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Day 1 (Tuesday June 9", 2015)
1. Reactive Flow and Permeability Dynamics — |
Reactive Flow and Permeability Dynamics — 11
—————— Lunch -----
Introduction to Computational Reservoir Geomechanics [1:1]
4. Fluid Flow and Pressure Diffusion [2:-]
a. Finite Element Methods [2:1]
b. Conservation Equations and Galerkin Approximation [2:2]
c. Self-Study — 2D Triangular Constant Gradient Elements [2:3]
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Day 2 (Wednesday June 10", 2015)

1. Geomechanics of Coal and Gas Shales

2. Fluid Flow and Pressure Diffusion, Continued [2:-]
a. 1D Isoparametric Elements [2:4]

—————— Lunch -----

b. 2D Isoparametric Elements and Numerical Integration [2:5]
c. Transient Behavior — “Mass” Matrices [2:6]
d. Transient Behavior — “Integration in Time [2:7]

3. Mass Transport [3:-]
d. Self-Study — Conservation of Mass and 1D Models [3:1]
e. Self-Study — 2D Constant Gradient Elements [3:2]
f.  Self-Study — Sorption and Reactive Transport [3:3]

4. Momentum Transport [4:-]
g. Self Study — Fluids, Navier-Stokes Equations [4:1]

Day 3 (Thursday June 11", 2015)

1. Gas Fracturing in Unconventional Reservoirs

2. Solid Mechanics [5:-]
a. 1D and 2D Elements [5:1]

—————— Lunch -----

b. Constitutive Equations [5:2]

3. “Coupled” Multiphysics Systems [6:-]
a. Dual-Porosity/Dual-Permeability Models [6:1]
b. Coupled Hydro-Mechanical Models [6:2]
c. Self-Study — ComSol Models for HM Coupling [6:3]
d. Self-Study — EGEEfem Models for HM Coupling [6:4]
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Basic Observations of Permeability Evolution

Resource
Hydrothermal (US:10 ET)
US:107 ET; 100 6W in 50y)

Challenges

* Prospecting (characterization)
* Accessing (drilling)

* Creating reservoir

« Sustaining reservoir

« Environmental issues

Observation
* Stress-sensitive reservoirs
* T H M C all influence via effective stress
« Effective stresses influence

« Permeability

* Reactive surface area

« Induced seismicity

Understanding T H M C is key:

« Size of relative effects of THMC A

« Timing of effects Pz’"’“ﬁﬂb"'fy

+ Migration within reservoir Reactive SU_FfﬂCe area
Induced seismicity

* Using them to engineer the reservoir

3 ems psued B jerek elsworth@psu.ed

Scaling Between Laboratory and Observation

Prototype (reality)
Model (linkage)

Pressure (20):)/) K

Temperature (2!

Deviatoric
stress (20y)

Permeability (20

< A '- Experiment
(constitutive
behavior):
K=f(THMC)

<
t o Injection

Withdrawal
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Controls on Reservoir Evolution

Many processes of vital importance to EGS are defined
by coupled THMC processes.
Thermal sweep/fluid residence time
Short circuiting
Induced seismicity
Prolonged sustainability of fluid transmission

Fractures dominate the fluid
transfer system
Transmission characterized by:

History of mineral deposition
Chemo-mechanical creep at ing asperiti

Mechanical compaction
Shear dilation and the reactivation of relic fractures .

120°C 150°C

: 10
- 09 __
o 5
g f System shut for 2 min r o8 z
£ S
g 81 '"r@y%@mshutfom.fm los ®
o kS
E 3
E 61 System shutfor 4 h L0685
- r Scan o
<3 . 2
T 44 Los @

A -
2 T T T T T 0.4
0 50 100 150 200 400 600 800 1000
Time (h) [Polak et al., GRL, 2003]

Typical Response of Fractures (Precipitation)

Experimental arrangement

Precipitation

[Dobson et al., 2001]
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Reactive Transport [1]

Advection-Dispersion Equation

O Ve =V (DFe) = By (o~ ) 0

For the reaction:

A+n—’”~k’fc @

Forward rate = ki[4](B]

Reverserate =  k[C] 3
At equilibrium: Forward rate = Reverse rate
K[4]1B] = k[C] @
4118 = (0] ®
kﬁ

For closed system and one mole each of [A] and of [B], with k =1 and &, = 10, then:

[AlB] _ (- X? _10

0] X 1 ©
And (1- X) = [4] = [B] = 0.916 and X=[C] = 0.0839.
Reactive Transport [2]
Implementation:
R, = —k[4][B] + k[C]
R, = -k[4][B] + Kk[C] (G
R. = +k[4][B] - k[C]
Generalized:
v
R ==k/Tte/ 17 +& ]l 1 ®)
J=1 J=t
Heats of reaction:
H,=RAH, ©)
And heat balance requires:
pcgjnv-(n)‘v-(wm:ﬁx (10)
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Basic Observations of Permeability Evolution
N Resource

Observation + Hydrothermal (US:104 E7)
+ Stress-sensitive reservoirs . US:107 ET 100 GW in 50y)
* T H M C dll influence via effective stress
« Effective stresses influence

« Permeability

* Reactive surface area

* Induced seismicity

Stress Changes
Inert changes (THM)

Reactive changes (MC)

Understanding T H M C is key:

« Size of relative effects of THMC
« Timing of effects

* Migration within reservoir

* Using them to engineer the reservoir f

{ Permeability

Reactive surface area
Induced seismicity

Permeability Changes in Fractures - Deformation

o
/Normal Mode:
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Role of stress and hysteresis
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[Min et al., TTRM, 2009]
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opening opening

shear stress

Shear Dilation of Fractures

closing

closing

. shear

Normal closure behavior

Shear dilatancy behavior

K 1
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2o

shear

Rate-State Friction [1]
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Porosity-Permeability Relationships

Single fracture versus bulk permeability
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Role of Wear Products
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Fractured Limestone — Features of Response
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Fractured Limestone — Features of Response
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Reactive - Hydrodynamic Controls

Peclet No. (Pe)

[ Pe < 1 Dispersion dominated —

_ Advective flux _ (q) b, Perturbations damped

Pe

Dispersive flux - D, D, 7 pe > 1 Advection dominated —

Perturbations enhanced

Damkohler No. (Da) .
[ Da << 1 Reaction slow -

X 5 R Undersaturated along fracture —
_ Reactive flux _ 24,1 = 2k,L - Perturbations damped

Advective flux <q> v, Da larger << 1 —Reaction faster

Saturated along fracture —
Perturbations enhanced
PeDa No. (Removes <q>)

Reactive flux 2k, L

PeDg=——""7—=—>
Dispersive flux D,

m

Reactive Hydrodynamics: Role of Damkohler

Number (PeDa)
R
ATk
AR
S ’lﬂ
oy : U 2
15 cm x 10cm
Voxel =1 mm
Aperture:
Black (0)- Low PeDa
White(0.25mm) - Time
[Detwiler and Rajaram, WRR, 2007]
Reactive - Mechanical Controls
Stress-Assisted Dissolution (PS) Free-Face Effects (FF)

Dissolution (diss.

M 3z (o,-0.)k.p

m

omia e/ g e am'’ ) .
dt 4RT Tk Apd, ( 1-

Precipitation (prec

dermik 4 v Coone 1”
a - porePg¥ m c

o

Mass-Flux Ratio
Stress-Driven Flux

Dissolution-Driven Flux

_(Mm™) _3m.dlV, (5,-0)
L=\ W 44, RT(-C c,)

pore pore
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Modes of Permeability Evolution

Fracture dilation and closure Fracture closure

(6) = b + (b)) ("R
o~

Mean aperture <4>

Contactarea &,
‘r Chr_:lr!ge inaperture  ; _ ﬂ_\t
(positive in dilation): at
l ‘ Link aperture change 5, o3
\ d_ O 1,
du/dt Idb,m fo fr‘ac_fur‘z volume  5; ot R
(porosity) change:
de/dt Vp i
1vjl:/dt [ Link fracture volume 0¥
i (porosity) change to fluid =
Re The concentration change:

[Elsworth and Yasuhara, ITNAMG, 2009]
ferek.elsworth i
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Modes of Lumped Parameter Permeability Evolution

Isothermal response
Ground water Disted water

50

Flow geometry

—— Experiment
40 |-—o— Predicion

s o
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Temeftv]
[Elsworth and Yasuhara, ITNAMG, 2009]
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Modes of Lumped Parameter Permeability Evolution

Non-isothermal response

Flow geometry

n
_w
3
2
2
L
. =
°
Lumped mass balance equation CT R ™
de . 1% w0
S AT 4 Ble—c)+Q-g,)=0 o
— e, /0t —dey /0t —dcy /0t g g :“::
g =
§ s
2

o 20 w0 0 0 100
Tima )
[Elsworth and Yasuhara, ITNAMG, 2009]
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Component Model

Interface Dissolution M s
d {
3V O kg A
ST wr

ctartoe{5ite)

My _3Vn (04 =0 ki dE

di 4RT

Inte e Di i
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= My _ 2”(“)”](%. o)

dr m[d‘
2a )

Pore Precipitation
am’

e, A e o)
T =V por 3k Crore =Ceg)

[Yasuhara et al., JGR, 2003]
suor @psued

Mass Transfer Modes - Essential Components

Contact geometry evolves with interpenetration

(a)
Gl
Pore concentration allows mass balance for
arbitrarily open or closed systems
] TovortHGpss
Matching Compaction Data :

040 —_

699 MPa

pasl@ 4
50 100 150 0o
. Time [davl :
G -8 H
300 Ja ¢
0,069 9MPa] o, o

|
—e— xperimental data 1
—0— Prediction

Silica conci

10 80 120 160 200 240 280 320

Time [day]
[Experimental data from Elias and Hajash, 1992]
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System Evolution at 35-70 MPa and 150°C

Observation Extension
H——

35MPa and 150°C

70 MPa and 150°C

®
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L — |
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180

170,

160 ppm

; 160§-..... 208
8
4 —=— Long-tem predition
[Experimental data from Elias and Hajash, 1992] 2 ole
[Yasuhara et al., J6R, 2003] T 10 20 30
3.ems.psu.ed Time [vear] ued

Timescales of Evolution of Granular Systems at 35 MPa and 75-150°C

a 040

150°¢ * |

2

b

Strain

Time [year]

0 20 s 70 aow [ 0 £ )
Time [year]

Time Ivearl
[asuhara et al., JGR, 2003]

Permeability Evolution in Granular Systems at 35 MPa and 75-300°C

<Clodepaen> i

o b . 75°C

sonot

et e

eyt e

o 0w

) 150°¢c "

_no
96

Capillary Model: &
Pore Evolution: V, = (7/4)5°d,

nv,
Linked Permeability: k ~ ——
247d,

f R
5 Time [year]

[Yasuhara et al., J6R, 2003]
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Constraint on Fracture Apertures and Fluid Concentrations

=

Asperity Local contact area, ‘ . y
contacts 2
i 2
2 v
— — ‘ Y5 g 1
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- 2
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£ £
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- g [R=082] o
g sl [, o
2 . 4
= e, 9
g © <, g
g S
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Modeling Results - Novaculite

20°C_80°C
s -
4 ¥ 2% c _150°C

—=&— Experimental data
—— Prediction using parameters i

—C— Prediction using modified value:
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A E
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I
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[Yasuhara et al., JGR, 2004]
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Projected Response of Fracture
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behavior for varied g
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2 ub
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I"L T T T T
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Fractured Limestone - Features of Response

» 3
- Ground water Distilled water
£
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[Polak et al., WRR, 2004]
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Fractured Limestone - Features of Response
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o

Novaculite - 20 week response Reversod fow (20°C)
_— 05 00625 1000

200 ¢ 7

;\
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..and Lumped Parameter Prognostic Model for Novaculite ..

k,(PS)*10°
20.0 ! T T T T T
k,(FF)*10° k,(FF)*500 k,(FF)200
= 150
£
=
e
5 100
€
@ )
Q. Experiment
< 50 | —o—Prediction |
20°C 40°C  80°C 120°Q
0.0 1 | L 1 |

0 400 800 1200 1600 2000 2400 2800 3200

Time [hr]

Distributed Parameter Models - Applied to Novaculite ...

1. Set initial aperture distributions . 7
- z. g
g
g 3 s

=3 T e
2. Apply I.C.and B.C. »
— Obtain velocity distr. in a fracture by solving Reynolds’ equation V[TVP}: 0
u

3. Dissolution at contact area and free-face (reaction)
— Obrtain concentration distribution + Modify aperture distribution due to
dissolution

Iteration

s % - FF
aun _dipklo,ma)  dMT
di 4RT d ‘

4. Lagrangian-Eulerian method (Advection-diffusion)
— Obtain concentration distribution within and out of domain
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Distributed Parameter Model - Results for Novaculite ...
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greatly reduced over lumped parameter case.
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« Numerical model is capable of better replicating experiment — multiplier on k, is

TMC-Induced Aperture Change - Stress Control

! '

B

L g
g T . benoostodestoms &
E oL w201, p= 14574000 E
3, \\ o oincrease %
. L 3
cows 7 F
§ T
£ = t00mPa z
S

eplaslexpl (G
=01, 2014,y2 4000

T increase
.

b e [ o

T
TEMPERATURE (°C)

7 o
NORMAL STRESS (WPa)

b=b, +{b,. +b,., exp(—ac”) }exp<—| B —% o’

M & TM induced change

micro-mechanical arguments
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Experimental data needed at a variety of scales
epe 7

MC & TC induced change

Application to novaculite (laboratory) data under stress control
Sparse data but available data conform to the expected response based on

TMC-Induced Aperture Change - Stress Control
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The Role of Irreversible “Chemical” Strains on
Mechanical and Transport Properties

Temperature

@ IAb

Shear Dilation

ress Loss due
© Chemical Strain

Fracture Aperture

lrre:
Stress Loss

Aperture Reduction
(Pressure Solution)

Stress [o]
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Forward/reverse feedbacks on stress-permeability
Reservoir-Scale Evolution of Permeability
Spatial distribution
Timing
Seismicity as an indicator
Summary

e 3 erekcelsworth@psu

Coupled THMC Modeling

TOUGHREACT (THC) - Accommodates A) Cumulative stress loss 2
non-isothermal, multi-component phase (acquired during loading period) “ "}
equilibria, pressure diffusion, multi-phase At

hydrologic transport, and chemical

o
precipitation/dissolution (transient El
mass/energy balance) g
g
oM £
—=-V-F+q 2
ot
FLAC3D (M) - Mechanical constitutive
relations (force equilibrium, capable of
) va
V-o" = —pb : i
B) Stress loss due
o to chemical strain

Chemea PrciptamonDatin A .
Mo -
Ky Ak ‘%
Interpolation 2
lodule ormer Nodes g
Permeability Evolution “ Node <
P i ¢
Time Step Control °l°le° 2

< oleo|e g stress loss
ole|e Aperture reduction
- (pressure solution)

£
TousHACT
Suesstquibrum  Lova R
% FLACID Stress [o]

[Taron et al.. 2009]
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Coupled THMC Modeling

7

. . ¥ o
Chemical —vs- Mechanical Influence
O ey ™ ) :
Es
% Pressure
§ (20 years)
Eon
107
Temperaturg
B o (20 years)
10
= Deviatoric
B | Stress
£7 100 ® 0 40 20 0 2 4 6 8 1 (20 years)
B 10" e sowionthermatdisianony
= To withdrawal
L — \_/\/ Permeability
(20 years)
10

100 80 60 40 20 0 20 40 60 8 100

49
Distance (from injection) [m]

[Taron etal., 2009]

Timescales and Characteristic Times

Toul Thermo-hydraulic
processes combined
Thema in this model.
Onset of chemical
permeability change
a longer time-scale

Hydraulic

process.
Time = Sharp onset of
0 . . . chemical change due
Tremasyae to complete
,,,,, T _3fomiecin

dissolution of all
calcite in veins.

10" 10° 107 10" 10° 10'
Time [years]

Triggered Seismicity - Key Questions

THMC
e
Model: | omesemmin,,
A e |
Principal trigger - change in (effective) T Ko
stress regime: Interpolation
N ap Module o, |
Fluid pressure t FermeatiltyEviion N
Thermal stress e con ole)(e
Chemical creep ™ °

How do these processes contribute to:
Rates and event size (frequency-magnitude)
Spatial distribution
Time history (migration)

How can this information be used to:
Evaluate seismicity
Manage/manipulate seismicity
Link seismicity to permeability evolution

Reservoir
Conditions:

17



Approaches - Rate-State versus Brittle Behavior

o PES =@
a5
o4
u S
83
v 4y o
o2
- v <0
| ~a
| 1
. Rate-State T Brittle
S Low . High . Low
8 velocity | velocity velocity Toax
£ |velocly, veloely j velocly S = =
s alIn(vy, " Ei S
5 Ho In(v/ At E Geg §
5} b))l | I 2 S <. J SERNUNY S iud Il ®
5 ; 1S
3 - De i
: — 8
! =
A =]
Displacement
p

Component Behavior - Reservoir stiffness

— Stiffness: . _ t _307(GA+46)1_3672-v) 1
“Tu, 8(A+26) a  8(1-v) a
Penny-shaped Crack
i k=3¢
-t * 3a
¥ ped (rnan o 3042607
—_— Energy: “2) ™M 56646 36
2TZ 3 -
E =7
T 703G
Magnitude:
L logE, =15M +9.1 _.

