Extended Finite Element Method

Yijie Li Fangya Niu Ruiqi Wang Jiayi Yu Yiming Zhang

1

2

≻ Finite Element Method (FEM)

- A numerical tool to obtain approximate solutions of PDEs.
- Steps:
 - Discretization of the solution region;
 - Derivation of equations;
 - Assemble all the elements;
 - Solving equations.
- Requirements:
 - the mesh has to conform to the geometry;
 - Remeshing at each step.

Mesh in FEM

Allan F. Bower, "Applied Mechanic of Solids".

≻Extended Finite Element Method (XFEM)

- A powerful tool for discontinuous problems.
- Enables accurate capture of non-smooth features.
- Avoid using a mesh that conforms to cracks with overcoming remeshing difficulties as in FEM.
- Enrich the elements near the crack tip and along the crack faces.

≻FEM vs. XFEM Performance

Modeling of discontinuities in FEM and XFEM. (a) Crack propagation in a plate with a hole; (b) FEM using adaptive mesh refinement; (c) XFEM with enrichment of the elements.

Extended Finite Element Method: Theory and Applications, First Edition. Amir R. Khoei. © 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.

≻Comparisons

- o XFEM vs. FEM
 - XFEM : useful for discontinuities problems since enrichment functions are added to FEM; cracks can propagate along a natural arbitrary path.
 - FEM: poor for arbitrary discontinuities problems; cracks only propagate along the element edge.
- Boundary Element Method (BEM) vs. XFEM
 - It is applicable for multi-material/ phase problems.

≻Advantages of XFEM

- O Cracks with complex geometry can be modeled
- O No need of remeshing
- O Less expensive

≻Shortcomings of XFEM

- O Hard to localize the initial fracture
- O Only for linear elastic fracture mechanics

8

≻Ted Belytschko and Tom Black (1999)

- A improved technique for finite elements based on a partition-of-unity which involves minimal remeshing.
- Not yet applicable for long cracks and 3D.

≻Nicolas Moës, John Dolbow, and Ted Belytschko (1999)

- Incorporating a discontinuous field across the crack faces away from the crack tip.
- \circ Independent of remeshing

≻Stolarska et al. (2001)

- Apply level set method within the framework of X-FEM
- The level set method is used to represent the crack location, including the location of crack tips

≻Sukumar et al. (2001)

• Proposed enrichment function for holes and inclusion

≻Réthoré et al (2005)

- Discuss the mathematical properties of X-FEM
- Prove the stability of the numerical scheme in the linear case

≻Chessa and Belytschko (2004-2005)

- Extent the enriching shape function in time axis
- space-time extended finite element method

≻Belytschko (2006)

- mesh-free method
- no additional unknowns are introduced at the nodes whose supports are crossed by discontinuities

≻Gravouil(2007)

• Model of frictional contact along crack faces via X-FEM

≻Fang and Jin(2007)

 \circ X-FEM algorithm was coupled with commercial software ABAQUS

General Principles

≻Goal

• Increase the accuracy of the approximation by including information of the analytical solution.

≻Ways of enrichment

- Intrinsic enrichment: Enrich the basic vector
- Extrinsic enrichment: Enrich the approximation

≻Intrinsic Enrichment

 \circ Enhance the approximation space u(x) by including the new basis functions.

$$\circ \quad \boldsymbol{u}(\boldsymbol{x}) = \sum_{i=1}^{p} \widehat{N}_{i}(\boldsymbol{x}) \overline{a}_{i} \qquad \widehat{N}(\boldsymbol{x}) = \left\langle N^{std}(\boldsymbol{x}), N^{enr}(\boldsymbol{x}) \right\rangle$$

 N^{std}(x) - Standard polynomial functions N_i(x)
 N^{enr}(x) - Enriched shape functions obtained from N_i(x)p_j(x)
 ā - A vector of coefficients obtained from one of the least-squares techniques No additional unknowns

≻Extrinsic Enrichment

- Enrich the approximation by adding the enrichment functions to the standard approximation.
- *Local* extrinsic enrichment, instead of enriching whole domain of the solution.
- Shows a systematical error in partially enriched elements.

