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Chapter 1

Mathematical Foundations

1.1 TENSORS AND CONTINUUM MECHANICS

Continuum mechanics deals with physical quantities which are independent of any
particular coordinate system that may be. used to describe them. At the same time, these
physical quantities are very often specified most conveniently by referring to an appropriate
system of coordinates. Mathematically, such quantities are represented by fensors.

As a mathematical entity, a tensor has an existence independent of any coordinate
system. Yet it may be specified in a particular coordinate system by a certain set of
quantities, known as its components. Specifying the components of a tensor in one
coordinate system determines the components in any other system. Indeed, the law of
transformation of the components of a tensor is used here as a means for defining the
tensor. Precise statements of the definitions of various kinds of tensors are given at the
point of their introduction in the material that follows.

The physical laws of continuum mechanics are expressed by tensor equations. Because
tensor transformations are linear and homogeneous, such tensor equations, if they are valid
in one coordinate system, are valid in any other coordinate system. This invariance of
tensor equations under a coordinate transformation is one of the principal reasons for the
usefulness of tensor methods in continuum mechanics.

1.2 GENERAL TENSORS. CARTESIAN TENSORS. TENSOR RANK.

In dealing with general coordinate transformations between arbitrary curvilinear
coordinate systems, the tensors defined are known as general temsors. When attention is
restricted to transformations from one homogeneous coordinate system to another, the
tensors involved are referred to as Cartesian tensors. Since much of the theory of con-
tinuum mechanics may be developed in terms of Cartesian tensors, the word “tensor” in
this book means “Cartesian tensor” unless specifically stated otherwise.

Tensors may be classified by rank, or order, according to the particular form of the
transformation law they obey. This same classification is also reflected in the number of
components a given tensor possesses in an n-dimensional space. Thus in a three-dimensional
Euclidean space such as ordinary physical space, the number of components of a tensor is
8N, where N is the order of the tensor. Accordingly a tensor of order zero is specified in
any coordinate system in three-dimensional space by one component. Tensors of order
zero are called scalars. Physical quantities having magnitude only are represented by
scalars. Tensors of order one have three coordinate components in physical space and are
known as vectors. Quantities possessing both magnitude and direction are represented by
vectors. Second-order tensors correspond to dyadics. Several important quantities in con-
tinuum mechanics are represented by tensors of rank two. Higher order tensors such as
triadics, or tensors of order three, and tetradics, or tensors of order four are also defined
and appear often in the mathematics of continuum mechanics.

1



2 MATHEMATICAL FOUNDATIONS {CHAP.1

1.3 VECTORS AND SCALARS

Certain physical quantities, such as force and velocity, which possess both magnitude
and direction, may be represented in a three-dimensional space by directed line segments
that obey the parallelogram law of addition. Such directed line segments are the geometrical
representations of first-order tensors and are called vectors. Pictorially, a vector is simply
an arrow pointing in the appropriate direction and having a length proportional to the mag-
nitude of the vector. Equal vectors have the same direction and equal magnitudes. A unit
vector is a vector of unit length. The null or zero vector is one having zero length and an
unspecified direction. The negative of a vector is that vector having the same magnitude
but opposite direction.

Those physical quantities, such as mass and energy, which possess magnitude only are
represented by tensors of order zero which are called scalars.

In the symbolic, or Gibbs notation, vectors are designated by bold-faced letters such as
a, b, etc. Scalars are denoted by italic letters such as @, b, A, ete. Unit vectors are further
distinguished by a caret placed over the bold-faced letter. In Fig. 1-1, arbitrary vectors a
and b are shown along with the unit vector € and the pair of equal vectors ¢ and d.

N A

Fig. 1-1

The magnitude of an arbitrary vector a is written simply as a, or for emphasis it may
be denoted by the vector symbol between vertical bars as {al.

14 VECTOR ADDITION. MULTIPLICATION OF A VECTOR BY A SCALAR

Vector addition obeys the parallelogram law, which defines the vector sum of two vectors
as the diagonal of a parallelogram having the component vectors as adjacent sides. This
law for vector addition is equivalent to the triangle rule which defines the sum of two vectors
as the vector extending from the tail of the first to the head of the second when the summed
vectors are adjoined head to tail. The graphical construction for the addition of a and b
by the parallelogram law is shown in Fig. 1-2(a). Algebraically, the addition process is
expressed by the vector equation

a+b=Db+a=c (1.7)