Continuum THMC Model

Model: Reservoir Conditions:
THMC Simulator

TN 6,235.0MPa

0,255.0MPa

P,=23.8MPa
T.=70.0Mpa. <

Numerical Model

LargeSingle 7 // /4
o cadrisa /r casrisa L

6/2/15
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Large Fracture Geometry

Penny Shaped erglf\ P

=
Injection

[F————7F]=

Pressure 10 2
20 years)
(20 years) 500m Crack size
Temperature
(20 years) 50
Deviatori e

eviatoric

Stress 20 — 3. 2 1 g
(20 years) 1000m Crack

size
Permeability
(20 years;

jerek elsworth@psu.edu

Short-term Validation
. SModel Results:
i b Value=0.7
2
_ Observed b-value: ~0.7-0.8
g15
s
:g 1
05
] 05 1 15 4 b1 3
Moment Magnitude
zgg 1 month
700
600
500
400
300
200
100
Withdrawal Injection
Migration of Triggered Seismicity
o T e i
- — 05N |
-l f

|2 years

4 years
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Observations of Induced Seismicity (Basel)

W o aw s s e 3 r = I
e Lo day o 2008) s bom eyt part m]

PR

you17s

ST
1 B prerspefiso

P

[Goertz-Allmann et al, 2011] [Shapiro and Dinske, 2009]

jerek elsworth@psu.edu

r-t Plot - Fluid and Thermal Fronts and Induced Seismicity

Distance from injection(m]

Parameters utilized in
simulation
K Permeabilityln] 107
Pt 7, Pare Pressurelipal 148
e I3 £,y Fluid Pressure[Mpa] 78
s k=2
25 T Reservair 250
vty Temperaturel’c]
Ayt Ty Fluid Temperaturel’c] 7
S Frocture Spacinglm] 1010500

Time{month]

Long-Term Projection

[

Distance from injection[m]

7500
Fracture Spacing=1m .
1m<Fracture size<10m 0<M, <1
. 1M, <2
= Hydrodynamic front
5000 — Thermal front

2500

Time[years]

jerek elsworth@psuedu
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Long-Term Projection

<725

]
) o7
15
1 ..
05 .
E 3 i)
= =
5 c) f) 2 700
g 28 i K] %
3 B8 pewe s 3 600 . e
€ R
E Z 500 .
5 £ a0
& -
8 ; 300
lES ‘s 200
2 0 g t
a3 d g 100
) E o
T 2 <M<l 1<M<2
Moment Magnitude
0s
i i
02468101218 0051152253
Time[14 days(after 10 years)) Moment Magnitude

g3.ems psu.edy 6t derekelsworth@psu.edu

Newberry Stimulation

Location

Stacked Reservoir Model

220

Depthim]
L ’¢4’4 o
r-200c 4
e ) o
s
e 4
4
Stimulation Sequen: 7 s

=—>  Phase Il - Injection Well Stimulation / Summer-Fall 2011 =
Drill and Test Production Wells / Fall 2011-Fall 2012

g3.ems psu.edy derekelsworth@psu.edu

Zone Characterstics

Stimulation zones Injectionwell
%, o = S
\\Q\\l >
kwre,bomw\\/ |40, ZoneC -
= :
. 4
e | o
%’f
.
S P
‘Shain MPa 36 45 50 54
SHoue M | 48 H H 10| Si,=0755,
S, MPa 48 60 66 72
Peak Strength MPa 25 30 35 38

6/2/15
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Zone Characteristics

Fracture Network Characterization

Fracture density is 0.5 m

]

=

Large fractures: density of 0.003 m* - spaci

ing 300 m

B)
0.9m
Q
0.26 m?
Fracture Unit— Depthim]
Characterization
2000 =0
ZoneB  ZoneC

Density

T5730m

750m

(

Nomber of secded

frscurss

o0

00

Fracture size
Fracture spacing.

Standard deviation(#)

10-1200
1300
1

101200
1300
19

200<Large Fracture<1200m
10<Small Fracture<200m

Mean( ) S e 360

Cumulative Stress Drop

Models with various
fracture densities:

The mean stress drop is
limited to be smaller than
the maximum prescribed
stress drop.

Fracture density is 0.5 m™

0.26m*

Stress Drop[MPa]

Development of stress
drop begins earlier,
reaches further from
injection in a given time
(~21 days) and is
completed fastest for
zones C and D.

Permeability

Comparison of average
radial permeability changes
for different fracture
structures:

The mechanical shearing
effect (dilation angle is
10°) occurs due to the
change in effective stress
driven by fluid and thermal
effects and their influence
on reservoir shear failure.

Permeability improvement
in all zones is radially
symmetric.

Permeability[m?]

6/2/15
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Parametric Analysis

Shear stress drop s .
log M, =1.5M,+9.1 &=
Fracture size, spacing

Zonec

zoned H
gy, -
S v 4 750
2000
Two different models applied:
1) Fracture density is the same at shallow to deep zones (0.9 m™)
Moment magnitude
evolution 2) Fracture density is not the same at shallow to deep zones (0.5 m*, 0.9
m?, 0. )

6/2/15

Moment Magnitudes - Same
Fracture Density Moment Magnitude

For the same fracture density:

With increasing stresses (reaching the
deeper reservoir):

Migration rate of seismic event with time
and location changes little - these events
may form at the same rate for shallow to
deep zones when the same fracture
network is present.

Moment Magnitudes - Variable

Fracture Densi
TY Moment Magnitude

0 03 0 0 15

i

When we apply a differing fracture
density:

The rate of seismic event migration within
the reservoir is controlled principally by
the density and spacing of the fractures.

Highest fracture density generates both
the most and the largest seismic events.

23



Event Distribution over 21 Days

Zone B

Zone C

Zone D

Distance from injection(m]

Zone E

i Fomsspnpisenen=|

PEETEREE]

Time(day] Timelday]

43 ems psu.eds

b-value evolution over 21 Days

b-value magnitude [21 days Stimulation]

We characterize the induced seismicity by the b-value for
three different fracture geometries (high to low density):

15 25
A) p—— avalve-203
15
:
05
g
z caeiy] 25 -
] Snerors P e
o 2
k)
15
1
0. b 05 .
Zone D 4 Zone E o
0
0 05 1 15 2 25 3 0 05 1 15 2 25 3

Moment Magnitude

43 ems psu.eds

Discontinuum Approaches

Flow network

Fractureset

Reservior Boundary

Water flows along

natrualfracture

N

Hydraulic fractures'area

43 ems psu.edy a
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Conclusions

Complex THM and THC Interactions Influence Reservoir Evolution
Permeability evolution is strongly influenced by these processes
Insome instances the full THMC quadruplet is important
Effects are exacerbated by heterogeneity and anisotropy

Spatial and Temporal Evolution
Physical controls (perm, thermal diffusion, kinetics) control progress

Effects occur in order of fluid pressure (M), thermal dilation (TM), chemical
alteration (

Spatial halos also propagate in this same order of pressure, temperature,
chemistry
Induced Seismicity
Mechanisms that control stress effects also influence seismicity
Event magnitudes controlled by stress-drop and fracture size

Distribution controlled by fracture location and sizes (if no new fractures
create:

Timing controlled by:
Relative magnitude of stress change effects (pressure, temp, chem)
Rates of propagation and self-propagation of those stress-change fronts
Isolating principal mechanisms is one key to mitigating effect

6/2/15
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Geomechanics of Coal and Gas Shales

Derek Elsworth, Jishan Liu (UWA/CAS), Shugang Wang,
Hemant Kumar, Ghazal Izadi, Dae-Sung Lee (KIGAM),
Jonathan Mathews, Denis Pone (ConocoPhillips), Xiang Li,
Yu Wu (CUMT-X), Zhongwei Chen (U Queensland),
Hongyan Qu (CUP-B), Yixin Zhao (CUMT-B)

G3 Center, EME, EMS El, Pennsylvania State University, USA

Outline

Science Questions and Objectives
— First Order Observations — Similarities Coal/Shale Gas
— Shale Gas — Similarities/Differences
Permeability Evolution
— Mechanistic Models — Dual Porosity Models with Deformation
* Geometric Attributes
* Mechanistic Features
— Swelling Response
+ Theoretical Response — single porosity
+ Constrained Crack Model — dual porosity
Experimental Observations
— Apparatus
— Capabilities and Experimental Suites
— Coals
— Shales
Field-Scale Response
— ECBM and Optimization
— Well Survivability
— Gas Outbursts
Summary

CBM - Science Questions

Applications
CBM and ECBM
CO, sequestration
In situ combustion
Coal bumps and bursts
Principal Questions
How do stresses and deformation and gas and water saturations control:
Permeability — rates of injection and recovery
Sorption — capacity and the influence of stress and swelling
Science Questions

i.e. Optimize recovery

What are processes and rates of sorption and desorption?

What are rates and magnitudes of swelling strains and related stresses?

How do these affect permeability and sorption capacity?

How does coal respond to methane/CO,/N, injection/adsorption?

How does sequencing of these binary/ternary mixtures influence injectivity/recovery?
What are relative permeabilities to water and binary diffusion?

What poromechanics of coal influences desorption and failure?

How do loading rates and magnitude influence failure style and mode?

What is the role of methane desorption in the failure of coal?

What are anticipated acoustic signals of desorption and failure?

6/2/15



Rapid Desorption of CO,

Permeability Ratio (K/K;)

0.6

0.2

Permeability Evolution — Observations

Coal-unconstrained Gas Shale - unconstrained

Constant Mean Stress

410"

Constant Deviatoric Stress

CO, as permeant

0 2 4 6 8

Pore Pressure (MPa)

Permeability (mz)

310"

210"

1077

910™
810"

CO, as permeant

Pore Pressure (MPa)

CO, as permeant - Analogous to CH,
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Outline

Permeability Evolution
— Mechanistic Models — Dual Porosity Models with Deformation
* Geometric Attributes
* Mechanistic Features
— Swelling Response
* Theoretical Response — single porosity
« Constrained Crack Model — dual porosity

Multi-Porosity Multi-Permeability and Multi-Scale Medium

o coal grain

Flowin cleats. Coal soam

T
Overlapping Continua
Transport Deformation
Multi porosity/permeability Aggregate response
Matrix interchange Strain partitioning
Fickian diffusion Fluid pressures
Advection Compliances

Geometric Model — Principal Features

How does sorption- or desorption-induced strain of the coal matrix influence
porosity and the permeability evoluton?

Enigma: Swelling (at low gas pressures) results in
permeability loss

() ,
<)

Permeabilty Ratio (K/K.)

e

o

2 4 6
Pore Pressure (MPa)

s
| change in pore pressure |——>| changes effective stress |——>| deformation |

| sorption of gas into the coal matrix |—>| changes volume of the matrix |——>| swelling |

6/2/15



Key Mechanistic Features [1] - Deformation
Mechanical Behavior with fluid pressure and sorption effects

| 11 « Y e
€1=56% 7(57§)6M6u Ay MRS J el

3KY3

Bulk modulus

Grain elastic modulus

aliai\e

2

Normal stiffness of individual fractures

Gas sorption-induced strain

oo

Langmuir volumetric strain

=
IS

Langmuir pressure

P | Matrix pressure

Key Mechanistic Features [2] - Permem&@

Permeability Model: s y

Fracture permeability b
b
12s

Initial aperture

by = 2ks

Dynamic permeability of the cracked system:

Koy 2

ky by %

)3

Porosity Evolution - Swelling-Induced Deformation

Homogeneous aggregate !
with a pore
Apply loading in two steps: ~
Uniform stress (P) to the un-
perforated sample: \
o
AV, 1
—Ll=—0P-¢,
VoK, Total volume strain:
Uniform stress (o-P) to the AV AV, AV,
perforated sample: 7:7 I%
AV, :i(O'—P) Change in volume of pore:
Vv K AV

1
L =— (c—aP)—¢e, P
= (o-aP)—ge,
[e.g. Nur and Byerlee, 1971]
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Model to Replicate Observed Permeability Response

o

v
Dual-porosity medium Elliptical fracture W

Model

(> - to

] tteteeettees

s a

§=0.01(m) a=0.005(m) b=10x10%(m) s
Boundary and initial conditions
u=0(h oy = Fb)
0=t c,0)=0,
Pa=Pull) n»%w,,,: @
0)= Py

Repeating Geometries and Boundary Conditions

Response of Cracked Continuum with Interacting Flaws

~—}—Homogenous: E,u,

Homogeneous medium seeded with array of Single component part removed from the array
interacting cracks “

Mechanical Response - Free Swelling

Langmuir strain Aperture change

1602 5

1E02

» N\

\ K=1013/m?

8E03

603

aE03

Swelling Strain, €s

1014 m?

1015 ,‘11

Aperture Change, db (microns)

2603

s
0.E400 \l\
o

o 2

4 s s
Pore Pressure (MPa) Pore Pressure (MPa)

Swelling strain with pore pressure Change in aperture with pore pressure
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Aperture Change, db (microns)

Mechanical Response — Effective Stress

bl

Pore Pressure (MPa)

Change in aperture with pore pressure due to effective stress

Ensemble Response — Aperture Evolution

Aperture Evolution
as

.

welling

Lo

Effective Stress

\

Aperture Change, db (microns)

Pore Pressure (MPa)

Combined effect of swelling and effective stress on aperture of the void

Influence of Initial Permeability

Permeability Evolution
12

e
é 1
108 m2

5 k=10%m
k=]
g 08 e ———
>
£
3, 1014 m? pr
1 =
£
£
3
Q04
2 15
2 10 m
S
& 02
b

0

o 1 2 3 4 5 6 7 8 9
Pore Pressure (P, MPa)
Effect of initial per bility on bili
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Generalized Response — Swelling Component

Permeability relationship: 25
L =1+ Aiby 20 ’
kU bﬂ

Assuming full restraint:

Ab _ es’
b, ab,

2
g

0
Permeability evolution (swelling-only):

3 3 5 3
L 148 | o] | 22 2
4 ab, aby, | p+p, n

A
Non-dimensional variables: 4
4 _ (e
4 - ab, ’/’/ (S—)
Ensemble Response
Permeability relationship:
Aus, Es, as, Ps
k Ab . y Es, As,
) ey 5| Matrix
ey
b gEa Kn Fracture

100

Auy, Kn, ay, H

Permeability evolution:

L,[ L @a) o) r,F’,(PfR)))]“,,,,,,,,(,‘

52
ocel.

© Helun-espenmentl data

b

oxgotinents daia
i

W poromecharica esponse
W Swaling rosponco

ponse saries mode

[ M (P BT AN (et 1o
k| (@-a) sP-p) ;[ 3 ep(P-B) ]“w’ §G 1
k| ekarE) BE o (Per)Brr))
0.1
0.01

[Wang etal., JGR, 2011]

Pore Pressure [MPa]

Non-Dimensional Behavior

Non-dimensional variables:

[Wang etal., JGR, 2011]

1000
a

Wk,

100
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Outline
Experimental Observations
— Apparatus
— Capabilities and Experimental Suites
— Coals
— Shales

Experimental Apparatus [1]
35 MPa Triaxial System

B valve

D pressure transducer

© airregulator

axial
pressure

confining
PZTsensor  rubberjacket Pressure
|

|

porous disks

L4

5

—F

|

1SCO pumps.

Acoustic Emission upstream  downstream gas chromatography

Experimental Apparatus [,

P

n Nz

~
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D)

Pressure

T3525 Helium, 6 MPa Total Stress

Permeability measurement method 1:
pressure transient method

T3525 COz, 6 MPa Total Stress.

0.0035

sm%w

Upstream

Downstream

4 0.003

4 0.0025

4 0.002

4 0.0015

4 0.001

0.0005

; . : -0.002 35
3l 4 -0.0025 3F
0.003 € 25
Downstream - -0.! D
25 [ z 2
5 e
Avial strain {00035 5 2f
2 2
2f s ¢
] -0.004 5 a 15
15k 1 -0.0045 1
1 - - - -0.005 0.5
8000 1.610° 2410° 1510°
Time [Sec]
Inert

210°  2510°
Time [Sec]

Sorbing

310°

uiens [eixy

Permeability measurement method 2:

Pressure [MPa]

25

20

15

10

steady state method

T3572 COz, 6'=3 MPa, AP=50 kPa

T T T T r 0.003
: swellingstraff 1 0.002
Axial strain
J0.001 &
5
@
Confining stress SMPadt 0 g
50 kPa
Pore pressure - -0.001
- ! : L -0.002
0 210° 410°  610°
Time [Sec]

A typical experiment for samples loaded to failure

Pressure [MPa]

35
30
25
20
15
10

T T T T T

AxialStress |

0.25

410.2

10.15

10.1

ulengS [eIxy

40.05

Compaction

Time [Sec]

: : - -0.05
0 500 1000 1500 2000 2500
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Permeability Results— He, N,, and CO, [1]

Invariant Total Stress

Observations

Varied: Pore pressure

He

effective stress path — nonlinear
in permeability but could be
linear in closure/compaction

N,

dominated by effective stress

is non-sorbing and follows

is slightly-sorbing but

Permeability Ratio (K/K

response

CO.

, has turnover at intermediate

Langmuir pressure for 2 of 3
experiments

=

S

o

=]
o

o
(N}

~4—T13516-He
~8-T13516-N2
~&—T3516-CO2
=€—T13518-CO2
=4#-T3520-CO2

0 2 4 6 8
Pore Pressure (MPa)

S Permeability to Inert and Sorbing Gases >

Singe fraciued sample under § MPa constant fota strss

Pore Pressure (MPa)

Intact sample under 6 MPa consiant tota siress
10 *
— BT - 6 MPa s
o e i Qs
.
¢ <2
. H
2 1
2 3
s % B 0 o o )
3 R T =S
L ot sampl nder 12 1P consomt s ——— T e B
B ¢ W Factud sl 12 WP cstant 3 g
= . 12 MPa
o
o
<
3 ¢
H
2
o
o 2 4 . o 2 B . .
Poro Pressure (Pl Pore Pressure MPal
So What About Shales?
Coal Gas Shale
Constant Mean Stress . Constant Deviatoric Stress
410
18 CO, as permeant
~ 310"
>
§ ~
<
< 14 E
5 2 210"
o 3
210 8
£ £
é CO, as permeant | &
5 06
[\ 1047
910"
0.2 810"
0 2 4 6 8 1 2 3 4 5 6

Pore Pressure (MPa)

CO, as permeant - Analogous to CH,
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Coal-Gas and Shale Gas: Contributing Similarities

Relative carbon content High Low
Free gas content Low High
Bound gas content High Low
Sorptive strains Large Small
Fracture network geometry  Small spacing Long spacing
Comparative permeability High/Open fractures Low/Tight fractures
Permeability sensitivity to Low High
deformation
Linkage: Perm-to-Sorption Significant Significant
Stiffness Low High
Strength Low High

Why CO,-Enhanced Recovery?