≻Extrinsic Enrichment

• The general enhanced solution field in the X-FEM:

$$u(x) = \sum_{i=1}^{N} N_i(x)\overline{u}_i + \sum_{k=1}^{p} \sum_{j=1}^{M_k} \overline{N}_j(x)\psi_k(x)\overline{a}_{kj}$$
Additional unknowns
Enrichment

- $M_k \subseteq N$ sets of nodal points, enriched by functions $\psi_k(x)$
- o $\boldsymbol{\psi}_{\boldsymbol{k}}(\boldsymbol{x})$ Enrichment functions

≻Different techniques used for enrichment function

- Signed distance function
- \circ Level set function
- Heaviside jump function
- o ...

≻ Dependency on the conditions of problem

- Ex. Discontinuity
- Different types of material properties Level Set Function
- Different displacement fields on → Heaviside Function either sides of the discontinuity

≻Level Set Method

- Definition: A numerical technique for tracking moving interfaces.
- \circ The interface is represented as the zero level set of a function
 - One dimension (time) higher than the dimension of the interface
 - Evolved by solving the hyperbolic conservation laws
 - Independent of element mesh
- Most common function: signed distance function

≻Signed Distance Function

- $\circ \varphi(x) = \|x x^*\| sign(n_{\Gamma_d}(x x^*))$
- $\circ x^*$ the closest point projection of x onto the discontinuity Γ_d
- \circ n_{Γ_d} the normal vector to the interface at point x^*
- $|| \mathbf{x} \mathbf{x}^* ||$ specifies the distance of point x to discontinuity $\boldsymbol{\Gamma}_d$

≻Heaviside Function

$$\circ \ H(x) = \begin{cases} 0, \ if \ \varphi(x) < 0 \\ 1, \ if \ \varphi(x) > 0 \end{cases} \qquad H(x) = \begin{cases} -1, \ if \ \varphi(x) < 0 \\ +1, \ if \ \varphi(x) > 0 \end{cases}$$

 \circ The approximation field can be written as

Signed distance function

- $\circ \ \boldsymbol{u}(\boldsymbol{x}) = \sum_{i=1}^{N} N_i(\boldsymbol{x}) \overline{\boldsymbol{u}}_i + \sum_{j=1}^{M} N_j(\boldsymbol{x}) \boldsymbol{H}(\boldsymbol{x}) \overline{\boldsymbol{a}}_j$
- Basis of definition of the kinematics of the strong discontinuity (a jump in the displacement field).

Enriched Shape Function

► Describing a **Strong** Discontinuity Surface

$$u(x) = \sum_{i=1}^{N} N_i(x)u_i + \sum_{j=1}^{M} N_j(x)H(f(x))a_j(t) + \sum_{k=1}^{S} N_k(x)\phi(x)b_k(t)$$
Crack-crossed Crack-embedded

$$\circ$$
 a_j , b_k - Enriched DOFs at the element node

$$\circ \quad H(x) = \begin{cases} -1, & \text{if } x < 0 \\ +1, & \text{if } x \ge 0 \end{cases}$$

$$\circ \quad f(x) = min \|x - x^*\| sign(n_{\Gamma_d}(x - x^*))$$

$$\circ \quad \phi(x) = \left[\sqrt{r}\sin\frac{\theta}{2}, \sqrt{r}\sin\frac{\theta}{2}\sin\theta, \sqrt{r}\cos\frac{\theta}{2}, \sqrt{r}\cos\frac{\theta}{2}\sin\theta\right]$$

Enriched Shape Function

► Describing a Weak Discontinuity Surface

- Displacement field continues at the interface
- Derivative of displacement field (strain field) is discontinues
 - Material difference

$$u(x,t) = \sum_{i=1}^{N} N_i(x) u_i(t) + \sum_{j=1}^{M} N_j(x) \phi(x) q_j$$

Interface

- $\circ \boldsymbol{\phi}(\boldsymbol{x}) = \sum_{i} |f(\boldsymbol{x}_{i})| N_{i}(\boldsymbol{x}) |\sum_{i} |f(\boldsymbol{x}_{i})| N_{i}(\boldsymbol{x})|$
- $\circ q_j$ the new added DOF at the node

Strong Form of the Equilibrium Equation:

$$\nabla \cdot \sigma + b = 0 \qquad \text{in } \Omega$$

Boundary Conditions:

- Displacement (Dirichlet) B.C.: $u = \tilde{u} \text{ on } \Gamma_u$
- Traction (Neumann) B.C.: $\sigma \cdot n_{\Gamma} = \tilde{t} \text{ on } \Gamma_t$
- Internal B.C.: $\sigma \cdot n_{\Gamma_d} = \bar{t}_d \text{ on } \Gamma_d$

• For domain with strong discontinuity, $\sigma \cdot n_{\Gamma_d} = 0$

> Weak Form formulation of the Equilibrium Equation:

$$\int_{\Omega} \nabla \delta \mathbf{u} : \boldsymbol{\sigma} \, d\Omega - \int_{\Gamma_t} \delta \mathbf{u} \cdot \bar{\mathbf{t}} \, d\Gamma - \int_{\Omega} \delta \mathbf{u} \cdot \mathbf{b} \, d\Omega = 0$$

$$\downarrow$$

$$K\overline{U} - F = 0$$

- *K*, total stiffness matrix
- *F*, external force vector
- \overline{U} , vector of degrees of nodal freedom (classical and enriched)

$$\begin{split} & K\overline{U} - F = 0 \qquad \qquad \left[\begin{matrix} \mathbf{K}_{uu} & \mathbf{K}_{ua} \\ \mathbf{K}_{au} & \mathbf{K}_{aa} \end{matrix} \right] \left\{ \begin{matrix} \bar{\mathbf{u}} \\ \bar{\mathbf{a}} \end{matrix} \right\} = \left\{ \begin{matrix} F_u \\ F_a \end{matrix} \right\} \\ & \mathbf{K} = \begin{bmatrix} \int_{\Omega} (\mathbf{B}^{std})^T \mathbf{D} \mathbf{B}^{std} d\Omega & \int_{\Omega} (\mathbf{B}^{std})^T \mathbf{D} \mathbf{B}^{enr} d\Omega \\ \int_{\Omega} (\mathbf{B}^{enr})^T \mathbf{D} \mathbf{B}^{std} d\Omega & \int_{\Omega} (\mathbf{B}^{enr})^T \mathbf{D} \mathbf{B}^{enr} d\Omega \end{bmatrix} \\ & \mathbf{F} = \begin{cases} \int_{\Gamma_t} (\mathbf{N}^{std})^T \bar{\mathbf{t}} \, d\Gamma + \int_{\Omega} (\mathbf{N}^{std})^T \mathbf{b} \, d\Omega \\ \int_{\Gamma_t} (\mathbf{N}^{enr})^T \bar{\mathbf{t}} \, d\Gamma + \int_{\Omega} (\mathbf{N}^{enr})^T \mathbf{b} \, d\Omega \end{cases} \\ & \mathbf{B}_i^{std} = \begin{bmatrix} \frac{\partial N_i / \partial x & 0}{0 & \frac{\partial N_i / \partial y}{\partial N_i / \partial x} \end{bmatrix} \\ & \mathbf{B}_j^{enr} = \begin{bmatrix} \frac{\partial [N_j(\mathbf{x}) (\psi(\mathbf{x}) - \psi(\mathbf{x}_j))] / \partial x & 0 \\ 0 & \frac{\partial [N_j(\mathbf{x}) (\psi(\mathbf{x}) - \psi(\mathbf{x}_j))] / \partial x & 0 \\ 0 & \frac{\partial [N_j(\mathbf{x}) (\psi(\mathbf{x}) - \psi(\mathbf{x}_j))] / \partial y}{\partial [N_j(\mathbf{x}) (\psi(\mathbf{x}) - \psi(\mathbf{x}_j))] / \partial y} \end{bmatrix} \\ & \mathbf{N}_j^{enr} = \begin{bmatrix} N_j(\mathbf{x}) (\psi(\mathbf{x}) - \psi(\mathbf{x}_j)) & 0 \\ 0 & N_j(\mathbf{x}) (\psi(\mathbf{x}) - \psi(\mathbf{x}_j)) \end{bmatrix} \\ \end{cases}$$

Hand-Calculation Examples

Consider a 1D bar of length 3L.

Let E be the elastic moduli and A be the crosssectional area of the bar.

The bar is subjected to a prescribed displacement at the end while the other end of the bar is fixed.

The bar is cracked at its mid length, L=1.5L.