Vector subtraction is accomplished by addition of the negative vector as shown, for
example, in Fig. 1-2(b) where the triangle rule is used. Thus
a—b=-b+a=4d (1.2)

The operations of vector addition and subtraction are commutative and associative as
illustrated in Fig. 1-2(c), for which the appropriate equations are

(a+b)+g =a+(b+g) =h (1.8)

{a) ()
Fig.1-2
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Multiplication of a vector by a scalar produces in general a new vector having the same
direction as the original but a different length. Exceptions are multiplication by zero to
produce the null vector, and multiplication by unity which does not change a vector. Multi-
plication of the vector b by the scalar m results in one of the three possible cases shown in
Fig. 1-3, depending upon the numerical value of m.

mb b b
mb
b
mb
m>1 0<m<l m< g
Fig.1-3

Multiplication of a vector by a scalar is associative and distributive. Thus

m(nb) = (mn)b = n(mb) (2.4)
(m+n)b = (n+m)b = mb+nb (1.5)
m(a+b) = m(b-+a) = ma+ mb (1.6)

In the important ease of a vector muitiplied by the reciprocal of its magnitude, the
result is a unit vector in the direction of the original vector. This relationship is expressed

by the equation N ‘
b = b/b e (2.7)

1.5 DOT AND CROSS PRODUCTS OF VECTORS
The dot or scq!,wr product of two vectors a and b i?., the scalar

A= a-h=h-a=abcosh (1.8)

in which 4 is the smaller angle between the fwo vectors as shown in Fig. 1-4(a). The dot
product of a with a unit vector & gives the projection of a in the direction of &.

Fig.1-4

The cross or vector product of a into b is the vector v given by
v = axXxb = —bXa = (absing)e (1.9)

in which 4 is the angle less than 180° between the vectors a and b, and € is a unit vector
perpendicular to their plane such that a right-handed rotation about € through the angle
¢ carries a into b. The magnitude of v is equal to the area of the parallelogram having
a and b as adjacent sides, shown shaded in Fig. 1-4(b). The cross product is not commutative.

- U . f L ,
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,. The scalar triple product is a dot product of two vectors, one of which is a cross product.
a*(bxe) = (axb)re = arbhXe = A (1.10)

As indicated by (2.10) the dot and cross operation may be interchanged in this product.
Also, since the cross operation must be carried out first, the parentheses are unnecessary
and may be deleted as shown. This product is sometimes written [abe] and called the box
product. The magnitude A of the scalar triple product is equal to the volume of the
parallelepiped having a, b, ¢ as coterminous edges.

The vector triple product is a cross product of two vectors, one of which is itself a
cross product. The following identity is frequently useful in expressing the product of a

crossed into b X c.
ax(bxe) = (arc)b— (a*ble = w {(1.11)

From (1.11), the product vector w is observed to lie in the plane of b and e.

1.6 DYADS AND DYADICS

The indeterminate vector product of a and b, defined by writing the vectors in juxtaposi-
tion as ab is called a dyad. The indeterminate product is not in general commutative, ie.
ab - ba. The first vector in a dyad is known as the antecedent, the second is called the
consequent. A dyadic D corresponds to a tensor of order two and may always be represented

as a finite sum of dyads
D = ajb;+aha 4 -0 + anby (112)

which is, however, never unique. In symbolic notation, dyadics are denoted by bold-faced
sans-serif letters as above. ‘

If in each dyad of (1.12) the antecedents and consequents are interchanged, the resulting
dyadic is called the conjugate dyadic of D and is written

D. = bay + beae + -+ + bray (1.13)

If each dyad of D in (1.12) is replaced by the dot product of the two vectors, the result is a
sealar known as the sealar of the dyadic D and is written

D: = ai*bhy + accha+ - + an by (1.14)

If each dyad of D in (1.12) is replaced by the cross product of the two vectors, the result is
called the vector of the dyadic D and is written

Dy = ayXbi+a:Xba+ -+ +avXby (1.15)
It can be shown that D, D. and D, are independent of the representation (1.12).