=US CO, emissions 100 TCF/yr (2010)

En| d Recovery

= Higher recoveries
* 10-20% (Coalbed Methane)
= 5-22 % (Enhanced Oil Recovery)
=CO, storage
= Significant potential, unmineable coal
and shale

Challenges

= Retaining permeability
= Preventing early CO, breakthrough

2003, The coal-seq
fany ECBM field studies

project: results of the Allison and T

CO2- Enhanced Recovery is an attractive alternative

Permeability Evolution During Sweep Experiments - Dry

Experimental Sequence

. *  Helium
Confining Stress 10 MPa «  Methane
« €O, sweep of Methane
€ +  CO.
x° a 2
0 R IR el . i
:;10 o Helium sweep of CO,
H Pos’t_-_l-_le Observations
g - Pore Pressure Effects
E b *CO,-sweep +  Non-sorbing (He) — effective stress
g ~e ‘\. + Swelling (CH,, CO,) - Swelling effect
.. CH, + Irrespective of displacement
‘~, constraint
Se. Effective Stress Effects
10-1 "“'-. Cco, *  Kdecreases with eff. stress increase
2 Gas Saturation
Pore Pressure ?Nlpa) «  Different affinities (not shown)

 Kchange He<CH,<CO,

€O, Sweep Effects

«  Slight perm increase over displaced
CH,

6/2/15
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Permeability Evolution During Sweep Experiments - Wet

Confining Stress 10 MPa

10°

Permeability k/lﬁ

10_1 ~.‘v~ COy-sweep
T o,

Poge Pressur‘(‘e (Mpa)

*  Helium

*  Methane

+ €O, sweep of Methane
co,

« Helium sweep of CO,

Observations

Increased Water Saturation

*  Perm changes in same order
He<CH,<CO,

*  Relative perm changes are of the
same magnitude as dry

+  But absolute perm is reduced x10
when wet

*  Reduced sorption capacity (not
shown)

Mechanistic model

0'=0-p l o=0p l l’"mia

—-————

b b-Ab,

>

0’=0-p '

Effective stress

i
bl (e

Swelling Saturation

Lo

3
[i}f«r‘.pm Py .p,,,,so:[[HC[LD +eXP(—ﬁo‘)]xeXP<—55“)
K, S Pt

P

e S T T S|

Mechanisms - Gas sorption

3
k_lied—2 o
ko Ptp,

1. Isolate the effect of other two
factors using constant water
saturation and stresses

2. Use adsorbing gas (CH,, CO,)

3. C and P, are fitting parameters 3|

2 3 5
Pore Pressure (MPa)

6

6/2/15
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other two factors by
using constant water
saturation and non-
adsorbing gas, Helium
2. Use different water
saturation levels

3. @, B are fit parameters

1. Isolate the effect of [

y
T—-—>b(x)
>

S e
S

Mechanisms - Effective stress

k : . .

= F aexp(-fio’) B, Stiffness coefficient
0

10" 8 Gas Pressure (MPa) 1

10 s =1%

—_—
5 5%
W

s
S, =9%
107 | n L h . .

5 6 7 8 9 10
Effective Stress (MPa)

1. Isolate effect of other two (
factors using constant
confining stress and non
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Mechanisms - Water content
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Optimization of Recovery with CO, Injection
Permeability Curves Pressure Needed to avoid Perm loss
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6/2/15

14



e
Heterogeneity

= Gaussian distribution of permeability with pre- Permeability (solid lines)

defined mean and range Standard deviation (dashed lines)
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Longwall Panel Well - Shear Offsets
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Gas Outbursts

_ Vertialstress O

Two Necessary Ingredients:
1. Failure driven by:
1. Vertical stress
2. Horizontal stress
3. Excess pore pressure
2. Energy shedding driven by:
1. Rock structure stiffness
2. Gas stiffness/

Moving ahead to
the coal seams:

compressibility Desorption atei | “tensile failure zone,
Distance | +gas overpressure
§ i induced shear failure
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evertical stress
[CI induced shear failure
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initial condition ~ fragmentation  fragmentation
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Gas energy per unit volume [MJ/m]

The role of Langmuir pressure
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The role of initial gas pressure
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adsorbed gas.

Gas energy increases with pressure.
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*The ejection velocity is
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Summary

Poromechanical response of coals and shales have some similar attributes
— Role of fractures - high permeability but low storage
— Role of matrix — low permeability and high storage (pore and sorbed)
— Sorption — influence of swelling
Shown principally for coals but also germane to gas shales
+ Swelling has significant but enigmatic influence on permeability evolution
+ Role of Langmuir pressure
— Below P, - swelling influences deformation and permeability
— Above P - effective stresses influence deformation and permeability
Attributes of using CO, as a displacing fluid
«  Straightforwardly define pressures needed to retain permeability in the reservoir
« For CO, transmission:

— No early breakthrough apparent — although CO, does dilute the methane flux
throughout

— CO, increases net production rate so economics is determined by:
+ Increased value of early time methane production

+ Increased cost of separating extra CO, from the reservoir (20% CO, present in
reservoir)

— CO, is net sequestered in the reservoir
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Prospects for Gas-Fracturing in Unconventional Reservoirs

Principal Issues in Shale Gas Production - Motivation
Energy Outlook: Security, Independence and Environment
Water-related issues
Waterless fracturing and gas displacement (ESGR)

Gas-fracturing Observations
Breakdown Pressures

PMMA/Granite/Bluestone and Structure
Key Observations
Hypotheses
Fracture Complexity
Key Observations
Hypotheses

Methods of Analysis
Mechanisms for Gas/Rock Interaction
Damage Mechanics

Summary

Implications for Energy Independence, Energy Security and
for Climate Change?
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Source

Coalbed

Tef equiv.
Tef equiv.

Tcf equiv.

€rgy capacity ~15TW x 10% x 365 d = 500x10'8J /y = 500 EJ/y
1Tef ~1EJ ~ 1 Quad

[International Energy Outlook 2010, US EIA, 2010]

derek.elsworth@psuedu

Projected Growth and Opportunities

Upstream

Natural 6as Utilization
T

~—— History ——> ~—— Projections ——>

075

H Shale gas
E oos
° Shale Gas Production
§ Sul
o Tight gas Second Nety Day Report
. [i——"
Lower 48 onshore conventional
Aska Lower 48 ofshore
. Coalbed methane Downstream
o T | —d
wo aw w20 2035
Year
[Science, Oct 18, 2012] - : " )
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Induced Seismicity

o 8. View Along
A Side View of Wllbore Wellbore Axis Observations of Events
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Groundwater Near-Wellbore
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[ otsego
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[Osborne, Vengosh, Warner, Jackson, 2011, PNAS]

Groundwater Near-Wellbore

Dissolved Gas Analyses Published Gas Analyses.
(This Study) (Production Wells)
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[Osborne, Vengosh, Warner, Jackson, 2011, PNAS]
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Life-Cycle Loadings

A DAUNTING CLIMATE FOOTPRINT

Over 20 years, shale gas is likely to have a greater greenhouse
effect than conventional gas or other fossil fuels.

75
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2 e
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gi® 28
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E 15

High Surface Deep Diesel oil
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Shale gas | Conventional gas Coal

[Howarth, Santoro, Ingraffea, 2011, Climatic Change]
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Impacts of Abundant Gas Supply

8
— Abundant gas

74 — Conventional gas
% &l >40 years Role of abundant
S natural gas
Bl supply... impact on
= reducing use of
@4l coal ......but also
5 of decreqsingf‘rhe
o3t 10 years penetration o
s / renewables

2

1 T T
2010 2020 2030 2040 2050
Year

[McJeon et al., Nature, 2015]

Permeability Ratio (K/Ky)

Permeability Evolution — Implications for Gas

Recovery?
Coal Gas Shale (Marcellus)
Constant Mean Stress 0.9 Various Mean Stresses
E T r T T T

—-T3516-He Kk =2.86X10"7 m?

8 —A-TI516-N2 0.8}° m He |
~8-T3516-CO2
~0-T3518-CO2 07 10 MPa

1.4 -6-T3520-CO2 . 4

1.0
CO, as permeant
0.6
0.2
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Pore Pressure (MPa) Gas Pressure (MPa)

CO, as permeant - Analogous to CH,

Capacity Needs - Socolow Wedges

The Stabilization Triangle:
Beat doubling or accept tripling

N
$
8
@
24 Gigatons. N 4
on
Emeiea

per Year

,
%
A 0,
h 2,
(380) 70) %
7 3
YFlat= Act Now "So,,p
p om (850)
(20) 500) (850)
- (500) &00)
1954 2004 2054 2104 2154 2204

Values in parentheses are ppm. Note the identity (a fact about
the size of the Earth’s atmosphere): 1 ppm = 2.1 GtC.

[Rationale in: Pacala & Socolow, Science, 2004,

ww.stabilisation2005.com/day3/Socolow.pdf]
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Capacity Needs - Socolow Wedges
Wedges /'

Bilon of Tons of
’
ot Emite por P
“r 7 14c6tcly
«— Seven “wedges”
Historical
71 emissions 7 6Gtcly

Flat path

19>

(Rationale in: Pacala & Socalow, Science, 2004,
www stabilisation2005.com/day3/ Socolow.pdf]

Capacity Needs - Socolow Wedges

What is a “Wedge™?

A “wedge” is a strategy to reduce carbon emissions
that grows in 50 years from zero to 1.0 GtC/yr.

1 GIChyr

50 years

Cumulatively, a wedge redirects the flow of 25 G(C) in its first 50
years. This is 2.5 trillion dollars at $100(C)

A “solution” to the Greenhouse problem should have the potential to
provide at least one wedge.

[Rationale in: Pacala & Socalow, Science, 2004,
www.stabilisation2005.com/day3/Socolow.pdf]

Capacity Needs - Socolow Wedges

Fill the Stabilization Triangle with Seven Wedges

Renewable Electricity
and Fuels

Zero carbon: 800 6W

Co, Capture
and Storage

Energy Efficiency &
Conservation

Zero carbon: 800 6GW
(~40 tcf/yr)

2 billion cars at 60 mpg
instead of 30 mpg

abilization
Triangle Fuel Switch

Forests & Soils

0 Low carbon: 1600 6W
1 (~80 tcf/yr)

Nuclear Fission

S~ Zero carbon: 700 6W
(~40 tcF/yr)

(Rationale in: Pacala & Socolow, Science, 2004,
wiw.stabilisation2005.com/day3/Socolow.pdf]

21 Jerekelsworth@psuedu
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Motivation

Gas Recovery (Improved production)
Energetic fracturing - reducing diffusion lengths
Incidental Benefits (Improved environmental protection)
Decrease water usage
Resource usage
Induced seismicity
Reduce surface transportation/disruption
Minimize effect on sensitive reservoir rocks
Avoid pore occlusion with fluids
Avoid swelling of clays
Avoid recovery of NORMS
Reduce life-cycle equivalent CO, costs

Key Coupled Processes Related to Gas-Fracturing in Unconventional
Reservoirs

@ [ 1 [Ronet

Waterless fracturing and gas displacement (ESGR)

Fluid Delivery
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Borehole Fracture in PMMA
(Polymethyl methacrylate
aka: Lucite, Plexiglas,
Perspex, Acrylic)

Stress State

Hydrofracture, view below is
in the sydirection

s;= s, = 10 MPa ( %1500 psi)
Pp fail = 43.3 MPa (~ 6200 psi)

p3006; water
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PMMA: N, hydrofrac

N, hydrofrac H,0 hydrofrac

Prospects for Gas-Fracturing in Unconventional Reservoirs

Observations
Breakdown Pressures
PMMA/Granite/Bluestone and Structure
Key Observations
Hypotheses
Fracture Complexity
PMMA
Key Observations
Hypotheses
Fracture Propagation Velocities
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P, is fluid/fluid-state dependent

Molecular Weight vs. Fracture Pressure

w 5,=5,=5 MPa
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£
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Molecular Welght vs. Fracture Pressure Jrs——

R All Data

#Argon
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{ ac

P for 30 min
P for 30min

= Water

Molccular Weight g/mol)

CO, Upper Bound - Tensile Strength ~ 70 MPa

P, for CO,

PMMA Rock

Mode 1, borehole HydroFracture

Mode 1, borehole HydroFracture
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2 PMMA . e —_
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N, are ~2:1 for PMMA/Bluestone

Fracturing Fluid Properties

‘Substance & | Criicaltomperaturs  [Critcal prossure (absolut)

Veum | omrse'c@N | 220am p2riee)
Vydogen | -zmss 0@ | 1800k
Non | em7sCwason) | zr2am@i0kPa)
i CH. Methane) | -823°C(1900K) | 4570 aim (4640 kPa)
e H FG Nirogen ~1469°C (1263 K) 395 atm (3,390 kPa)
g ' & A N2 e
s solid phase | 12 Argon 12247 (1508 K) 48,1 am (4,870 kPa)
& | conpressible | supercritical fluid Orjgen | -MBSTC1SLEK) | 408am (5.050kPa)
H liquid | Keypton -638°C 04 K) 543 aim (5,500 kPa)
cccal pressue | ' e ies mes ol M0 s
- Pl e C0: | sos0@anK) | 72sumam0wey
& H liquid critical point 3 %4°CE6K) 71.5aim (200K5e)
H phase Ao | 132400666 | 1113 am (1280kP8)
1 oo 1400°0@170K) | 760am (1,700 kPa)
H Bone | 2108°CE840K | 102am (10200Ka)
p, wiple point | gaseous phase Wato®27 217.7 im 2000 kPa)
w50, 454 5m 00 kPe)
vapour Suor 207 atm (21,000 kPa)
critical Mercury. 1,720 atm (174,000 kPa)
temperature Cassium 94 aim (9,500 kPa)
T Tar Ethanol 62.18 atm (63 bar, 6,300 kPa)
Temperature Uthium 852 at (66,100 kPa)
G0 500t 610000 Pa)
1. Ar, N, and He are supercritical (no interfacial famnien
tension)
2. Water, CO, and SF; are liquids (interfacial SFs[ 46C; 3.6MPa]
tension)
{Source: 1_point_
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Complexity - N,

Front

Side

Complexity - Ar

Front

Complexity - CO,

Side
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Complexity - He

Front Side

Fracture Complexity

Super-critical Fluids
Helium, He ‘ ‘ Nitrogen, N, ‘ ‘ Argon, Ar ‘

Sub-critical Fluids
‘ Carbon Dioxide, CO2 Water, H,0 ‘ Sulfur Hexafluoride, SF6
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Complexity Index
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Prospects for Gas-Fracturing in Unconventional Reservoirs

Methods of Analysis
Mechanisms for Gas/Rock Interaction
Damage Mechanics

Summary

Fluid Pressures Around Borehole

With and without borehole “membrane”

a
«——0,y=+5,—5 (S, =S$,) Perforated or Unperforated
7

i

Pressure, P,

7 Unperforated membrane

No fluid invasion _ rla

In(r)
In(a)

a
p(3D)=-F, iy p(2D)=-F,

Steady flow (3D,2D)

Fluid Pressures Around Borehole

With and without borehole “memprane”

a
0, =+5, oy S, =S,) Perforated or Unperforated

2
o, =—Py— Unperforated bl
No fluid invasion e f’,yzr B np’e orated mem ran(?/a

P

_ pa. __p ()
L pBD)==R i p@D)= R

Steady flow (3D,2D)

p =—F, Static invasion (no flow)
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Longitudinal Hydraulic Fracture

Fracture Breakdown Pressure for fracture along borehole (plane strain)
@ “Permeable:” ¢ =g, =35, -5, P, +(1+1)P,
v p _0,-35,+5 +F,
——a therefore [0 — o] w (1+n)

1-v
“Impermeable:” 0, =0,=35-5,-R+F,
Fracture panel

P =0,-35+5 +P
\/ Fluid pressure coefficient (tangential stress: permeable) | = W\
1 \

PMMA:v=036;a =

I

——H-W impermecble

° 0z 04 06 08 1
Biot coefficient, alpha

Entry Pressures into Borehole Wall

With and without borehole “membrane”

0, =5, 558, =5, Perorated or Unpertorated

Y

e o

a State invasion (7o fow)

If P,(impermeable)> P, > P,(permeable) :

2
El
\ 2 Subcritical: scale with
2 capillary entry pressure
\k =T E P(impermeable) £ Py entry P
N\ P (capillary entry pressure) N Subcritical
1
. F,(permeable) Supereritical
L wo%
s, Supercritical: scale Time
Water Saturation, S, with tensile strength

Fluid Invasion - SubCrit/SuperCrit

Quantify breakdown pressure relationship with interfacial tension

Super-critical (invasion):

breakdown pressure vs critical temperature 1. Pb dependent on fensile

b-critical Super.crtical Argon strength
N coz 2. Pb independent of
2 L. e interfacial tension
L 8 SF6
H 8 * L4 o 20 Sub-critical (no-invasion):
£ L 2 L Invasion pressure scales with, J :
H PR
5 o \n
o1 1 T/Te 10 100

breakdown pressure/interfacial tension vs

temperature > . coz Therfore:
u H20 1. Pb independent of
— sF6 tensile strength
¢ - x Argon 2. Pb dependent on
N2 interfacial tension
® He
o1 1 10 100
TTe
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Schematic Response

Response for various capillary pressure magnitudes relative to tensile strength
of the borehole wall - low stress regime.

Pressure

Low P,

P. <P (perm)

P,(impermeable)

Intermediate P, .
(these data) High P.

P,(imperm) > P. > P, (perm) P> P, (imperm)

Pressure
Pressure

.-l

Subcritical

P,(permeable)
r

Subcritical

D
c

I /quhc-ritical A

UpPErcriical

Supercritical Supercriticall

Time

Time Time

Fractre mechankcs Micromechanics

[Lu et al., Computers and Geotechnics, 2013]

Water fracturing vs. gas fracturing

ion pressure (MPa)

—-water —&—gas

y

~

N
P,, =8 MPa

\

Compressi*le//

II
.\

ncompressible

Py, =5.28 MPa

Viscosity of Gas

Viscositylof Water

1E-10

1E-07

1E-04 1E-01 1E+02 1E+05

Dynamic viscosity (Pa.s) [Wang etal, ARMSS, 2014]
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Modeling - Fracture Propagation

Driven by fluid pressure

SN=0.1MPs, teation Step =1

0 00
0 001 002 003 004 005 006 007 0.08 D00 001 002 003 004 005 006 0.07 008

Microcrack growth Macrocrack growth

Modeling - Hydraulic fracturing with ideal gas

Confining stress ratio of 6:1 Confining stress ratio of 1:1

Gas fracturing
(Compressible) g;‘&

with the same
material parameters

of rock and
pressurization rate

Water fracturing .
(Incompressible) ’{ X

2014.09.25

Summary

Shale gas is a significant resource and offers:
Energy: Security, Independence and Environment
Has a variety of water-related issues
Waterless fracturing offers some advantages if understood
Advantages of gas fracturing
Reduced water use
Potential sequestration if 6HG
Generation of complex fracture networks
Enhanced Shale Gas Recovery if CO,
Experiments indicate some promise with behavior related to:
Breakdown pressures related to gas state/type
Fracture complexity related to gas state/type
Supercritical N, more complex, He less complex.. why?

Improved mechanistic understanding needed to fully utilize the promise of these
observations

Integrated program across scales - Observation - Expt. - Analysis
Determine benefits:

Feasibility/productivity/longevity

Environment: Water consumption/protection and induced seismicity....

6/9/15
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Chapter 1

Mathematical Foundations

1.1 TENSORS AND CONTINUUM MECHANICS

Continuum mechanics deals with physical quantities which are independent of any
particular coordinate system that may be . used to describe them. At the same time, these
physical quantities are very often specified most conveniently by referring to an appropriate
system of coordinates. Mathematically, such quantities are represented by fensors.