XFEM Solution with Non-aligned Mesh

$$u_{XFEM} = \sum_{i=1}^{N} N_i u_i + \sum_{j=1}^{M} N_j H(x) a_j$$

Enriched basis function for a strong discontinuity in 1D

> XFEM Solution with Non-aligned Mesh

Element No.1

$$\xrightarrow{u_1} 1 \xrightarrow{u_2} 2 \xrightarrow{u_3} 3 \xrightarrow{u_4}$$

$$\xrightarrow{a_1} \xrightarrow{a_2}$$

The step function H(x) = -1

$$N_{std}^{u} = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix} \qquad N_{enr}^{a} = H\begin{bmatrix} \frac{x}{L} \end{bmatrix} = \begin{bmatrix} -\frac{x}{L} \end{bmatrix}$$
$$B_{std}^{u} = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \qquad B_{enr}^{a} = H\begin{bmatrix} \frac{1}{L} \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} \end{bmatrix}$$

$$K_{uu} = EA \int_{0}^{L} (B_{std}^{u})^{T} B_{std}^{u} dx = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$K_{ua} = EA \int_{0}^{L} (B_{std}^{u})^{T} B_{enr}^{a} dx = \frac{EA}{L} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$K_{au} = K_{ua}^{T}$$

$$K_{aa} = EA \int_{0}^{L} (B_{enr}^{a})^{T} B_{enr}^{a} dx = \frac{EA}{L}$$

$$K_{e^{1}} = \frac{EA}{L} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

> XFEM Solution with Non-aligned Mesh

Element No.3

The step function H(x) = +1

$$N_{std}^{u} = \begin{bmatrix} 1 - \frac{x}{L} & \frac{x}{L} \end{bmatrix} \qquad N_{enr}^{a} = H \begin{bmatrix} 1 - \frac{x}{L} \end{bmatrix} = \begin{bmatrix} 1 - \frac{x}{L} \end{bmatrix}$$
$$B_{std}^{u} = \begin{bmatrix} -\frac{1}{L} & \frac{1}{L} \end{bmatrix} \qquad B_{enr}^{a} = H \begin{bmatrix} -\frac{1}{L} \end{bmatrix} = \begin{bmatrix} -\frac{1}{L} \end{bmatrix}$$

$$K_{uu} = EA \int_{0}^{L} (B_{std}^{u})^{T} B_{std}^{u} dx = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$K_{ua} = EA \int_{0}^{L} (B_{std}^{u})^{T} B_{enr}^{a} dx = \frac{EA}{L} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$K_{au} = K_{ua}^{T}$$

$$K_{aa} = EA \int_{0}^{L} (B_{enr}^{a})^{T} B_{enr}^{a} dx = \frac{EA}{L}$$

$$K_{e^{3}} = \frac{EA}{L} \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

XFEM Solution with Non-aligned Mesh

XFEM Solution with Non-aligned Mesh

$$K_{uu} = EA \int_0^L (B_{std}^u)^T B_{std}^u \, dx = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$K_{ua} = K_{ua}^+ + K_{ua}^-$$
$$K_{au} = K_{au}^+ + K_{au}^-$$
$$K_{aa} = K_{aa}^+ + K_{aa}^-$$

XFEM Solution with Non-aligned Mesh

Integrating on +, the enrichment function H(x) = +1

$$K_{ua}^{+} = EA \int_{0}^{\frac{L}{2}} (B_{std}^{u})^{T} B_{enr}^{a} dx = \frac{EA}{2L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$K_{aa}^{+} = EA \int_{0}^{\frac{L}{2}} (B_{enr}^{a})^{T} B_{enr}^{a} dx = \frac{EA}{2L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

Integrating on -, the enrichment function H(x) = -1

$$K_{ua}^{-} = EA \int_{\frac{L}{2}}^{L} (B_{std}^{u})^{T} B_{enr}^{a} dx = \frac{EA}{2L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
$$K_{aa}^{-} = EA \int_{\frac{L}{2}}^{L} (B_{enr}^{a})^{T} B_{enr}^{a} dx = \frac{EA}{2L} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

XFEM Solution with Non-aligned Mesh

$$K_{ua} = K_{ua}^{+} + K_{ua}^{-} = \frac{EA}{2L} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$K_{aa} = K_{aa}^{+} + K_{aa}^{-} = \frac{EA}{L} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$K_{au} = K_{ua}^{T}$$

$$K_{e^2} = \frac{EA}{L} \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

XFEM Solution with Non-aligned Mesh

Enriched displacement approximation

Standard Finite Element Method

The finite element mesh has to be aligned with the crack.

