initial fracture

o Only for linear elastic fracture mechanics
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Historical Perspective
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Historical Perspective
➢Ted Belytschko and Tom Black (1999)

○ A improved technique for finite elements based on a partition-of-unity which 
involves minimal remeshing.

○ Not yet applicable for long cracks and 3D.

➢Nicolas Moës, John Dolbow, and Ted Belytschko (1999)

○ Incorporating a discontinuous field across the crack faces away from the crack tip.

○ Independent of remeshing
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Historical Perspective
➢Stolarska et al. (2001 )

○ Apply level set method  within the framework of X-FEM

○ The level set method is used to represent the crack location, including the location of 
crack tips

➢Sukumar et al. (2001 )

○ Proposed enrichment function for holes and inclusion
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Historical Perspective
➢Réthoré et al (2005)

○ Discuss the mathematical properties of X-FEM

○ Prove the stability of the numerical scheme in the linear case 

➢Chessa and Belytschko (2004-2005 )
○ Extent the enriching shape function in time axis

○ space-time extended finite element method

➢Belytschko (2006)
○ mesh-free method

○ no additional unknowns are introduced at the nodes whose supports are crossed by 
discontinuities
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Historical Perspective
➢Gravouil(2007)

○ Model of frictional contact along crack faces via X-FEM

➢Fang and Jin(2007)

○ X-FEM algorithm was coupled with commercial software ABAQUS
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General Principles
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Enrichment Function
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➢Goal

○ Increase the accuracy of the approximation by including information of 
the analytical solution.

➢Ways of enrichment

○ Intrinsic enrichment: Enrich the basic vector

○ Extrinsic enrichment: Enrich the approximation



Enrichment Function
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•

No additional unknowns



Enrichment Function
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➢Extrinsic Enrichment

○ Enrich the approximation by adding the enrichment functions to the standard 
approximation.

○ *Local* extrinsic enrichment, instead of enriching whole domain of the solution.

○ Shows a systematical error in partially enriched elements.



Enrichment Function
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•

Additional unknowns

Enrichment



Enrichment Function
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➢Different techniques used for enrichment function

○ Signed distance function
○ Level set function 
○ Heaviside jump function
○ …

➢Dependency on the conditions of problem

○ Ex. Discontinuity
Level Set Function
Heaviside Function 

• Different types of material properties
• Different displacement fields on 

either sides of the discontinuity



Enrichment Function
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➢Level Set Method

○ Definition: A numerical technique for tracking moving interfaces.

○ The interface is represented as the zero level set of a function 

• One dimension (time) higher than the dimension of the interface
• Evolved by solving the hyperbolic conservation laws
• Independent of element mesh

○ Most common function: signed distance function



Enrichment Function
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•



Enrichment Function
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•

Signed distance function



Enriched Shape Function
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➢Describing a Strong Discontinuity Surface
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Enriched Shape Function

23

•

Interface



Governing Equations
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Governing Equation

25

Ø Strong Form of the Equilibrium Equation:  

in Ω

Ø Boundary Conditions: 

• Displacement (Dirichlet) B.C.:

• Traction (Neumann) B.C.:

• Internal B.C.: 

! = #! $% Γ'

( ) %* = ,̃ $% Γ-
( ) %*. = ̅,0 $% Γ0

1 ) ( + 3 = 0

• For domain with strong discontinuity, 
( ) %*. = 0 



Governing Equation
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ØWeak Form formulation of the Equilibrium Equation:  

Multiplying by the test functions, !"($, &), and integrate over the domain Ω( ) * + , = 0

Strong Discontinuities

Weak Discontinuities

Divergence theorem



Governing Equation
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!"# − % = 0

• K, total stiffness matrix
• F, external force vector
• "(, vector of degrees of nodal 

freedom (classical and enriched)



Governing Equation
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!"# − % = 0



Hand-Calculation 
Examples
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Hand-Calculation

Consider a 1D bar of length 3L. 

Let E be the elastic moduli and A be the cross-

sectional area of the bar. 

The bar is subjected to a prescribed displacement 

at the end while the other end of the bar is fixed. 

The bar is cracked at its mid length, L=1.5L.
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Hand-Calculation
� XFEM Solution with Non-aligned Mesh

Enriched basis function for a strong discontinuity in 1D

! " = ∑%&'( (% " !% + ∑*&'+ (* " , -(") 0*(1) + ∑2&'3 (2 " 4 " 52(1)



Hand-Calculation
Ø XFEM Solution with Non-aligned Mesh

1 2 3
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Hand-Calculation
Ø XFEM Solution with Non-aligned Mesh

1 2 3
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Hand-Calculation
� XFEM Solution with Non-aligned Mesh

1 2 3

Element No.2



Hand-Calculation
� XFEM Solution with Non-aligned Mesh

1 2 3

Element No.2



Hand-Calculation
� XFEM Solution with Non-aligned Mesh

1 2 3

Element No.2



Hand-Calculation
� XFEM Solution with Non-aligned Mesh

1 2 3

Element No.2



Hand-Calculation
� XFEM Solution with Non-aligned Mesh

!" = 0
!% = &!

1 2 3
Not a nodal interpolant.

Enriched displacement approximation



Hand-Calculation
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� Standard Finite Element Method

The finite element mesh has to be aligned 
with the crack.



Hand-Calculation
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� Compare XFEM Solution with Standard Finite Element Method

Numerical solution of displacement field using XFEM and FEM



Hand-Calculation
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Source:  Dibakar Datta



Hand-Calculation
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Source:  Dibakar Datta



Hand-Calculation
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Source:  Dibakar Datta



Numerical Example
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Numerical Example
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2D Static Edge Crack

Un-cracked Domain:

• 2D Planar,

• (−2,2) (2,2)
(−2,−2) (2, −2)

• 41x41

• Aluminum
• E = 70 Gpa
• & = 0.33
• Max. Principle Stress: 500 Mpa



Numerical Example
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2D Static Edge Crack

Cracked Domain:

• 2D Planar with wire 

• (−2,0) (−1,0) for the crack

Roller B.C.:
u1 = u3 = 0

Fixed B.C.:
u1 = u2 = u3 = 0

Uniform Pressure loading 

Uniform Pressure loading 



Numerical Example
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Numerical Example
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Numerical Example
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Numerical Example
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Example Applications
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Example Applications
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Application of XFEM to multi-site crack propagation

Duflot, Marc, et al. "Application of XFEM to multi-site crack 
propagation." Engng Fract Mech, submitted for publication(2008).



Example Applications
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Abaqus XFEM simulation for tensile test

https://www.youtube.com/watch?v=QJws0SaGdII

https://www.youtube.com/watch?v=QJws0SaGdII


Thank you!
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