As a mathematical entity, a tensor has an existence independent of any coordinate
system. Yet it may be specified in a particular coordinate system by a certain set of
guantities, known as its components. Specifying the components of a tengor in one
coordinate system determines the components in any other system. Indeed, the law of
transformation of the components of a tensor is used here as a means for defining the
tensor. Precise statements of the definitions of various kinds of tensors are given at the
point of their introduction in the material that follows,

The physical laws of continuum mechanics are expressed by tensor equations. Because
tensor transformations are linear and homogeneous, such tensor equations, if they are valid
in one coordinate system, are valid in any other coordinate system. This ‘nvariance of
tensor equations under a coordinate tyansformation is one of the principal reasons for the
usefulness of tensor methods in continuum mechanics.

1.2 GENERAL TENSORS. CARTESIAN TENSORS. TENSOR RANK.

In dealing with general coordinate transformations between arbifrary curvilinear
coordinate systems, the tensors defined are known as general tensors. When attention is
restricted to transformations from one homogeneous coordinate system to another, the
tensors involved are referred to as Cartesian tensors. Since much of the theory of con-
tinuum mechanics may be developed in terms of Cartesian tensors, the word “tensor” in
this book means “Cartesian tensor’” umnless specifically stated otherwise.

Tensors may be classified by rank, or order, according to the particular form of the
transformation law they obey. This same classification is also reflected in the number of
components a given tensor possesses in an n-dimensional space. Thus in a three-dimensional
Euclidean space such ag ordinary physical space, the number of components of a tensor is
8%, where N is the order of the tensor. Accordingly a tensor of order zero is gpecified in
any coordinate system in three-dimensional space by one component. Tensors of order
sero are called scalars. Physical quantities having magnitude only are represented by
scalars. Tensors of order one have three coordinate components in physical space and are
known as vectors. Quantities possessing both magnitude and direction are represented by
vectors. Second-order tensors correspond to dyadics. Several important quantities in con-
tinuum mechanics are represented by tensors of rank two. Higher order tensors such as
triadics, or tensors of order three, and tetradics, or tensors of order four are also defined
and appear often in the mathematics of continuum mechanies.

1



2 MATHEMATICAL FOUNDATIONS [CHAP.1

1.3 VECTORS AND SCALARS

Certain physical quantities, such as force and velocity, which possess both magnitude
and direction, may be represented in a three-dimensional space by directed line segmenis
that obey the parallelogram law of addition. Such directed line segments are the geometrical
representations of first-order tensors and are called vectors. Pictorially, a vector is simply
an arrow pointing in the appropriate direction and having a length proportional to the mag-
nitude of the vector. Equal vectors have the same direction and equal magnitudes. A unit
vector is a vector of unit length. The null or zero vector is one having zero length and an
unspecified direction. The negative of a vector is that vector having the same magnitude
but opposite direction.

Those physical quantities, such as mass and energy, which possess magnitude only are
represented by tensors of order zero which are called scalars.

In the symbolic, or Gibbs notation, vectors are designated by bhold-faced letters such as
a, b, ete. Scalars are denoted by italic letters such as a, b, A, ete. Unit vectors are further
distinguished by a caret placed over the bold-faced letter. In Fig. 1-1, arbitrary vectors a
and b are shown along with the unit vector @ and the pair of equal vectors ¢ and d.

Fig. 1-1

The magnitude of an arbitrary vector a is written simply as a, or for emphasis it may
be denoted by the vector symbol between vertical bars as {a|.

14 VECTOR ADDITION. MULTIPLICATION OF A VECTOR BY A SCALAR

Vector addition obeys the parallelogram law, which defines the vector sum of two vectors
as the diagonal of a parallelogram having the component vectors as adjacent sides. This
law for vector addition is equivalent to the triangle rule which defines the sum of two vectors
as the vector extending from the tail of the first to the head of the second when the summed
vectors are adjoined head to tail. The graphical construction for the addition of a and b
by the parallelogram law is shown in Fig. 1-2(a). Algebraically, the addition process is
expressed by the vector equation

ath=>b+a =c (1.1)

Vector subtraction is accompiished by addition of the negative vector as shown, for
example, in Fig. 1-2(b) where the triangle rule is used. Thus
a—b = -b+a=4d (1.2}

The operations of vector addition and subtraction are commutative and associative as
illustrated in Fig. 1-2(c), for which the appropriate equations are

(a+b)+g =a+(b+g) = h (1.89)

{a) (&)

Fig.1-2
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Multiplication of a vector by a scalar produces in general a new vector having the same
direction as the original but a different length. Exceptions are multiplication by zero to
produce the null vector, and multiplication by unity which does not change a vector., Multi-
plication of the vector b by the scalar m results in one of the three possible cases shown in
Fig. 1-3, depending upon the numerical value of m.

mb b b
mh
b
mh
m>1 0<m<1 m < G
Fig.1-3

Multiplication of a vector by a scalar is associative and distributive. Thus

m(nb) = (mn)b = n(mb) (1.4)
(m+n)b = (n+m)b = mb+nb (1.5)
m(a+h) = m(b+a) = ma+ mb (1.6)

In the important ease of a vector muitiplied by the reciprocal of its magnitude, the
result is a unit vector in the direction of the original vector. This relationship is expressed

by the eguation N A
b = b/b e (.7

1.5 DOT AND CROSS PRODUCTS OF VECTORS
The dot or scq,l,ar product of two vectors a and b i?‘.. the scalar

A=ab=ha= abcost (1.8)

in which ¢ is the smaller angle between the two vectors as shown in Fig. 1-4(e). The dot
product of a with a unit vector & gives the projection of a in the direction of @.

Fig.1-4

The eross or vector product of a into b ig the vector v given by
v = axbh = —bXa = (absing)e (1.9

in which 4 is the angle less than 180° between the vectors a and b, and @ is 2 unit vector
perpendicular to their plane such that a right-handed rotation about & through the angle
¢ carries a into b. The magnitude of v is equal to the area of the parallelogram having
a and b as adjacent sides, shown shaded in Fig. 1-4(b). The cross product is not commutative.

v e e e o D, . ) .S .
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, The scalar triple product is a dot product of two vectors, one of which is a eross product.
ar(bxe) = (axb)re = arbXe = A (1.10)

As indicated by (2.10) the dot and cross operation may be interchanged in this product.
Also, since the cross operation must be carried out first, the parentheses are unnecessary
and may be deleted as shown. This product is sometimes written [abe] and called the box
product. The magnitude A of the scalar triple product is equal to the volume of the
parallelepiped having a, b, ¢ as coterminous edges.

The wvector triple product is a cross product of two vectors, one of which is itself a
cross product. The following identity is frequently useful in expressing the product of a

crossed into b X e.
ax(bxe) = (arc)b— {a*ble = w {(1.11)

From (1.11), the product vector w is observed to lie in the plane of b and e.

1.6 DYADS AND DYADICS

The indeterminate vector product of a and b, defined by writing the vectors in juxtaposi-
tion as ab is called a dyad. The indeterminate product is not in general commutative, i.e.
ab »= ba. The first vector in a dyad is known as the enfecedent, the second is called the
consequent. A dyadic D corresponds to a tensor of order two and may always be represented

as a finite sum of dyads
D = aby + ashs + - -+ + avby (1.12)

which is, however, never unique. In symbolic notation, dyadics are denoted by bold-faced
sans-serif letters as above. ‘

If in each dyad of (1.12) the antecedents and consequents are interchanpged, the resulting
dyadie is called the conjugate dyadic of D and is written

D. = bya; + betz 4+ -+ + bran (1.13)

If each dyad of D in (1.12) is replaced by the dot product of the two vectors, the result is a
scalar known as the sealar of the dyadie D and is writien

Ds - ax'bl + aa‘bg + .- + aN'bN (11-‘5)

If each dyad of D in (2.12) is replaced by the cross product of the two vectors, the result is
called the vecior of the dyadic D and is written

D, = ayXbi+agXhs+ -+ +avXby (1.15)
Tt can be shown that D., D. and D, are independent of the representation (1.12).

The indeterminate vector product obeys the distributive laws

a(b+c) = ab+ ac (1.16)
{a+ble = ac- be _ (1.17)
(a+b)e+d) = ac+ad+ be+bd (1.18)
and if A and p are any scalarg,
(x+p)ab = Aab -+ pab (1.19)

{ra¥b = a{Ab) = Aab (1.20)
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If v is any vector, the dot products v+D and D-v are the vectors defined respectively by
v'D = (vea)bi+ (vragbe + -+ +(v-an)by = u (1.21)
D-v = ai(bi*v)+as(ba-v)+ - +anbyv) = w (z.22)

In (1.21) D is called the postfactor, and in (1.22) it is called the prefactor. Two dyadics D
and E are equal if and only if for every vector v, either
v'D = v:E or D-v=E-v (1.23)
The unit dyadic, or idemfactor I, is the dyadic which can be represented ag
I = 6131 + 62?32 + ea’éa (1.24)
where @, €, &; constitute any orthonormal basis for three-dimensional Euclidean space
{see Section 1.7). The dyadic 1 is characterized by the property

I'v=v:l=v (2.25)
for all vectors v.

The cross products vX D and D X v are the dyadics defined respectively by

vXD = (vXabh +{(vXagbst+ --- +(vXan)by = F {1.26)
DXv = ay(bi Xv) +ax(beXv)+ - +anfby Xv) = G (1.27)

The dot product of the dyads ab and ed is the dyad defined by
' abeed = (b-clad (1.28)

From (1.28), the dot product of any two dyadics D and E is the dyadic
D'E = (abi+ash:+ -+ +ayby) * (cidi +eada+ -+ 0 +endn)

= (bi*c))ard; + (bi-cr)ands + -+ - + (byex)andy = G {(1.29)
The dyadics D and E are said to be reciprocal of each other if
E‘D = D*E = | (1.30)

For reciprocal dyadics, the notation E= D-t and D=E"! is often used.

Double dot and cross products are also defined for the dyads ab and cd as follows,

ab . ed = {(a*c)(b-d) = 1, ascalar (1.81)
ab X cd = {axXc)b+d) = h, avector {(1.32)
ab g cd = (arc)(bxd) =g avector (1.93)
abXed = (axc)bxd) = uw, adyad (1.84)

From these definitions, double dot and cross products of dyadics may be readily developed.
Also, some authors use the double dot product defined by

ab'-ed = (bre){a-d) = A, ascalar (1.85)
A dyadice D is said to be self-conjugate, or symmetric, if
D = D. (1.36)
and anti-self-conjugate, or anti-symmetric, if
D= —D. (1.87)

Every dvadic may be expressed uniguely as the sum of a symmetric and anti-symmetric
dyadic. For the arbitrary dyadic D the decomposition is

b= iD+D)+iD—-D) = G+H (1.98)
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for which G: = 3D.+(Dc)e) = (D +D) = G (symmetric) (1.39)
and He = 3{D.— (D)) = 3D.—D) = —H (anti-symmetric) (1.4£0)
Uniqueness is established by assuming a second decomposition, D = G* 4+ H*. Then

G*+ H* = G6+H {1.41)
and the conjugate of this equation is

G*—H* = G—H (1.42)

Adding and subtracting (7.41) and (1.42) in turn yields respectively the desired equalities,
G* =6 and H¥ =H. )

1.7 COORDINATE SYSTEMS. BASE VECTORS. UNIT VECTOR TRIADS

A vector may be defined with respect to a particular coordinate system by specifying
the components of the vector in that system. The choice of coordinate system is arbitrary,
but in certain situations a particular choice may be advantageous. The reference system
of coordinate axes provides units for measuring vector magnitudes and assigns directions
in space by which the orientation of vectors may be determined.

The well-known rectangular Cartesian coordi-
nate system is often represented by the mutually
perpendicular axes, Oxyz shown in Fig. 1-5. Any
vector v in this system may be expressed as a
linear combination of three arbitrary, nonzero,
noncoplanar vectors of the system, which are
called base vectors, For base vectors a, b, e and
suitably chosen scalar coefficients A, p, v the vector
v is given by

v = Aa-+pb - ove (1.43) _
y

Base vectors are by hypothesis linearly independ-
ent, i.e. the equation
a+upb+we =0 (1.44)

is satisfied only if A= pu=v=0. A set of base
vectors in a given coordinate gvstem is said to
constitute a basis for that system. Fig. 1-3

The most frequent choice of base vectors for the rectangular Cartesian system is the

set of unit vectors ?, 3, k along the coordinate axes as shown in Fig. 1-5. These base vectors
constitute a right-handed wunit vector triad, for which

Ixfoh Sxk=i Rxi=i ool odei 1)
and ;~A:§3:fc'§xl
i 5=5k=£Kki=0 (1.46)

Such a set of base vectors is often called an orthonormal basis.
In terms of the unit triad ’i\, 3, f:, the vector v shown in Fig. 1.6 below may be expressed by
v = v+ vy'j\ + vk (1.47)

in which the Cartesian components
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~

UYr = v*i = UCOSe

“

¥y = v+l = veosf
)

v: = vk = vecogy

are the projections of v onto the coordinate axes.
The unit vector in the direction of v is given ac-
cording to (1.7} by
au = V/’U
= (cosa)T + (cosp)] + (cosy)k  (1.48)

Since v is arbitrary, it follows that any unit vec- Y
tor will have the direction cosines of that vector
as its Cartesian components.
In Cartesian component form the dot product
of a and b is given by
Cab = @itaftak) 0.1+0,5+0k)
e = a:b:‘+ ayby“% a:b: (1-49) Fip. 1-6
For the same two vectors, the cross product a X b i3
axbh = (ayhe—a:by) T + (@eba—a:b)F + (ashy—aub)k (1.50)
This result is often presented in the determinant form
T 7 k
ax b - Ly ady 223 (1 -51)
b;r; by b:

in which the elements are treated as ordinary numbers. The triple scalar produét may also
be represented in component form by the determinant

ar dy d= Lk L 5 =
fabc] = |be By b (1.52)
Cz Cxy Cz

In Cartesian component form, the dyad ab is given by
Cab = (] +ad +ak)dd + Byj + bak)
= axbﬁ'f —i— a;bﬁg + a;bﬁf:
+ aybxgg + aybﬁ? 4 a,,b;)j\f:
+abk T+ ab kT + adkk (1.53)
Because of the nine terms involved, (1.53) is known as the nondon form of the dyad ab.
It is possible to put any dyadic into nonion form. The nonion form of the idemfactor in
terms of the unit triad ?, 'f, f is given by
| = 3i+37+kk (1.54)
In addition to the rectangular Cartesian coordinate system already discussed, curvi-
linear coordinate systems such as the cylindrical (R,6,2) and spherical {(r,0,$) systems
shown in Fig. 1-7 below are also widely used. Unit triads (€r, €, €:) and (&, 8, &s) of base
vectors illustrated in the figure are associated with these systems. However, the hase

vectors here do not all have fixed directions and are therefore, in general, functions of
position.
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x

() Cylindrical (b)Y Spherical
Fig. 1-7

1.8 LINEAR VECTOR FUNCTIONS. DYADICS AS LINEAR VECTOR OPERATORS

A vector a is said to be a funetion of a second vector b if a is determined whenever
b is given. This functional relationship is expressed by the equation

a = £b) (1.55)

The function f is said to be linear when the conditions
f(b+c) = f(b)+ f(c) (1.56)
f(Ab} = A(b) (1.57)

are satisfied for all vectors b and ¢, and for any sealar A,

Writing b in Cartesian component form, equation {1.55) becomes

a = £(b.i + b, + b:k) (1.58)
which, if f is linear, may be written
a = bf(1) + bf(3) + bai(k) (1.59)
In (1.59) let §)=u, £3)=v, #k)=w, so that now
a=uib+v(in+wkb = @li+vi+twk)b (1.60)
which is recognized as a dyadic-vector dot product and may be written
a=D-b (1.61)

where D = ui+ v§+ wk. This demonstrates that any linear vector function f may be
expressed as a dyadic-vector product. In (1.61) the dyadic D serves as a linear wvector
operator which operates on the argument vector b to produce the image vector a.

1.9 INDICIAL NOTATION. RANGE AND SUMMATION CONVENTIONS

The components of a tensor of any order, and indeed the tensor itself, may be represented
clearly and concisely by the use of the indicial notation. In this notation, letter indices,
either subscripts or superscripts, are appended to the generic or kernel letter representing
the tensor quantity of interest. Typical examples illustrating use of indices are the tensor

symbhols . i
ai, bj: Tij) Fi y Eijky qu
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In the “mixed” form, where both subseripts and superscripts appear, the dot ghows that §
ig the second index.

Under the rules of indicial notation, a letter index may occur either once or twice in a
given term. When an index occurs unrepeated in a term, that index is understood to take
on the values 1,2, ...,N where N is a specified integer that determines the range of the
index. Unrepeated indices are known as free indices. The tensorial rank of a given term
is equal fo the number of free indices appearing in that term. Also, correctly written
tensor equations have the same letters as free indices in every term.

When an index appears twice in a term, that index is understood to take on all the
values of its range, and the resulting terms summed. In this so-called summation conven-
fion, repeated indices are often referred to as dummy indices, since their replacement by
any other letter not appearing as a free index does not change the meaning of the term in
which they occur. In general, no index occurs more than twice in a properly written term.
If it is absolutely necessary to use some index more than twice to satisfactorily express a
certain quantity, the summation convention must be suspended.

The number and location of the free indices reveal directly the exact tensorial character
of the quantity expressed in the indicial notation. Tensors of first order are denoted by
kernel letters bearing one free index. Thus the arbitrary vector a is represented by a symbol
having a single subsecript or superseript, i.e. in one or the other of the two forms,

ay, al

The following terms, having only one free index, are also recognized as first-order tensor
guantities:
aiib;, Flur, R'.’qp, iUk

Second-order tensors are denoted by symbols having two free indices. Thus the arbitrary
dyadic D will appear in one of the three possible forms

N of i
D’j, Dy or Dl.,', Dy

In the “mixed” form, the dot shows that j is the second index. Second-order tensor
quantities may also appear in various forms ag, for example,

Aiiip, BY 4, St

By a logical continuation of the above scheme, third-order tensors are expressed by symbols
with three free indices. Also, a symbol such as A which has no indices attached, represents
a scalar, or tensor of zero order.

In ordinary physical space a basis is composed of three, noncoplanar vectors, and so
any vector in this space is completely specified by its three components. Therefore the
range on the index of a; which represents a vector in physical three-space, is 1,2,3.
Accordingly the symbol a: is understood to represent the three components as, ¢z, @s. Also,
@: is sometimes interpreted to represent the ith component of the vector or indeed to rep-
resent the vector itself. For a range of three on both indices, the symbol A; represents
nine components {of the second-order tensor (dyadic) A). The tensor A4; is often presented
explicitly by giving the nine components in a square array enclosed by large parentheses as

Ay Ar As
Ay = Az Awn Ax (1.62)
" Ay An An



10 MATHEMATICAL FOUNDATIONS [CHAP. 1

In the same way, the components of a first-order tensor (vector) in three-space may be
displayed explicitly by a row or column arrangement of the form

as

153
a; = (ax.aa.ad) or G = (ag> {1.63)

In general, for a range of N, an nth order tensor will have N* components.