Compare XFEM Solution with Standard Finite Element Method

Numerical solution of displacement field using XFEM and FEM

$$u^{h}(x) = \sum_{i \in I} u_{i} N_{i}(x) + \sum_{i \in I} a_{i} N_{i}(x) H(x) + \sum_{i \in K_{1}} N_{i}(x) \left(\sum_{l=1}^{4} b_{i,1}^{l} F_{1}^{l}(x) \right) + \sum_{i \in K_{2}} N_{i}(x) \left(\sum_{l=1}^{4} b_{i,1}^{l} F_{2}^{l}(x) \right)$$

- *I* is the set of nodes in the mesh. • u_i is the classical (vectorial) degree of freedom at node i.
- N_i is the scalar shape function associated to node i. ٠
- $L \subset I$ is the subset of nodes enriched by the Heaviside function. The corresponding (vectorial) DOF are denoted a_i .
- $K_1 \subset I$ and $K_2 \subset I$ are the set of nodes to enrich to model crack tips numbered 1 and 2, respectively. The corresponding degrees of freedom are $b_{l,1}^l$ and $b_{l,2}^l$, l = 1, ..., 4.
- Functions $F_1^l(x), l = 1, ..., 4$ modeling the crack tip are given in elasticity by : •

$$\{F_1^{\prime}(x)\} = \{\sqrt{r}\sin\left(\frac{\theta}{2}\right), \sqrt{r}\cos\left(\frac{\theta}{2}\right), \sqrt{r}\sin\left(\frac{\theta}{2}\right)\sin(\theta), \sqrt{r}\cos\left(\frac{\theta}{2}\right)\sin(\theta)\}$$

Vector Enrichment:

Vector Enrichment:

$$\underline{u} = \sum u_i N_i + \sum K_{1i} N_i G_1(r, \theta) + \sum K_{2i} N_i G_2(r, \theta) \qquad \underline{u} = \sum u_i N_i + \sum a_i N_i F_1(r, \theta) + \sum b_i N_i F_2(r, \theta) + \sum c_i N_i F_3(r, \theta) + \sum d_i N_i F_4(r, \theta) + \sum c_i N_i F_4(r, \theta)$$

Source: Dibakar Datta

Fig 2.11: Crack tip circular region

Fig 2.9: Normalized Stress Distribution for Mode 1.

Solution for Stress Field:

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{bmatrix} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \begin{bmatrix} 1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \\ 1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \\ \sin \frac{\theta}{2} \cos \frac{3\theta}{2} \end{bmatrix}$$

Solution for Displacement Field:

$$\begin{bmatrix} \mu_x \\ \mu_y \\ \mu_z \end{bmatrix} = \frac{2K_i}{\sqrt{2\pi E}} \begin{bmatrix} \sqrt{r} \cos\frac{\theta}{2} \Big[(1-\upsilon) + (1+\upsilon) \sin^2\frac{\theta}{2} \Big] \\ \sqrt{r} \sin\frac{\theta}{2} \Big[2 - (1+\upsilon) \Big] \cos^2\frac{\theta}{2} \\ -\frac{\upsilon B}{\sqrt{r}} \cos\frac{\theta}{2} \end{bmatrix}$$

Fig 2.10: Normalized Displacement Distribution for Mode 1.

Source: Dibakar Datta

Source: Dibakar Datta

44

2D Static Edge Crack

Un-cracked Domain:

- 2D Planar,
- $\begin{bmatrix} (-2,2) & (2,2) \\ (-2,-2) & (2,-2) \end{bmatrix}$
- 41x41
- Aluminum
- E = 70 Gpa
- v = 0.33
- Max. Principle Stress: 500 Mpa

Uniform Pressure loading

50

Example Applications

51

Example Applications

Duflot, Marc, et al. "Application of XFEM to multi-site crack propagation." Engng Fract Mech, submitted for publication(2008).

Example Applications

Abaqus XFEM simulation for tensile test

https://www.youtube.com/watch?v=QJws0SaGdII

Thank you!