The indeterminate vector product obeys the distributive laws

a(b+¢) = ab+ ac (1.16)
{a-+b)e = ac -+ be _ (1.17)
(a+b)e+d) = ac+ ad+ be+bd (1.18)
and if A and p are any scalars,
(A + p)ab = Aiab + pab (1.19)

{rxaYb = a{xb) = Aab (1.20)
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If v is any vector, the dot products v+D and D-v are the vectors defined respectively by
v'D = (veanby+ (vrag)be + - + (vean)by = u (1.21)
D:v = aibi*v)+as(ba-v)+ - +anfby-v) = w (1.22)

In (1.21) D is called the postfactor, and in (1.22) it is called the prefactor. Two dyadics D
and E are equal if and only if for every vector v, either

v-Db =v-E or Dv=Ev (1.23)
The unit dyadic, or idemfactor I, is the dyadic which can be represented as
I = &6 + &% + €56y (1.24)

where €, €, €; constitute any orthonormal basis for three-dimensional Euclidean space
(see Section 1.7). The dyadic 1 is characterized by the property

'v=vl=v (2.25)
for all vectors v.

The cross products v XD and D X v are the dyadics defined respectively by

vXD = (vXa)bi+ (vXa)bs+ -+ + (vXanby = F (1.26)
DXv = abi Xv) + as(beXv)+ -+ +an(bvXv) = G (1.27)

The dot product of the dyads ab and cd is the dyad defined by
‘ abred = (b-c)ad (1.28)

From (1.28), the dot product of any two dyadics D and E is the dyadic
D'E = (ahy+asha+ - -+ +ayby) * (erdi +codo + + -+ + endw)

= (bi*ci)ard; + (bi-cr)ands + - -+ + (byv-ex)andy = G (1.29)
The dyadics D and E are said to be reciprocal of each other if
E‘D = D'E = I (1.30)

For reciprocal dyadics, the notation E= D~ and D=E"! is often used.

Double dot and cross products are also defined for the dyads ab and cd as follows,

ab . ed = (a*c)(b-d) = 1, ascalar (1.81)
abXed = (axc)b+d) = h, avector (1.82)
aby ed = (arc)bxd) =g  avector (1.83)
abXed = (axc)(bxd) = uw, adyad (1.34)

From these definitions, double dot and cross products of dyadics may be readily developed.
Also, some authors use the double dot product defined by

ab+-cd = (b*c)(a-d) = A, ascalar (1.85)
A dyadic D is said to be self-conjugate, or symmetric, if
D = D. (1.36)
and anti-self-conjugate, or anti-symmetric, if
D = —D. (1.87)

Every dvadic may be expressed uniquely as the sum of a symmetric and anti-symmetric
dyadic. For the arbitrary dyadic D the decomposition is



6 MATHEMATICAL FOUNDATIONS [CHAP. 1

for which G: = 3D+ (D)) = #{D:+D) = G (symmetric) (1.39)
and = 3D.—(Do)) = 3(D.—D) = —H (anti-symmetric) (1.40)
Uniqueness is established by assuming a second decomposition, D = G* + H*. Then

G*+ H* = G+ H (1.41)
and the conjugate of this equation is

G*—H* = G—H (1.42)

Adding and subtracting (1.41) and (1.42) in turn yields respectively the desired equalities,
G* =6 and H* =H. ’

1.7 COORDINATE SYSTEMS. BASE VECTORS. UNIT VECTOR TRIADS

A vector may be defined with respect to a particular coordinate system by specifying
the components of the vector in that system. The choice of coordinate system is arbitrary,
but in certain situations a particular choice may be advantageous. The reference system
of coordinate axes provides units for measuring vector magnitudes and assigns directions
in space by which the orientation of vectors may be determined.

The well-known rectangular Cartesian coordi-
nate system is often represented by the mutually
perpendicular axes, Oxyz shown in Fig. 1-5. Any
vector v in this system may be expressed as a
linear combination of three arbitrary, nonzero,
noncoplanar vectors of the system, which are
called base wectors. For base vectors a,b,c and
suitably chosen scalar coefficients A, u, v the vector
v is given by

v = Aa-+ pb+ve (1.-43) _
-y

Base vectors are by hypothesis linearly independ-
ent, i.e. the equation
Aa+pb+ve =0 (1.44)

is satisfied only if A=p=v=0. A set of base
vectors in a given coordinate system is said to
constitute a basis for that system. Fig. 1-3

The most frequent choice of base vectors for the rectangular Cartesian system is the

set of unit vectors ?, §, ik along the coordinate axes as shown in Fig. 1-5. These base vectors
constitute a right-handed unit vector triad, for which

i\)('j\ —] f{, ?x f{ = ,{’ f{ X/i\ = ‘j\ v e il speedn e (145)
and ii=53= k-k=1
i 5=5k=%k1i=0 (1.46)

Such a set of base vectors is often called an orthonormal basis.
In terms of the unit triad lf, /j\, ﬁ, the vector v shown in Fig. 1-6 below may be expressed by
v = v+ vﬁ + vk (1.47)

in which the Cartesian components
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A