The usefulness of the indicial notation in presenting systems of equations in compact
form is illustrated by the following two typical examples. For a range of three on both
i and 7 the indicial equation
Xy = Cij&j {1-5-’:‘)

represents in expanded form the three equations

X = en2p -+ C1e22 + €132z
s = CmZr b Cozle -F C2a%s {(1.65)
Xy = CmZ + C32%2 + Cpala

For a range of two on i and 7, the indicial equation
A = BipCJ’qu (1-66)
represents, in expanded form, the four equations
A4y = BuCuDy + BuCiDe + B12C11Das + Bi2CrzDoo
Ay = BiuCuDu + BuCuDis + BioCaDar + BraCnDa
A = BaCuDii 4+ BuCuDyz + BaeCnDa + BoaCizDan
Aoy = BoCoiDpy + BaCoDia + BaaCaiDar + BaeConDae

For a range of three on both 7 and j, (1.66) would represent nine equations, each having
nine terms on the right-hand side.

(1.67)

110 SUMMATION CONVENTION USED WITH SYMBOLIC NOTATION

The summation convention is very often em-
ployed in connection with the representation of
vectors and tensors by indexed base wvectors
written in the symbolic notation. Thus if the
rectangular Cartesian axes and unit base vectors
of Fig. 1-5 are relabeled as shown by Fig. 1-§,
the arbitrary vector v may be written

Vv = 181 + 28 -+ Vis (1.68)
in which vy, vs, vs ave the rectangular Cartesian
components of v. Applying the summation con-

vention to (1.68), the equation may be written in
the abbreviated form

Vv o= 'Usei (1.59)
where i is a summed index. The notation here is
essentially symbolic, but with the added feature
of the swmmation convention. In such a “com-
bination” style of notation, tensor character is
not given by the free indices rule as it is in frue
indicial notation. Fig. 1-8

J g

s
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Second-order tensors may also be represented by summation on indexed base vectors.
Accordingly the dyad ab given in nonion form by (1.58) may be written

T e aly == (a;’é;)(b,-@;) — aibjé“.é“j (1.70)

It is essential that the sequence of the base vectors be preserved in this expression. In
similar fashion, the nonion form of the arbitrary dyadiec D may be expressed in compact

notation by A
D = Dee; {1.71)

111 COORDINATE TRANSFORMATIONS. GENERAL TENSORS

Let 2! represent the arbitrary system of coordinates 21,22 2* in a three-dimensional
Euclidean space, and let 4 represent any other coordinate system #% 6% 63 in the same
gpace. Here the numerical superscripts are labels and not exponents. Powers of z may
be expressed by use of parentheses as in {x)? or (x)°. The letter superseripts are indices
as already noted. The coordinate transformation equations

g = 6z, 22, 2% (1.72)

assign to any point {x!, 2% «°) in the o' system a new set of coordinates (6%, 6% %) in the ¢
system, The functions ¢ relating the two sets of variables (coordinates) are assumed to
be single-valued, continuous, differentiable functions. The determinant

o agt a0t
dxl gzt gud

J = g%; % gg:a (1.78)
dxt  dx*  a?
or, in compact form, agi
7= |&] (2.74)

is called the Jacobiun of the transformation. If the Jacobian does not vanish, {1.72)
possesses a unique inverse set of the form

o= ai(g?, 62 6% (1.75)

The coordinate systems represented by af and ¢ in (1.72) and (1.75) are completely general
and may be any curvilinear or Cartesian systems.

From (1.72), the differential vector d# is given by

. a4i
i — 1
a9 7 Fye da (1.76)
This equation is a prototype of the equation which defines the class of tensors known as
contravariant vectors. In general, a set of quantities b' associated with a point P are said
to be the components of a contravariant tensor of order one if they transform, under a
coordinate transformation, according to the equation
o gt
Hn = X hi
b 55 b (1.77)
where the partial derivatives are evaluated at P. In (1.77), &' are the components of the
tensor in the @/ coordinate system, while &% are the components in the. §f system. In general
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tensor theory, contravariant tensors are recognized by the use of superscripts as indices.
It is for this reason that the coordinates are labeled z* here rather than x;, but it must be
noted that it is only the differentials daf, and not the coordinates themselves, which have
tensor character.

By a logical extension of the tensor concept expressed in (1.77), the definition of con-
travariant tensors of order two requires the temsor components to obey the transformation

law o
ae‘ Eg_i Brs

i =
B dx" axs

(1.78)

Contravariant tensors of third, fourth and higher orders are defined in a similar manner.

The word contravarient is used above to distinguish that class of tensors from the
class known as covariant tensors. In general tensor theory, covariant tensors are recognized
by the use of subscripts as indices. The prototype of the covariant vector js the partial
derivative of a scalar function of the coordinates. Thusif ¢ = ¢(a!, a® %) is such a function,

b _ 0w

a0t - axf LY {1 '79)

In general, a set of guantities b; are said to be the componenis of a covariant tensor of
order one if they transform according to the equation

s o’

o= = 1.8

b 7 U (1.80)
In (1.80), ¥, are the covariant components in the & system, b; the components in the &
system. Second-order covariant tensors obey the transformation law

oxT ox®

B.,J = 35; a—ggBrs (1'81)

Covariant tensors of higher order and mixed tensors, such as

287 gxm gt

Ty = Eﬁ%wT’ii"" : (1.82)

are defined in the obvious way.

112 THE METRIC TENSOR. CARTESIAN TENSORS

Let af represent a system of rectangular Cartesian coordinates in a Euclidean three-
space, and let 6 represent any system of rectangular or curvilinear coordinates (e.g. cylindri-
cal or spherical coordinates) in the same space. The vector x having Cartesian components
#¢ is called the position vector of the arbitrary point P(a?, w2, a%) referred to the rectangular
Cartesian axes. The square of the differential element of distance between neighboring
points P(x) and Q(x +dx) is given by

dsp = doidat (1.83)

From the coordinate transformation ‘
xt = zi{01, 0% 6% (1.84)

relating the systems, the distance differential is

i
det = gg’;dan (1.85)



CHAP. 1} MATHEMATICAL FOUNDATIONS i3

and therefore (1.83) becomes
367 ap" _
where the second-order tensor gp, = (0x/36°)(0/36%) is called the melric tensor, or funda-

mental tensor of the space. If 6 represents a rectangular Cartesian system, say the =z
system, then

(ds): dorder =  gpgdor do" (1.86)

axt gat
Opa = I Jpra = Bpq (1~87)

where 8,4 is the Kronecker delta (see Section 1.13) defined by 8o =0 if psq and 8p=1
if p=aq.

Any system of coordinates for which the squared differential element of distance takes
the form of {1.83) is called a system of homogeneous coordinates. Coordinate transforma-
tions between systems of homogeneous coordinates are orthogonal transformations, and
when attention is restricted to such transformations, the tensors so defined are called
Cartesian tensors. In particular, this is the case for transformation laws between systems
of rectangular Cartesian coordinates with a common origin. For Cartesian tensors there
is no distinction between contravariant and covariant components and therefore it is cus-
tomary to use subscripts exclusively in expressions representing Cartesian tensors. As
will be shown next, in the transformation laws defining Cartesian tensors, the partial
derivatives appearing in general tensor definitions, such as (1.80) and (1.81), are replaced
by conatants.

113. TRANSFORMATION LAWS FOR CARTESIAN TENSORS.
THE KRONECKER DELTA. ORTHOGONALITY CONDITIONS

Let the axes Oxixaws and Ox{xixi represent
two rectangular Cartesian coordinate systems
with a eommon origin at an arbitrary point 0
as shown in Fig. 1-9. The primed system may be
imagined to be obtained from the unprimed by
a rotation of the axes about the origin, or by a
reflection of axes in one of the coordinate planes,
or by a combination of these. If the symbeol o
denotes the cosine of the angle between the ith
primed and jth unprimed coordinate axes, ie,
@; = cos (xf,2;), the relative orientation of the
individual axes of each system with respect to the
other is conveniently given by the table

Ty X xy
+
Ty g @y g
x5 @2 @z ag
+
x a; tao -39 .
3 a1 32 34 Fig. 1-8

or alternatively by the transformation tensor
au 182, a3 ‘ - ..,1,'_ Ll PN
A = (s:  Qan  Goa |
a3 dgr  Qdas
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From this definition of a;, the unit vector €, along the z) axis is given according to (1.48)
and the summation convention by

,é; = @6 + @262 + Qa8 = @15 {1 ’88)
. . . . . » * . ~
An obvious generalization of this equation gives the arbitrary unit base vector e; as
’é; = @€ (1.89)

In component form, the arbitrary vector v shown in Fig. 1-9 may be expressed in the
unprimed system by the equation
and in the primed sysiem by

£t

v = Vig (1.91)
Replacing €, in (1.91) by its equivalent form (1.89) yields the result
v = 068 (1.92)

Comparing (1.92) with (1.90) reveals that the vector components in the primed and unprimed
systems are related by the equations

v = @i (1.93)

The expression (1.93) is the transformation law for first-order Cartesian tensors, and as
such is seen to be a special case of the general form of first-order tensor transformations,
expressed by (1.80) and (1.77). By interchanging the roles of the primed and unprimed
base vectors in the above development, the inverse of (1.93) is found to be

Vi = Qv ’ {1.94)

It is important to note that in (1.93) the free index on a;; appears as the second index. In
(1.94), however, the free index appears as the first index.

By an appropriate choice of dummy indices, (1.93) and (1.94) may be comibined to pro-
duce the equation
Py = Qi@ (1.95)

Since the vector v is arbitrary, (1.95) must reduce to the identity v; =7, Therefore the
coefficient a;an, whose value depends upon the subseripts 7 and k, must equal 1 or 0
according to whether the numerical values of j and Lk are the same or different. The
Kronecker delta, defined by
1 for i=7
8y = { (1.96)

0 for i+#j]

may be used to represent quantities such as ayax. Thus with the help of the Kronecker delta
the conditions on the coefficient in (1.95) may be written

aijlic = S (1.97)

In expanded form, (1.97) consists of nine equations which are known as the orthogonality
or orthonormality conditions on the direction cosines a; Finally, (1.98) and (1.94) may also

be combined to produce v = aiaxwr from which the orthogonality conditions appear in the
alternative form
ailx; = Bk {1.98)

A linear transformation such as (1.98) or (1.94), whose coefficients satisfy (1.97) or (1.98),
is said to be an orthogonal transformation. Coordinate axes rotations and reflections of
the axes in a coordinate plane both lead to orthogonal transformations.
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The Kronecker delta is sometimes called the substifufion operafor, since, for example,

Sib; = 8uby + 8upby 4 8ibs = b: (1.99)
and, likewise,
§;F% = 8uFfw + 8aFo + 83 = Fy (1.100)
1t is clear from this property that the Kronecker delta is the indicial counterpart to the
symbolic idemfactor 1, which is given by (1.54).

According to the transformation law (1.94), the dyad ww,; has components in the primed
coordinate system given by
W] = (Gplp) (V) = QipliqlpVq (2.101)

In an obvious generalization of (1.101), any second-order Cartesian tensor T'; obeys the

transformation law ,
Ty = QipiaTpa (1.102)

With the help of the orthogonality conditions it is a simple caleulation to invert (1.102),
thereby giving the transformation rule from primed components to unprimed components:
Ty = @piasThe (1.103)

The transformation laws for first and second-order Cartesian tensors generalize for an
Nth order Cartesian tensor o
Tik... = Gipljlm . . . Toom. .. (1.104)

1.14 ADDITION OF CARTESIAN TENSORS. MULTIPLICATION BY A SCALAR

Cartesian tensors of the same order may be added (or subtracted) component by com-
ponent in accordance with the rule

Age... =By, = T . (1.105)
The sum is a tensor of the same order as those added. Note that like indices appear in the
same sequence in each term,

Multiplication of every component of a tensor by a given scalar produces a new tensor of
the same order. For the scalar multiplier A, typical examples written in both indicial

and symbolic notation are
by = Az or b = Aa (1.106)

By = My or B = MA (1.107)

115 TENSOR MULTIPLICATION

The outer product of two tensors of arbitrary order is the fensor whose components
are formed by multiplying each component of one of the tensors by every component of the
other. This process produces a tensor having an order which is the sum of the orders of
the factor tensors. Typical examples of outer products are

(a) a;b; = Ty (€) DisTim = Pijim
(b) veFp = @ (d) €wVm = Oijm

As indicated by the above examples, outer products are formed by simply setting down the
factor tensors in juxtaposition. (Note that a dyad is formed from two vectors by this very
procedure.)
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Contraction of a tensor with respect to two free indices is the operation of assigning
to both indices the same letter subscript, thereby changing these indices to dummy indices.
Contraction produces a tensor having an order two less than the original. Typical examples
of contraction are the following.

{z) Contractions of Ty and w:;
Ts = Tu+Ten+Tn
Uy = Wy + UgPe + Usly

(b) Contractions of Eyax

Eia; = b
Eijai = Cj
Euar = dx

(¢) Contractions of EyFin
EiFim = Gm EiFuw = Py
Ei;‘F}ci - H;’I\: Ei;ij = Qim
EuFim = Kinm EyFy = Bu
An inner product of two tensors is the result of a contraction, involving one index from
each tensor, performed on the outer product of the two tensors. Several inner products
important to continuum mechanics are listed here for reference, in both the indicial and
symbolic notations.

Outer Product Inner Product
Indicial Notation Symbolic Notation
1. ﬂibj G;bi a*b
2, mF afw = fx arE =1
aEBy =M Era=nh
8. EByFin EyFim = Gim E'F =6
4, EyErm EyEim = Bin E‘E = (5)2

Multiple contractions of fourth-order and higher tensors are sometimes useful. Two
guch examples are

1. EyFxnm contracted to Ey;iFy;, or E:F
2. EiEumEyq contracted to EyEmEme oOr (E)®

116 VECTOR CROSS PRODUCT. PERMUTATION SYMBOL. DUAL VECTORS

In order to express the cross product a X b in the indicial notation, the third-order tensor
e known as the permutation symbol or alternating tensor, must be introduced. This
useful tensor is defined by

1 if the values of 4,7,k are an even permutation of 1,2,3 (i.e. if
they appear in segquence as in the arrangement 12312).

_ —1 if the values of 4,7,k are an odd permutation of 1,2,3 (i.e. if
ik T they appear in sequence as in the arrangement 32132).

0 if the values of 4,7,/ are not a permutation of 1,2,3 (ie. if
L two or more of the indices have the same value}).
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From this definition, the cross product axXb =e¢ is written in indicial notation by

fsjkajbk - G (1.108)
Using this relationship, the box product axb+c= )\ may be written
A= oegaibics (1.109)

Since the same box product is given in the form of a determinant by (1.52), it is not sur-
prising that the permutation symbol is frequently used to express the value of a 3X3
determinant.

It is worthwhile to note that ¢, obeys the tensor transformation law for third order
Cartesian tensors as long as the transformation is a proper one (deta; = 1) such as arises
from a rotation of axes. If the transformation is improper (deta; = —1), e.g. a reflection
in one of the coordinate planes whereby a right-handed coordinate system is transformed
into a left-handed one, a minus sign must be ingerted into the transformation law for ¢.
Such tensors ave called pseudo-fensors.

The dual vector of an arbitrary second-order Cartesian tensor Ty is defined by
™ = EijijJ.—, (1.110)

which is observed to be the indicial equivalent of T., the “vector of the dyadic T”, as defined
by (1.15).

1.17 MATRICES. MATRIX REPRESENTATION OF CARTESIAN TENSORS

A rectangular array of elements, enclosed by square brackets and subject to certain laws
of combination, is called a matriz. An M X N matrix is one having M (horizontal) rows
and N (vertical) columns of elements. In the symbol Ay, used to represent the typical
element of a matrix, the first subseript denotes the row, the second subseript the column
occupied by the element. The matrix itself is designated by enclosing the typical element
gymbol in square brackets, or alternatively, by the kernel letter of the matrix in seript.
For example, the M x N matrix o4, or [Ay] is the array given by

Ag A ... Aw
o = | An A et
Ay A Aan

A matrix for which M = N, is called a square matriz. A 1X N matrix, written [aw],
is called a row matriz. An M x 1 matrix, written [aw], is called a column matriz. A mairix
having only zeros as elements is called the zero matriz. A square matrix with zeros every-
where except on the main diagonal (from A. to Any) is called a diegonal matriz. If the
nonzero elements of a diagonal matrix are all unity, the matrix is called the unit or identity
matriz. The N x M matrix <47, formed by interchanging rows and columns of the M x N
matrix o4, is called the transpose matriz of 4.

Matrices having the same number of rows and columns may be added {or subtracted)
element by element. Multiplication of the matrix [Ay] by a scalar A results in the matrix
[AAij]. The product of two matrices, 4B, is defined only if the matrices are conformable,
i.e. if the prefactor matrix o4 has the same number of columns as the postfactor matrix
@ has rows. The product of an M x P matrix multiplied into a P X N matrix is an M XN
matrix. Matrix multiplication is usually denoted by simply setting down the matrix
symbols in juxtaposition as in

AB = ¢ or [Ag{Bi] = {Cul (1.112)
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Matrix multiplication is not, in general, commutative: 4B #= BeAd.

A square matrix o/ whose determinant lAj| is zero is called a singular matriz, The
cofactor of the element Ay; of the square matrix of, denoted here by Ay, is defined by

AT = (1M (1.113)

in which My is the minor of Ay; ie. the determinant of the square array remaining after the
row and column of Ay; are deleted. The adjoint matrix of o4 is obtained by replacing each
element by its cofactor and then interchanging rows and columns. If a square matrix
od = [Ay] is non-singular, it possesses a unique inverse matriz o4 ~* which is defined as

the adjoint matrix of o4 divided by the determinant of e4. Thus

[4%]
ATt = o 1.114
From the inverse matrix definition (1.114) it may be shown that

A-teA = eded™t = (1.115)

where .4 is the identity matriz, having ones on the prineipal diagonal and zeros elsewhere,
and 5o named because of the property

oA = edd = oA , (1.116)

Tt is clear, of course, that J is the matrix representation of §,, the Kronecker delta, and of |,
the unit dyadic. Any matrix o4 for which the condition 4T =41 is satisfied is called
an orthogonal matriz. Accordingly, if oA is orthogonal,

ATed = cAcAT = J (1.117)

As suggested by the fact that any dyadic may be expressed in the nonion form (1.53),
and, equivalently, since the components of a second-order tensor may be displayed in the
square array (1.62), it proves extremely useful to represent second-order tensors (dyadies)
by square, 3 X 3 matrices. A first-order tensor (vector} may be represented by either a
1 % 8 row matrix, or by a 3 X 1 column mafrix. Although every Cartesian tensor of order
two or less (dyadics, vectors, scalars) may be represented by a matrix, not every matrix

represents a tengor.

If both matrices in the product 4B = ( are 3 X 3 matrices representing second-order
tensors, the multiplication is equivalent to the inner product expressed in indicial notation by

AUB;;; = Cik (1.113)

where the range is three. Expansion of (1.118) duplicates the “row by column” multiplica-
tion of matrices wherein the elements of the ith row of the prefactor matrix are multiplied
in turn by the elements of the kth column of the postfactor matrix, and these products
summed to give the element in the ith row and kth column of the product matrix. Several
such products oceur repeatedly in continuum mechanics and are recorded here in the various
notations for reference and comparison.

(a) Vector dot product
a*b = bra = A [ay][bs} = [A]
b

aby = by = A la, az, as}| be | = [asbs + aobe + asba] {1.119)
by
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(b} Vector-dyadic dot product

aE=b aé = B
ally = b; [au}[Ey] = [bi]
En E» Eun [aiEn + Qoo + aalls;, (1.120)
[araz.as]| BEn Faz Eun| = @Fp+ 6:Fs+ aEy,
Fy Ep Ex a1F12 + @2Fu + asFs)
(¢} Dyadic-vector dot product
E‘a = ¢ da = ¢
Bia; = e [Esllan] = feu]
Eyw En Euo|a ‘ by + @l + a:F (1.121)
By Fw Egl|e| = @l + asllae + ashlag
Ey Ep FEu || a @B 4 aoliys + asEas

118 SYMMETRY OF DYADICS, MATRICES AND TENSORS

According to (1.86) {or (1.37)), a dyadic D is said to be symmetric {anti-symmetric) if it is
equal to (the negative of) its conjugate D.. Similarly the second-order tensor D is
symmetric if

Dy = Dy (1.122)
and is anti-symmetric, or skew-symmetrie, if
Dy = ~Dy (1.123)
Therefore the decomposition of Dj; analogous to (1.38) is
Dy = 3(Ds+ Dy) + 3(Dy— Dy) (1.124)
or, in an equivalent abbreviated form often employed,
Dy = Dap + Dup (1.125)

where parentheses around the indices denote the symmetric part of Dy, and square brackets
on the indices denote the anti-symmetric part.

Since the interchange of indices of a second-order tensor is equivalent to the interchange
of rows and columns in its matrix representation, a square matrix o4 is symmetric if it is
equal to its transpose c4T. Consequently a symmetrie 3 X 3 matrix has only six independent
components ag illustrated by

An A An
ed = 4T = A Asn Axy {1.126)
Ay A Am

An anti-symmetric matrix is one that equals the negative of its transpose. Consequently
a 3 x 3 anti-symmetric matrix B has zeros on the main diagonal, and therefore only three
independent components as illustrated by

0 B2 By
B = —BY = —B1e 0 Bos {1.127)
—Biz =By 0
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Symmetry properties may be extended to tensors of higher order than two. In general,
an arbitrary tensor is said to be symmetric with respect to a pair of indices if the value of
the typical component is unchanged by interchanging these two indices. A fensor is anti-
gymmetric in a pair of indices if an interchange of these indices leads to a change of sign
without a change of absolute value in the component. Examples of symmetry properties
in higher-order tensors are

(@) Rigom = Fujm (symmetric in & and 7)
(0} e = —&p (anti-symmetric in k and 1)
(€} Gijkm = Giinr (symmetric in £ and'7; % and m)

(@) Bip = Bing = Bui = Biin (symmetric in all indices)

119 PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF SYMMETRIC
SECOND-ORDER TENSORS

In the following analysis, only symmetric tensors with real components are considered.
This simplifies the mathematics somewhat, and since the important tensors of continuum
mechanics are usually symmetric there is little sacrifice in this restriction.

For every symmetric tensor Ty, defined at some point in space, there is associated with
each divection (specified by the unit normal #:) at that point, a vector given by the inner

preduct
v = Tij‘n_i (1.128)

Here Ty may be envisioned as a linear vector operator which produces the vector v: conjugate
to the direction n:. If the direction is one for which »: ig parallel to ny, the inner produet.
may be expressed as a scalar multiple of ni. For this case,

Tyny = A (1129)
and the direction m: is called a principal direction, or principal axvis of Ty With the help
of the identity = Sim; (1.129) can be put in the form

(T — Adu)n; = 0 (1.130)
which represents a system of three equations for the four unknowns, 1 and A, associated
with each principal direction. In expanded form, the system to be solved is

(T1:— Ay + Thame -+ Tisng = 0
Tortty + (Teo— Mtz -+ Tranta = 0 {1.181)
Tarnty + Taette + {Tag — A)na =2 0
Note first that for every A, the trivial solution #: =0 satisfies the equations. The purpose
here, however, is to obtain non-trivial solutions. Also, from the homogeneity of the system

(1.181) it follows that no loss of generality is incurred by restricting attention to solutions
for which m: =1, and this eondition is imposed from now on.

For (1.130) or, equivalently, (1.131) to have a non-trivial solution, the determinant of
coefficients must be zero, that is,
|T5—Aéy| = 0 (1.132)

Expansion of this determinant leads to a cubic polynomial in A, namely,

M-I+ A -1 =0 (1.133)
which iz known as the characteristic equation of Ty, and for which the scalar coefficients,
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Iy = Ts = tr Ty (trace of Ty) (1.134)
Iy = ${Tuly— Tyl (1.135)
Iy = |1y = det Ty {1.186)

are called the first, second and third invarionts, respectively, of Ti. The three roots of the
cubic (1.133), labeled Aoy, Az A, are called. the principal values of Ty, For a symmetric
tensor with real components, the principal values are real; and if these values are distinet,
the three prineipal directions are mutually orthogonal. When referred to principal axes,
both the tensor array and its matrix appear in diagonal form. Thus

Ay 0 0 Ao 0 0
T = 0 Aoy 0 or T = 0 ey 0 (1137)
0 0 Am 0 0 Ao

If Ay = Ay, the tensor has a diagonal form which is independent of the choice of A
and A« axes, once the principal axis associated with A has been established. If all
principal values are equal, any direction is a principal direction. If the principal values are
ordered, it is customary to write them as A, Aan, Aam and to display the ordering as in
Aay 2 Aap 2 Aam-

For principal axes labeled Oxtaia¥, the transformation from Oxiwsvs axes is given by
the elements of the table
Ty Xa g
:r:j‘ €y == ?i(ll} 257.] = 71;1) Uyg = 'Jlgj”
x3 gy = 0 g9a = nEP azy = n{P
w} ay = i gy = n{® ayy = ni{H

in which n{” are the direction cosines of the jth principal direction.

120 POWERS OF SECOND-ORDER TENSORS. HAMILTON-CAYLEY EQUATION

By direct matrix multiplication, the square of the tensor Ty is given as the inner
produet Ty T;; the cube as T Thm Tmj; ete. Therefore with Ty written in the diagonal form
(1.187), the nth power of the tensor is given by

)\?; ) ] 0 M 0 0
" = 0 Mo O or " = 0 A O (1.138)
0 0 Ao 0 0 N

A comparison of (1.138) and (1.137) indicates that Ty and all its integer powe.s have the
same principal axes.

Since each of the principal values satisfies (2.183), and because of the diagonal matrix
form of T* given by (1.138), the tensor itself will satisfy (1.133). Thus

T3 —_ IrTa -+ IITT - IIITLG = { (1139}

in which J is the identity matrix. This equation is called the Hamilton-Cayley equation.
Matrix multiplication of each term in (1.139) by T produces the equation,

T = LT — ILTE + ULT (1.140)
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Combining (1.140) and (1.139) by direct substitution,
T4 = (E—TIT? + (1T — LIk T + Ll (1.141)

Continuation of this procedure yields the positive powers of T as linear combinations of
72,7 and J.

121 TENSOR FIELDS. DERIVATIVES OF TENSORS

A temsor field assigns a tensor T(x,t) to every pair (x,t) where the position vecfor x
varies over a particular region of space and ¢ varies over a particular interval of time.
The tensor field is said to be continuous (or differentiable) if the components of T(x, t) are
continuous (or differentiable) funetions of x and t. If the components are functions of x
only, the tensor field is said to be steady.

With respect to a rectangular Cartesian coordinate system, for which the position vector
of an arbitrary point is < = 28 (1.142)

tensor fields of various orders are represented in indicial and symbolic notation as follows,
(@) scalar field: 6 = olant) or ¢ = o(xt) (1.148)
(b) vector field: o= wixt) or v = v(xi) (1.144)

(¢) second-order temsor field:
Ty = Tulx,t) or T =T ) (1.145)

Coordinate differentiation of tensor components with respect to 2 is expressed by the
differential operator 8/dx;, or briefly in indicial form by &, indicating an operator of tensor
rank one. In symbolic notation, the corresponding symbol is the well-known differential
vector operator V¥, pronounced del and written explicitly
Eia—am—i = & (1.1486)
Frequently, partial differentiation with respect fo the variable x: is represented by the
comma-subscript convention as illustrated by the following examples.

vV =

9 _ o

(CL} ax ¢, (d} Gy 02 = Pup
v aly _

(b) a1 = Vi (8) xr Tu'k
v _ 82Ty

() dx; Vi ) L BT BEm

From these examples it iz seen that the operator & produces 2 tensor of order one higher
if 7 remains a free index {(a) and (c) above), and a tensor of order one lower if ¢ becomes
a dummy index ((b) above) in the derivative.

Several important differential operators appear often in continuum mechanics and are
given here for reference.

gradg = Vo = %8; or 94 = b, (1.147)
dive = Vv or 9y, = v, (1.148)
curlv = ¥ Xv or g9,V = gV, (1.149)

Vi = V'V or Y6 = oy (1.150)
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122 LINE INTEGRALS. STOKES THEOREM
In a given region of space the vector Tunction of position, F = F(x), is defined at every
point of the piecewise smooth curve C shown in Fig. 1-10. If the differential tangent vector
to the curve at the arbitrary point P is dx, the integral
X
j;F-dx = F-dx (1.151)

Xa

taken along the curve from A to B is known ag the line infegral of F along €. In the indicial

{xdp
J;Fidﬂ:i = j(‘ Fidx, {1.152)

notation, (1.151) hecomes

ada

Fig. 1-18 Fig, 1-11

Stokes’ theorem sdys that the line integral of F taken around a closed reducible curve
C, as pictured in Fig. 1-11, may be expressed in terms of an integral over any two-sided
surface S which has C as its boundary. Explicitly,

ﬁF-dx = Ln-(vxF)dS (1.158)

in which n ig the unit normal on the positive side of 8, and 45 is the differential element of
surface as shown by the figure. In the indicial notation, (1.153) is written

£ Fidey, = .j; ﬂ‘i‘-iijk.de (1.154)

123 THE DIVERGENCE THEOREM OF GAUSS

The divergence theorem of Gauss relates a volume integral to a surface integral. In
its traditional form the theorem says that for the vector field v = v(x),

LlevdV = Ln-vdS ’ {(1.155)

where 1 is the outward unit normal to the bounding surface S, of the volume V in which
the vector field is defined. In the indicial notation, (1.155) is written

j; v dV = Lvm; ds (1.156)

The divergence theorem of Gauss asg expressed by (1.156) may be generalized to incor-
porate a tensor field of any order. Thus for the arbitrary tensor field Tiy... the theorem is

written
j:r Tip..pdV = j; Tijee. 1 dS (1.157)



Summary of Notation — Diffusion Equation

A

Oc
— — Ddi de)=R
9 iv(gradc)

) Vo
. LA v _ i _ oy w0/ L "
Tensor: ASSAV(-DVO =R with V=191 and V-V=07 .40/ ¢ 7

2
Matrix: A¢—=V'DVe=R with V=19 and V-V=V'V=V’

2
Indicial:
2 2 2 2
A% pde ¢ Oy oo 4% DO "R or Aé-De, =R or
ot Oz, Oz, Oz, ot Oz, ’
2 2 2

Epanded: A%—D(aC O 8C):R

ot or®  0x° 0y

Advective-Diffusive Flows

Odc

A—+V-(=DVe¢)=R—-v-Vc

ot

Momentum Transfer - Fluid Mechanics — Navier-Stokes Equations (Incompressible)

Tensor:

v

ary

V-v=0

Expanded:

ot

0 0
pP—|v, +P[UI—I+U

" dy

ov ov

[_Jf_|__y_|_

or 0Oy

%] _
0z

F| |0/0x

T

=|F | |0 /0y|P + pl= +

) . B 9 . 2 . —82 82 82
+p(v- V) =F-VP+ Vv with V' =V.V=0/ Aszr 7

0? 0? 0? K
o7 Vo7 T oA

F | |0/0z v,



Momentum Transfer - Solid Mechanics (strain positive in extension)

—V-(cVu)=F

G
—GV’u, — o, s — P = F,
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Chapter 2

Mathematical Concepts and Weighted
Residual Techniques

2.1 Introduction
The present chapter begins with a briel resumé of the mathematical
equations governing the motion of viscous incompressible fluids. Some closed
from solutions of these equations have been presented in many well known
texts and will not be discussed. However, the necessary steps in the
transformation of these equations into a form suitable for the application of
the F.E.M. is considered in some detail,
Quite frequently, when utilising a finite difference approach, the governing
- equations arc first written in terms of the basic variables — stream function
and vorticity. The pressure distribution is then evaluated subsequent to
solving for these variables. Whilst a similar approach is possible using the
F.E.M., the authors have, however, followed a policy of solving for the
primitive variables wp,p, which are the local point values of velocity in the x
cartesian coordinate, y cartesian coordinate directions and the pressure,
respectively. Once these primitive variables are evaluated then the distribution
of the stream function, vorticity, tractive force etc. can be readily evaluated.

2.2 Two dimensional form of the governing equations

The governing equations are those normally quoted in the literature!'and a
detailed derivation is omitied. However, there are some salient features of the
equations which bear repetition and thercfore a general outline is included.

2.2.1 Conservation of mass
Equating the quantity of mass entering and leaving an elemental volume,

the non-steady flow of a compressible fluid in two dimensions is governed by,
dp 0 7
‘a“?‘}‘a(pﬂ)"{“a}(p!))—ﬂ (2.1

where p is the mass densily and ¢ represents time.
For an incompressible fluid, p=constant, and (2.1} reduces to,

dn v

A SR 2
dx +c7y 22)

Since the primitive variables are employed the above equation should be
satisfied explicitly, pointwise, everywhere within a flow domain.

10
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Fig. 2.1  Stress notation and distribution on an clemental area

2.2.2 Conservation of momentum
The conservation of momenluin, again obtained by examining the faces on
an ¢lemental area of Nuid, can be writien'®,

f.)—lf~i~uau+ du F do, 0Ot,, 9
e ax ”ay" =t u(j:-t"}- dy 23
dv  dv  dv do, ot

e e e P = JF D W

5 Tl Uy F, ( 2 ) (2.4

where 6,6,,7,,.7,, are stress components, Fig. 2.1 and F_,F, are body forces in
the x,y directions respectively. For a Newtonian fluid these stresses can be
related to local pressure and rate of strain via Poisson’s Constitutive Law!?!

au  Ov ¢
= b A o L 2
%x P (é’x * 6))) + Hax @
Ju o dv
Gy=—p '*"{(5"\"**"53;)“ “}ﬂ} {b)
du dv
foMer-”J” ‘é}"{“ﬁ\f (C}
See (2.8) £ e
where u is the molecular viscosity and 1= —%u when the pressure is assumed

to be equal, but opposite in sign, lo the normal stresses, ie. the Stokes
postulation',

Utilising (2.5),{2.3) and (2.4} a form of the Navier Stokes equation assuming
constant viscosity is,
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(Ju_* 6u+ Gu_EF 15p+1vr'} du  dv o a*u (@)
&t T e T e Yy T e T

6u+ 6v+ 01)_1}: Jap+1,a du  fv by v (b)
TR N TP Iy TR T VR R v
. . I (2.6)
in which y=-
- . . du v
If the fluid s assumed incompressible, 5;4-5—}—] ={, then (2.6} reduces {o,
Bu+ (7rl+ du 1. 1dp 62£:+321t @)
PR R e Y "R VA ‘
and
6u+ E)u+vau_1' _15p+ 6ly+azv (b)
G AT T T pay T Bk ay?
.7

Two points are worthy of note at this juncture. The first is that il the
inconmpressibility condition is invoked the stress equations now become,

du
=—p+Tu—
0. = —p+2us (a)
dp :
o= = p+2ps- (b}
Jn‘
and
o du oo (©
Ix},—T,‘xM,U 5;;"1‘5;

(2.8)

which can be used to evaluate the local stress at boundarics or along a line
within the fuid. Although the program developed in later chapters is
specifically formulated to solve the steady state Navier-Stokes equations,
clearly equations of the form,

%, du 1 &
i i F——l p

ué;-iwvé;mp < ;é—{ {a)

(EULER)

au+ dv 1 1dp
x0T pdy

MATHEMATICAL CONCEPTS AND WEIGHTED RESIDUAL TECHNIQUES 13

when the fluid is assumed inviscid, and, on ignoring the convective terms,

1 1dp *u Pu

Oz-m e e e e ez
pr"‘ pt")x_l ‘(ax".*‘@yz {a)

(STOKES)

I {dp Pv e

0::.... [ A W 1 | W —
P py "(ﬂxz-kﬂyz (b)
(210

can also be analysed.
The general steady state equations, which are analysed in detail are,

u(}“-lrvgi‘—l . tap (2w 2
dx  dy p ° pox 1 5;?4_@ (@
tlﬁv+)6v_i lop  [o*v % (b)

ENRS NS Y A Fr =
(2.113

where both the convective terms and viscous forces are retained. In the
coordinale system normally adopted the ‘y’ direction corresponds to the
vertical. Usually, the body force F =0 and F = — pg per unil volume of lluid
where ¢ is the gravitational acceleration. For the examples cited in the text
both I, and F, are assumed to be zero, although provision is made {or their
inclusion in the computer program.

2.2.3  Vorticity-stream function form of the governing equations

As stated carlier a form of the governing equations which can be used when
an analysis is conducted by either the {inite difference or finite element method
is commonly called the vorticity-stream function formulation. The essential
steps in the derivation of these equations will now be outlined. Eliminating the
pressure from (2.1 1) by differentiating (2.11a} with respect to y and (2.11b)with
respect to X, adding and introducing the definition for vorticity,

du v
e e e — 2.12

(0}1 ‘_Bx) 212)
we obtain the generalised steady state momentum equation in terms of
vorlicity,

2 2
dew dw ({7 w ﬂw) 2.13)

!f'é‘;‘f‘l)‘r-};ﬂ'l‘ 5:\7’“?*"33:?
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Defining the velocities in terms of a stream function, i,

_
= a_y (3)
and
_ O
=5 {b)
(2.14)

such that the continuity equation is satisfied automatically and the vorticity
can be re-defined,

Py 97
aTI!l/ a_;'g: e (2.15)
such that (2.13) becomes,
o e _, W 0y

When analysing for the spatial distribution of stream lunction and vorticity
the following form of the equations are widely employed,

Vzl/l—"’w — £ 2.1
and re-writting (2.13),

_ 0y do 9y duw
SOy ox ax dy

Some carly solutions, utilising the finite element method, to these equations
were published by Baker™ and Cheng™. It must be noted, however, that this
choice of variables, as opposed to the primitive form, has the associaled
problem of defining vorticity boundary conditions.

Although the methods adopted for solving equations (2.17) and {2.18)is not
outlined in this text, it is useful to note that if the velocity distribution is known
then both values of stream function and vorticity can be evaluated quite
readily from {2.12) and (2.15).

Wi (2.18)

23 Axisymmetric flow

Flow of a fluid through pipes is a particularly common occurrence. This
quasi-three dimensional situation can be described by equations similar to
those already present for two dimensional flow, providing there is no rotation
about the axis of symmetry,

Adopting a right hand cylindrical coordinate system, Fig, 2.2, where x is
measured along the longitudinal axis of the duct, r measured radially and & the
azimuth angle on a plane normal to the longitudinal axis.

MATHEMATICAL CONCEPTS AND WEIGHTED RESIDUAL TECHNIQUES 15

Fig. 2.2 Cylindrical co-ordinate system -- axisymmetric flow

2.3.1 Conservation of mass

Assuming the flow to be unidirectional along the x axis such that all
variations with respect to @ are zero. The steady state equation for
axisymmetric incompressible flow is,

dv v On

e 2,19
Orwir_%-(')x 0 ( )

where v denotes the velocity in the x, axial, direction and v in the orthogonal
direction r. This, as in {2.2), involves only two primitive variables.

2.3.2  Conservation of momentam
Again assuming stcady state incompressible flow the equations depicting
conservation of momentum are!V,

du  du /o d
AT DO - ST —fr 2.20
p(llax -+ Uar> x -+ r(()x{’ Jx) + ar(’ Trx)) { )
(71.7 (?v 1 & a O',’,
p(”g; B !}na-’-')—rr‘%‘;(a(i Txr)‘f“(,:j;:(f O’r))'—"';'— (221)

The body forces in the x and r directions are now represented by F, and F,
respectively. As before the stresses can be written as,

= —pt2 l-aﬁ (a)
D= TP TGS Y
G, = -pt 2;1%:? b

I
O = —p+ (c)
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and
dv  du
T =T, ﬂ( =+ 61‘) {d)
(2.22)
Combining (2.21) and (2.22) the required form of the momentum equation is,
du  du 1 1dp P?u 10u P*u
p— T LE NS ANS_— I —— a
Yo T VE pr pox - (rltl toat e @)
and
dv dv 1 tdp v 1dy v &
ar S et AU ol Wi LA {b)
Yo TV pr" por v "(axz YT
{2.23)

which are, basically, quite sinilar to (2.11). It can be stated, therefore, that the
principies developed for solving {wo dimensional problems would be equally
applicable to axisymmetric flow and this facility is included in the programs
subsequently presented.

The remaining quantities usually required, the stream f[unction and
vorticity, can, once the velocity is kuown, be evaluated using the following
definitions,

10w
“=iar (a’
_1ay
e T (b)
(2.24)
and
L/o%y 1dd 9t du v
] e e e s P — W R e 2. 5
r'(axl vor o AN W M (2:25)

2.4 Method of weighted residuais

Having defined the governing equations the method chosen for solution
depends, targely, on the physical problem being analysed. If the flow domain
and boundary conditions are well posed then an analytical solution could well
be possible. For the majority of flow problems of practical interest, however,
the flow domain is geometrically complex and recourse has to be made to an
approximate method which may then be amenable to direct analysis. The
authors have chosen to limit discussions to one, the Method ol Weighted
Residuals, which has been used quite extensively in the field of fluid mechanics.
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Boundary

Fig. 23 Definition of flow domain and boundary Llype

Weighted residual methods are, in essence, numerical technigues which can
be used to solve a single or set of partial differential equations. Consider sucha
set, say representative of {2.2) and (2.11),

Flu)= ﬁ (2.26)

m a domain Q, Fig. 2.3, where v is the exact solution and may represent a single
variable or a column vector of variables. The two prevalent type boundary
conditions are,

essential (Dirichlet) Glu)=ugon [, {a)

where the value of the variable is prescribed, and

natural (Neumann) Sw}=gonl, £5)]
(2.27)

where at least the first order gradient in the variable is prescribed.

The relevance and full explanation of each type boundary condition will
become apparen! when considering a specific example. The first step in the
application of the weighted residual procedure is to assume that n can be
approximated over the whole domain by,

h

u= ) af; (2.28)
i=1
where « are functions described in terms of independent variables, such as
spatial coordinates {x,y), and f§ arc undetermined parameters.
Ulilising this approximation and incorporating {2.28) in (2.26) resulls in an
error or residual, g, such that
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g= (i)~ J5¢0 (2.29)

where & is exactly zero when fi=u ie. an exact solution is possible.
In order to make g identically zero a set of ‘arbitrary’ weighting f unctions, ¥,
are employed such that over the whole domain, €,

Jl"Va dQ=0 {2.30}
.0

If the number of unknown parameters is s and therc are s linearly independent
weighting lunctions and (2.30} can be re-written,

kas dQ=JWk( LE)-§) dQ=0 k=123..5 (2.31)
[¥]

The only limitation, at this stage, placed on W, is that this must be, positive,
single valued and finite.

There are a number of ways in which the above concepts can be utilised to
iransform the differential equations into a form where finite element tech-
niques can be adopted with cffect. These have been expounded in various
Lextst56 78 and the deliberate policy of confining for simpticity, the present
text to one method will again be invoked and only the Galerkin®® method will
be considered.

2.4.1 The Galerkin weighted residual method

Before embarking on the main objective of this section a further brief
introduction must be given to the commonly adopted concept of trial or shape
functions in a finite element context.

The technique of defining approximated values of the required variable viaa
discrete summation was introduced in (2.28). The approximate values were
defined in terms of some functions  and discrete values f. This applied over
the whole domain under consideration in which s refers to the total number of
discrete values. If we now refine this concept and subdivide the domain into
clements, Fig. 2.4, the variable value within that subregion can now be defined
in terms of discrete values on the boundary of or within that region,

= Z Ng, (2.32p

where N are a set of trial functions written in terms of local coordinates
associated with n discrete values within or on the boundary of an element.
Each element will, normally, possess a unigue set of equations and f is now
confined to each element. ‘
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Boundary

__—~Subdomain or element

n=8

X

Fig. 24 Definition of subdomain or element

The residual now becomes,

&= g(i(“’iﬁi))‘f’ (2.33)

i=1

such that {2.31) can be rewritien,

Jw,‘( & ( 5 NJL)— ﬁ) dQ=0 k=125 (2.34)
Q

i=1

In the Galerkin method the same approximating functions are used for the
weighting and trial functions, ie. W, =N, and the generalised equation is,

JM(«&” (i};‘w,ﬁf)— }) dQ =0 (2.35)

where orthogonalisation has been effected with the same functions.

Example: Flow between parallel plates

The example chosen is that of flow between infinite paralilel plates, Fig. 2.5.
which has well known exact analytical solutions. The flow is assumed to be
fully developed and subject to the following boundary conditions,

h h
X, e =0 X pu
u(\, 2) s 1:(\,2) 0

v=0 for ali x and —

(F2.1.1)
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u=0
\\\‘\\\\\\\\\x
h
21 W
Lc B
h
i
Vi Ay ayind //////////

u=0
Fiz. 2.5 Laminar flow between stationary parailel plates
The continuity equation,

du  dv

= 22.1.2
Ew + X (E2.1.7)

together with the steady stale momentum equation,
du  du fdp &u  *u
o= 1 e —5 E2.1.3
"ax F U@y pox + v(6x' + ay* ( )

are the governing equations for the laminar flow under consideration. For the
steady state fully developed conditions imposed then the convective terms arc
zero and (E2.1.3) can be wrillen,

O — o va—y £2.14
e (E2.1.4)

Integrating twice with respect to y and applying the boundary conditions
(E2.1.1), equation {E2.1.4) becomes,

__1op oo,
e fﬁé?(f_}) {E2.1.5)
and
hoap
P L QL <2
i, S dx {E2.1.6)

where u, is the centre-line velocity.
A trial function which leads to exact answers for the current example

2 o N == ]
p={1 ﬂ'{al} N2 (E2.1.7)

is,

where both o, and «; are, as yet, unknown constants.
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The Galerkin weighted residual leads to,

I
1 ap &*u
wl -2 - ‘
J ( p 5x+‘r}x3) dy=0 (E2.1.8)
-hi2

inserting, when

i=1, W, =1
=2, W,=y?

For the condition i=1, N, =1 gives

+hi2
l dp
__;7_.5;.*.2\;&2 d)r:(} {E2,1.9a)
-2
and when i=2, N,=)?
+ 2
1 ap 2
—E'E)";—i_zvaz }i (EJ?:O (Ez.i.gb)
-2

On integrating (E2.1.9a) or (E2.1.9b), this {rivial example resulis in,

L) 2vay =0
;5;+ VoL, =
and
2 2pvf)x—2,u§§ {E2.1.10)
such that
=gy -+ I

The other term in equation (E2.1.11) can be evaluated using the boundary
conditions,

umo’ J S i{{
’ 2
which gives,
2
. Lo
2udx 4

and (E2.1.11) becomes,

B
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W\ 1 ép
— 12—-.__ (RN 2
u (} 7 )2#6,\' (E2.1.12)

which, as expected, is the exact solution.

Repeating the same example but now choosing an arbitrary function which
simply satisfies the boundary conditions, e.g.

=g cos(?) (E2.1.13)
1

the equivalent equation to (2.31} s,
B2
1op =* ny ny
— e ol wie =0 E2.1.
J ( o oy cos( p cos i dy ( 14}
— b2

after integration and imposing the limits indicated,

4k Ip
which resuits in the velocity distribution
4h* 3p Ty
= . E2.1.16
{ max CDS( h ) { )

Introducing numerical values,

h==0.1 metres

dp -3 2
5= ~30x107° N/m

and
p=1073 Ns/m?

leads to the comparison shown in Table 2.1 between the exact and the
approximate solution.

It is evident from Table 2.1 that even with a very crude approximation quite
reasonable results can be obtained.

The above example was confined to the case where the operators are sell
adjoint and only essential boundary conditions imposed. Generally, both the
trial and weighting functions must be such that the {le—1Y" derivative is
continuous, where k is the order of differentiation of governing differential
equation. For the example problem chosen this can be demonstrated by
considering Fig. 2.6 where the original trial function resuits in an integrable
second order differential. It is immediately apparent that this is a minimum
requirement, Such a function is said to be C, continuous. Generally a P order
derivative would require C,,_ ; continuity for the resulting weighted residual to
be integrable.
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Table 2.1

Velocity mysec

Weighted
¥ Exact - residual
0.0 6.25x107? 6.45x% 1073
0.01 6.0 x107? 6.13x 1077
0.02 5.25x 1073 5.22x 1077
0.03 400 % 1971 379 %1070
0.04 2.25%x 1073 199 x 1073
0.05 0.0 0.0

u % au
By +
B »
Y Y
32y
Byz
/; Second derivatives sguare
ooy integrable

N
<\ 7

Fig. 2.6

The above requircment leads to the conclusion that obvious advantages
would be gained if the order of the governing equation were reduced. This
would result in a lower order requirement in both the trial and weighting
functions. This is exploited in the following section.

2.5 “Weak® formulation of the governing equations
Starting again with the Galerkin form of the weighted residual process
applied to the general operator,
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”{ Z(u)—HW, dx dy=0 (2.36)
o
or
”s W, dx dy=0 (2.37)
o

subject to the usual essential and natural boundary conditions.

The sequence required to reduce the order of a governing cquation can be
illustrated by considering the second order heat conduction equation for a
homogeneous conducting mediam,

;;(K%)ak%(K%%)-FQ:D {2.38)
subject to the foliowing boundary conditions
essential ¢ =@ on boundary ",
and
natural g=q on boundary ',

(2.39)

The weighted residual form of this equation is,

a . dp g de Cdy
({2 oo Jre) oxe a0
0

Integrating {2.40) by parts with respect to ¢ and W, results in,

aw, _de 8w, do Op
— i f . N dx —c
”(axKaxJ”ayKay QWn) ‘dHIW.KaH 0 (41
(4]

where I' represents the complete boundary. {2.41) can be re-written,

oW, o oW, dp ,

LY " SEUTTNERLY G 1 dx dy
”(ax Kae+ 5y Ky~ M) dx @
2

(2.42)

d
- ;,;,;K"l‘f, dr - P!f;K«-g dI'=0
on dn

ry T,
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In equation {2.42) the sccond integral is re-written as,

jW,q dI’
r

L

In the abovc equations

dp r?qp_1I~ e
dn " Fdx o Yay

where [,/ are the components of the unit ouiward normal vectors at the
boundary.

The boundary integral terms in (2.42) require some [urther explanation
before proceeding to demonstrate the application by example. Clearly, the
physical significance of § can be interpreted as an outward flux. On commeon
faces between two elements the nett {lux will, if the distribution of ¢ is correct,
be zero. Therefore, for elements within a domain under consideration the nett
effect of the third terms in equation (2.42) is zero and can, for all intents and
purposes, be ignored. On that part of the boundary where the values of o are
defined,

p=0
then the third term becomes redundant since the equation would be eliminated
from the solution technique. On these boundaries the flux can, however, be
evaluated from

dp
Jif!f,.Kb«; dr (2.43)

Fe
Therelore, without loss of generality, (2.42) can be re-writien,

oW, dp  OW, do ) "
Jj(@}mKa+WK“5}W—QIK> dx dy— j!iiq dI'=0 {2.44)

I

where the boundary integral is only retained on boundaries where a fiux type
boundary condition is imposed.

Example Flow between parallel plates — weak formation

The main objective of the present example is lo introduce the weak
formulation incorporating the ‘gradient’ type boundary condition. Again
consider the Couette type flow where cach wall is stationary, Fig. 2.5, utilising
the same trial functions,

=T1 7% Ny=1 £2.2.1
u {U]{%} NZ:},Z} (E22.1)
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with the boundary conditions,

essential TETR at y=0
rural ou du at ;_h
natura = = p=

Invoking the Galerkin weighted residual approach the relevant weak
formulation leads to

32

1ép BWB .
J (pﬁ W+ a)r 3 )dy J.vw:.q dl'=0 {E2.2.2)
Y T,

L3

which, when {E2.2.1) is used becomes,

iy

18 aw; f
% vy Moy ) dyp— | ving ar=0 (E2.2.3)
pox dy
0 F,
when
AW,
= }, —a"j';"' WO

and, for this condition the L.H.S. of equation (E2.2.3} gives,

Bz

)
j GapHo) dy— Jvr} dr=0 (E2.2.4)
4 r,
Integrating and applying the limits of integration,
h dp .
PR 1 Ee3 2
5p7x j\q dIr=0 (E2.2.5)
When r‘a
W,
=2 =72y
=2, 3 2y

j (%%yz + vdo, ) dymjvyzc} dI'=0 (E2.2.6)
a

r

L]

which, upon integration, results in

I3Bp

i
e | W y)
24 e +6I %y J\g dIr=0 (E2.2.7)
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Adding equations (E2.2.5) and (E2.2.7) leads to a general expression of the

hapH_i +, h? lﬂu
Bl T13)Te TN\ g

in which the last term refers to the boundary at 0,hi/2. Using the same variable
values as before i.e.

=0 {E2.2.8)

0.hi2

h=0.1 metres

ap

e =—50x10"* N/m?

and

u=10"* Ns/m?
with the additional boundary conditions,

u=625x 1072 m/sec at y=0
and

du

B—J—P —0.25 at y=h/2

Substituting these values into equation (E2.2.8) the value of @, is found to be

—2.5. Note that this could have been obtained from (E2.2.7) only.
Substituting into (E2.2.1) and using the velocity boundary condition at y

=0, o, =6.25 x 1073, The general equation for the velocity is, therefore,

u=625x10"3-25 y* (E2.2.9)

which, as expected, yields the exact answers.

The question still remains, however, regarding the compatability of results
when a lower order trial function is utilised in conjunction with the ‘weak’
formulation. This can be demonstrated by assuming an equation of the form,

w=[1 y}" {:} (E2.2.10)

which would be too low an order when the weak formulation is not utilised.
Using the weak formulation this gives rise to the equation,

hi2

1dp héu
j (Eg;}% 1’052) dy— a 33y
4]

={ (E2.2.11)

0,02
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Table 2.2 Comparison of cxact velocity profile and weak formulation with minimum
order of trial function

Velocity m/sec

Weak weighted

¥ Exact residual
0.0 6.25% 1073 625x% 1073
0.0! 60 x107* 500x% 10°°
0.02 525x 1072 3.75% 10772
0.03 400xt07° 25 x107?
0.04 225% 1077 125%x107°
0.05 0.0 0.0
or
h dp Ju
— — Yo =3 <32,
R + val, Iﬂy - {E2.2.12)
Substituting values we have,
o, =—0.125
and
x,=625x% 107"
The resulting equation for the velocity distribution, now linear, is
u=6.25%10"%—-0.125y (E2.2.13)

A comparison with the exact velocity distribution is shown in Table 2.2,
which illustrates the considerable errors which have been incurred when a
linear profile is assumed.

The concept of ‘weak’ formulation can be extended to include higher order
equations, for instance the biharmonic equation'”), where the natural boun-
dary conditions assume considerable importance. Further reading on this
topic is left, however, to the interested reader. The stage has now been reached
where the weighted residual technique and the F.E.M. can be combined
leading to a general integrable form of equation where both trial and shape
functions are defined explicitly.
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Solid Mechanics (from J C Sheng, J Liu, WC Zhu, D Elsworth, in submittal)
GOVERNING EQUATIONS

Behavior is defined in terms of mechanical equilibrium, with components included to

represent the heat and fluid transport in a porous medium.

1 Mechanical Equilibrium
For an elastic medium the constitutive relation (Hooke’s Law) is defined in terms of the

total stress o, (positive for tension), strain ¢, pore fluid pressure change p (negative

for suction) and temperature change 7 as

2Gv ,
o, =2Gg, +m5kk§[j —apo,; —K'a,;To,, (1)

in which G is the shear modulus, v is the drained Poisson’s ratio, J; is the Kronecker

delta defined as 1 for i=j and 0 for i = j, K' (=2G(1+v)/3(1-2v)) is the drained bulk
modulus of the medium, «, is coefficient of volumetric expansion of the bulk medium

under constant pore pressure and stress ("C"), the parameter « (<1) is Biots
coefficient which depends on the compressibility of the constituents and can be defined

as

a=1-K __ 3V 2)

K. Ba-2)(1+v,)’
where K is the effective bulk modulus of the solid constituent, and the effective stress

is defined as o, = o, +apd,.

Using compact notation, the equations of equilibrium and the strain-displacement

relations can be expressed as

c;;, +F, =0 (3)
and

! 4
& :E(ui,j_‘_uj,[) ( )

respectively. Where F, and u, (i =x,y,z) are the components of the net body force and

displacement in the i-direction. From eqns (1) and (4), a modified Navier equation may



be derived via eqn (3), in terms of displacement under a combination of changes of

applied stresses, pore fluid pressures, and temperature as

u,, —ap,—K'a,T,+F =0. (5)

2 Flow Equation

For a porous solid filled with an interstitial and freely diffusing pore fluid, where solid and
fluid are assumed in thermal equilibrium, the rate of change of volume V' caused by
changes of temperature, pore fluid pressure, and strains can be expressed as (Zhou et
al., 1998)

1oV o¢ oT
o Vg 4, + (- Pa 1S~

vV or o o \B K. Jor 3K UV

where ¢ is time (s), ¢, is the volume stain (=&, +¢, +¢_.), ¢, is the water flux/unit area

(Lﬂja_m;, 5 )

(m/s), ¢ is the porosity in a general continuum, ¢, is the coefficient of volumetric
thermal expansion of the liquid (‘C"), «, is the coefficient of volumetric thermal
expansion of the solid matrix ("C™"), and p, is the bulk modulus of the pore fluid (Pa).

Rearrangement of eqn (6) results in the fluid mass conservation equation

Vg, =—a‘€; +[¢a,+(1—¢>as]6—T—(i+ﬂja—p+La 5 @)

0 oo \p K, )or 3K, TV

By neglecting effects of thermal-osmosis, the constitutive relation for fluid diffusion can
be expressed by Darcy’s law, as,

q, =—KkV(p+p,gz) (8)
where z is the vertical coordinate, x is the coefficient of permeability [m*/(N-s)] with
x =k/u, , where g, is the dynamic fluid viscosity (N's'm™), k is the intrinsic permeability
in a general continuum (m?), p, is the liquid density (kg/m®), and g is gravitational

acceleration (m/s?). Substitution of eqns (8) and (1) into eqn (7) results in

o€, oT 0
A g g =V kP V2] ©
where
K’ 3(v, —v)
¢ =l-—=

K. B(l+v,)1-2v)’



¢, =pa;+ (=P, ———, (10)

£+1—¢_ o1-2v, )(v,—-Vv)
B, K., 2GB*(1-2v)(1+v,)*’

3 Energy Conservation Equation

By neglecting thermal-filtration effects, the constitutive relation for heat diffusion is given
by Fourier’s law as

q, =-4,VT (11)
where ¢, is the heat flux transmitted by conduction in the fluid-solid mixture, with

Ay =(1=P)A, +dA, . (12)
Here, A, and A, are the thermal conductivities of the solid (rock) and liquid [J/(s-m-°C)]

components. Due to the assumption of thermal equilibrium between the fluid and solid
phases, the heat energy balance equation over an REV can be expressed in terms of a
single equation which neglects the terms representing the interconvertibility of thermal
and mechanical energy (Zhou et al., 1998; Noorishad and Tsang, 1996; Kurashige,
1989)

oT ,  0s,
(pC)ME_(To"'T)alﬁzv%_(T0+T)Kar o =-V-q, -V-(p,Hgq,) (13)

where 7, is the absolute reference temperature in the stress-free state (K), p, is the

reference mass density, H represents the specific enthalpy of the pore fluid, (oC),, is
the specific heat capacity of the fluid-filed medium, defined as
(PC)y =0(p,C)+(1-9)p,C,), Wwhere p_ is the mass density of the rock matrix (kg/m?),
and C, and C, are the fluid and solid specific heat constants at constant volume (J-kg’

tec.

The first term on the left-hand side of eqn (13) represents the rate of internal heat
energy change per unit volume due to an increase in temperature. The second term
represents a heat sink due to thermal dilatation of the fluid. The last term represents a
heat sink due to thermal expansion of the medium. For a small variation of temperature

(the temperature changes (7' ) are small compared to the absolute ambient temperature),

3



T, +T = T,, this term is identical to that given by Biot (1956). The second and third terms

on the left-hand side of eqgn (13) represent the thermoporoelastic coupling in the heat
energy balance equation (Zhou et al., 1998). The last term on the right-hand side of egn
(13) represents the convective heat flux (the transportation of enthalpy by fluid flow

through pores).

We assume that heat exchange between the solid matrix and the pore fluid is rapid in
comparison with the global heat and fluid diffusion processes. Thus, the local heat

equilibrium is established (Kurashige, 1989) as,
H =(pC)y T/(¢p,) - (14)
Substitution of eqns (11) and (14) into egn (13) results in

(pC),, ‘Z—f F (T, + T, BV - (55p + p,gV2)

(15)

—(T,+T)K'a, %_&
ot é

The last term on the left-hand side of eqn (15) represents the convective heat flux.

k(Vp+ p,gVz)-VT =4,V -q,

Equations (5), (9) and (15) represent a set of fully coupled non-linear equations
governing the thermo-poroelastic response of a saturated medium. The equations
account for thermodynamically coupled heat and mass transfer, mechanical and thermal

compressibility of the constituents, and importantly in this work, convective heat flow.

4 Initial and Boundary Conditions

The triply coupled THM physics of the system is defined through equations (5), (9) and
(15). For completeness, standard boundary conditions and initial conditions are defined
as follows.

4.1 Boundary conditions

Stress-displacement conditions for the mechanical analysis are defined as
u(x,?) = u(x,z), t e [0,0), (16)



o(x,t)-n(x) = F(x,t), t e [0,). (17)
Fluid flow is defined in terms of boundary conditions representing:
The Dirichlet condition: p(x,7) = p(x,t), t € [0,0). (18)
The Neumann condition: x-(Vp—p,8)-n(x) = Q0,(x,t), t € [0,). (19)
And likewise for heat transport:
The Dirichlet condition: T(x,7) = T(x,t), t € [0,). (20)
The Neumann condition: 4, VT -n(x) = Q,(x,t), t € [0,). (21)

where n is the outward unit normal vector on the domain boundary.

4.2 Initial conditions

Initial conditions for the mechanical, flow and thermal analyses are defined as

u(x,0) =0onV, (22)
o(x,00 =0on V, (23)
p(x,0) =0on V', (24)
T(x,00 =0on V. (25)

The dependent variables, u, p, and T, represent incremental deviations from the

strain-free state assumed by the above choice of initial conditions. The quantity V

represents the volume under consideration.
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Abstract

The evolution of matrix structural analysis (MSA) from 1930 through 1970 is outlined. Highlighted are major
contributions by Collar and Duncan, Argyris, and Turner, which shaped this evolution. To enliven the narrative the
outline is configured as a three-act play. Act I describes the pre-WWII formative period. Act II spans a period of
confusion during which matrix methods assumed bewildering complexity in response to conflicting demands and re-
strictions. Act III outlines the cleanup and consolidation driven by the appearance of the direct stiffness method,
through which MSA completed morphing into the present implementation of the finite element method (FEM). No
attempt is made at chronicling the more complex history of FEM itself. © 2001 Elsevier Science Ltd. All rights
reserved.

Keywords: Matrix structural analysis; Finite elements; History; Displacement method; Force method; Direct stiffness method; Duality

1. Introduction

Who first wrote down a stiffness or flexibility matrix?

The question was posed in a 1995 paper [1]. The
educated guess was ‘“‘somebody working in the aircraft
industry of Britain or Germany, in the late 1920s or
early 1930s”. Since then the writer has examined reports
and publications of that time. These trace the origins of
matrix structural analysis (MSA) to the aeroelasticity
group of the National Physics Laboratory (NPL) at
Teddington, a town that has now become a suburb of
greater London.

The present paper is an expansion of the historical
vignettes in Section 4 of [1]. It outlines the major steps in
the evolution of MSA by highlighting the fundamental
contributions of four individuals: Collar, Duncan, Ar-
gyris and Turner. These contributions are lumped into
three milestones:

" Tel.: +1-303-492-6547; fax: +1-303-492-4990.
E-mail address: carlos@titan.colorado.edu (C.A. Felippa).

Creation: Beginning in 1930 Collar and Duncan
formulated discrete aeroelasticity in matrix form. The
first two journal papers on the topic appeared in 1934—
1935 [2,3] and the first book, coauthored with Frazer,
in 1938 [4]. The representation and terminology for
discrete dynamical systems is essentially that used to-
day.

Unification: In a series of journal articles appearing in
1954 and 1955 [5] Argyris presented a formal unification
of force and displacement methods (FDM) using dual
energy theorems. Although practical applications of the
duality proved ephemeral, this work systematized the
concept of assembly of structural system equations from
elemental components.

FEMinization: In 1959 Turner proposed [6] the direct
stiffness method (DSM) as an efficient and general
computer implementation of the then embryonic, and as
yet unnamed, finite element method (FEM). This tech-
nique, fully explained in a follow-up article [7], naturally
encompassed structural and continuum models, as well
as nonlinear, stability and dynamic simulations. By 1970
DSM had brought about the demise of the classical

0045-7949/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0045-7949(01)00025-6
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force method (CFM), and become the dominant im-
plementation in production-level FEM programs.
These milestones help dividing MSA history into
three periods. To enliven and focus the exposition these
will be organized as three acts of a play, properly sup-
plemented with a “matrix overture” prologue, two in-
terludes and a closing epilogue. Here is the program:

Prologue — Victorian artifacts: 1858-1930.
Act I — gestation and birth: 1930-1938.
Interlude I — WWII blackout: 1938-1947.
Act II — the matrix forest: 1947-1956.
Interlude II — questions: 1956-1959.

Act IIT — answers: 1959-1970.

Epilogue — revisiting the past: 1970-date.

Act I, as well as most of the prologue, takes place in
the UK. The following events feature a more interna-
tional cast.

2. Background and terminology

Before departing for the theater, this Section offers
some general background and explains historical ter-
minology. Readers familiar with the subject should skip
to Section 3.

[1DEALIZATION]  [DISCRETIZATION] [soLuTioN

Physical Math ical Discrete Discrete
system model model solution

| Solution error I

Discretization + solution error

Modeling + discretization + solution error

| VERIFICATION & VALIDATION |

Fig. 1. Flowchart of model-based simulation (MBS) by com-
puter.

The overall schematics of model-based simulation
(MBS) by computer is flowcharted in Fig. 1. For me-
chanical systems such as structures the FEM is the most
widely used discretization and solution technique. His-
torically the ancestor of FEM is MSA, as illustrated in
Fig. 2. The morphing of the MSA from the pre-com-
puter era — as described for example in the first MSA
book [4] — into the first programmable computers took
place, in wobbly gyrations, during the transition period
herein called Act II. Following a confusing interlude, the
young FEM begin to settle, during the early 1960s, into
the configuration shown on the right of Fig. 2. Its basic
components have not changed since 1970.

MSA and FEM stand on three legs: mathemati-
cal models, matrix formulation of the discrete equa-
tions, and computing tools to do the numerical work. Of
the three legs the latter is the one that has undergone the
most dramatic changes. The “human computers” of the
1930s and 1940s morphed by stages into programmable
computers of analog and digital type. The matrix for-
mulation moved like a pendulum. It begins as a simple
displacement method in Act I, reaches bewildering
complexity in Act II and goes back to conceptual sim-
plicity in Act III.

Unidimensional structural models have changed lit-
tle: a 1930 beam is still the same beam. The most no-
ticeable advance is that pre-1955 MSA, following
classical Lagrangian mechanics, tended to use spatially
discrete energy forms from the start. The use of space-
continuum forms as basis for multidimensional element
derivation was pioneered by Argyris [5], successfully
applied to triangular geometries by Turner et al. [8], and
finalized by Melosh [9] and Irons [10,11] with the precise
statement of compatibility and completeness require-
ments for FEM.

Matrix formulations for MSA and FEM have been
traditionally classified by the choice of primary un-
knowns. These are those solved for by the human or
digital computer to determine the system state. In the

Continuum
Mathematical
Models

Formulation

Fig. 2. Morphing of the pre-computer MSA (before 1950) into the present FEM. On the left “human computer’” means computations
under direct human control, possibly with the help of analog devices (slide rule) or digital devices (desk calculator). The FEM con-

figuration shown on the right settled by the mid 1960s.
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displacement method (DM) these are physical or gen-
eralized displacements. In the CFM these are amplitudes
of redundant force (or stress) patterns. (The qualifier
“classical” is important because there are other versions
of the force method (FM) which select for example stress
function values or Lagrange multipliers as unknowns.)
There are additional methods that involve combinations
of displacements, forces and/or deformations as primary
unknowns, but these have no practical importance in the
pre-1970 period covered here.

Appropriate mathematical names for the DM are
range-space method or primal method. This means that
the primary unknowns are the same type as the primary
variables of the governing functional. Appropriate
names for the CFM are null-space method, adjoint
method, or dual method. This means that the primary
unknowns are of the same type of the adjoint variables
of the governing functional, which in structural me-
chanics are forces. These names are not used in the
historical outline, but are useful in placing more recent
developments, as well as nonstructural FEM applica-
tions, within a general framework.

The terms stiffness method and flexibility method
are more diffuse names for the displacement and force
methods, respectively. Generally speaking these apply
when stiffness and flexibility matrices, respectively, are
important part of the modeling and solution process.

3. Prolog — Victorian artifacts: 1858-1930

Matrices — or “determinants” as they were initially
called — were invented in 1858 by Cayley at Cambridge,
although Gibbs (the co-inventor, along with Heaviside,
of vector calculus) claimed priority for the German
mathematician Grassmann. Matrix algebra and matrix
calculus were developed primarily in the UK and Ger-
many. Its original use was to provide a compact lan-
guage to support investigations in mathematical topics
such as the theory of invariants and the solution of al-
gebraic and differential equations. For a history of these
early developments the monograph by Muir [12] is un-
surpassed. Several comprehensive treatises in matrix
algebra appeared in the late 1920s and early 1930s [13—
15].

Compared to vector and tensor calculus, matrices
had relatively few applications in science and technol-
ogy before 1930. Heisenberg’s 1925 matrix version of
quantum mechanics was a notable exception, although
technically it involved infinite matrices. The situation
began to change with the advent of electronic desk cal-
culators, because matrix notation provided a convenient
way to organize complex calculation sequences. Aero-
elasticity was a natural application because the stability
analysis is naturally posed in terms of determinants of
matrices that depend on a speed parameter.

The nonmatrix formulation of discrete structural
mechanics can be traced back to the 1860s. By the early
1900s the essential developments were complete. A
readable historical account is given by Timoshenko [16].
Interestingly enough, the term “matrix” never appears
in this book.

4. Act I — gestation and birth: 1930-1938

In the decade of World War I aircraft technology
begin moving toward monoplanes. Biplanes disap-
peared by 1930. This evolution meant lower drag and
faster speeds but also increased disposition to flutter.
In the 1920s aeroelastic research began in an interna-
tional scale. Pertinent developments at the NPL are
well chronicled in a 1978 historical review article by
Collar [17], from which the following summary is ex-
tracted.

4.1. The source papers

The aeroelastic work at the Aerodynamics Division
of NPL was initiated in 1925 by R.A. Frazer. He was
joined in the following year by W.J. Duncan. Two years
later, in August 1928, they published a monograph on
flutter [18], which came to be known as “The Flutter
Bible” because of its completeness. It laid out the prin-
ciples on which flutter investigations have been based
since. In January 1930 A.R. Collar joined Frazer and
Duncan to provide more help with theoretical investi-
gations. Aeroelastic equations were tedious and error
prone to work out in long hand. Here are Collar’s own
words [17, p. 17] on the motivation for introducing
matrices:

“Frazer had studied matrices as a branch of ap-
plied mathematics under Grace at Cambridge;
and he recognized that the statement of, for exam-
ple, a ternary flutter problem in terms of matrices
was neat and compendious. He was, however,
more concerned with formal manipulation and
transformation to other coordinates than with nu-
merical results. On the other hand, Duncan and I
were in search of numerical results for the vibration
characteristics of airscrew blades; and we recog-
nized that we could only advance by breaking the
blade into, say, 10 segments and treating it as hav-
ing 10 degrees of freedom. This approach also was
more conveniently formulated in matrix terms, and
readily expressed numerically. Then we found that
if we put an approximate mode into one side of the
equation, we calculated a better approximation on
the other; and the matrix iteration procedure was
born. We published our method in two papers in
Phil. Mag. [2,3]; the first, dealing with conservative
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systems, in 1934 and the second, treating damped
systems, in 1935. By the time this had appeared,
Duncan had gone to his Chair at Hull”.

The aforementioned papers appear to be the earliest
journal publications of MSA. These are amazing docu-
ments: clean and to the point. They do not feel outdated.
Familiar names appear: mass, flexibility, stiffness, and
dynamical matrices. The matrix symbols used are [m],
[f], [¢] and [D] = [¢] '[m] = [f][m], respectively, instead
of the M, F, K and D in common use today. A general
inertia matrix is called [a]. As befit the focus on dy-
namics, the DM is used. Point-mass displacement de-
grees of freedom are collected in a vector {x} and
corresponding forces in vector {P}. These are called [g]
and [Q], respectively, when translated to generalized
coordinates.

The notation was changed in the book [4] discussed
below. In particular matrices are identified in Ref. [4] by
capital letters without surrounding brackets, in more
agreement with the modern style; for example mass,
damping and stiffness are usually denoted by A, B and
C, respectively.

4.2. The matrix structural analysis source book

Several papers on matrices followed, but apparently
the traditional publication vehicles were not viewed as
suitable for description of the new methods. At that
stage Collar notes [17, p. 18] that

“Southwell (Sir Richard Southwell, the “father” of
relaxation methods) suggested that the authors of
the various papers should be asked to incorporate
them into a book, and this was agreed. The result
was the appearance in November 1938 of “Elemen-
tary Matrices” published by Cambridge University
Press [4]; it was the first book to treat matrices as a
branch of applied mathematics. It has been re-
printed many times, and translated into several lan-
guages, and even now after nearly 40 years [this
was written in 1975], stills sells in hundreds of c