Ve = V*i = vUCOSe

A

Py = v} = vcosf
-~

v: = vk = veosy

are the projections of v onto the coordinate axes.
The unit vector in the direction of v is given ac-
cording to {1.7) by

av = v/v
= (cos a)'i\ + (cos ,8)? + (cos y)i;, (1.48)

Since v is arbitrary, it follows that any unit vec- Y
tor will have the direction cosines of that vector
as its Cartesian components.
In Cartesian component form the dot product
of a and b is given by
a'b = (@i+af+ak) b1+ by 3 + bak)
= @zb: + Gyby + €:b: (1.49) Fig. 1-6
For the same two vectors, the cross product a X b is
axbh = (abs—a:by) T + (@ba—azb)3 + (ashy—ab)k (1.50)
This result is often presented in the determinant form
T3k
aX b - adx Ay a- (1 -51)
b. by b:

in which the elements are treated as ordinary numbers. The triple scalar product may also
be represented in component form by the determinant

AL A e g i S

ar @y da: - o > =
fabe] = |be By b (1.52)
Cr Cy Cz

In Cartesian component form, the dyad ab is given by
Cab = (@l tad +ak)od + 0,5+ k)
= axbﬁ'f —5— a;bﬁg + azb;i\f{
+ aybﬁ’i\ + ayby']}}? + a,,b:/j\ﬁ
+ abk + ab kT + adkk (1.53)
Because of the nine terms involved, (1.58) is known as the nondon form of the dyad ab.
It is possible to put any dyadic into nonion form. The nonion form of the idemfactor in
terms of the unit triad ?, ?, k is given by
=1i+77+kk (1.54)
In addition to the rectangular Cartesian coordinate system already discussed, curvi-
linear coordinate systems such as the cylindrical (R,6,%) and spherical (r,0,¢) systems
shown in Fig. 1-7 below are also widely used. Unit triads (€r, €, €:) and (&, €, es) of base
vectors illustrated in the figure are associated with these systems. However, the base

vectors here do not all have fixed directions and are therefore, in general, functions of
position.
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x

() Cylindrical {b) Spherical
Fig. 1-7

1.8 LINEAR VECTOR FUNCTIONS. DYADICS AS LINEAR VECTOR OPERATORS

A vector a is said to be a function of a second vector b if a is determined whenever
b is given. This functional relationship is expressed by the equation

a = f(b) (1.55)

The function f is said to be linear when the conditions
f(b+e¢) = f(b)+ f(c) (1.56)
f(xb) = M\(b) (1.57)

are satisfied for all vectors b and ¢, and for any scalar A.

Writing b in Cartesian component form, equation (1.55) becomes

a = f(b:i + b, + b:k) (1.58)
which, if f is linear, may be written
a = baf(1) + b,8(3) + bef(k) (1.59)
In (2.59) let §(1)=u, £3)=v, f(k)=w, so that now
a=ulb+vib+whkp = @i+vi+wk) b (1.60)
which is recognized as a dyadic-vector dot product and may be written
a=Db (1.61)

where D = ui+ v§+ wk. This demonstrates that any linear vector function f may be
expressed as a dyadic-vector product. In (1.61) the dyadic D serves as a linear wvector
operator which operates on the argument vector b to produce the image vector a.

1.9 INDICIAL NOTATION. RANGE AND SUMMATION CONVENTIONS

The components of a tensor of any order, and indeed the tensor itself, may be represented
clearly and concisely by the use of the indicial notation. In this notation, letter indices,
either subscripts or superscripts, are appended to the generic or kernel letter representing
the tensor quantity of interest. Typical examples illustrating use of indices are the tensor

syrmbols . i
ai, ¥, Ty, Fy', e, R
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In the “mixed” form, where both subscripts and superscripts appear, the dot shows that §
is the second index.

Under the rules of indicial notation, a letter index may occur either once or twice in a
given term. When an index occurs unrepeated in a term, that index is understood to take
on the values 1,2, ..., N where N is a specified integer that determines the range of the
index. Unrepeated indices are known as free indices. The tensorial rank of a given term
is equal to the number of free indices appearing in that term. Also, correctly written
tensor equations have the same letters as free indices in every term.

When an index appears twice in a term, that index is understood to take on all the
values of its range, and the resulting terms summed. In this so-called summation conven-
tion, repeated indices are often referred to as dummy indices, since their replacement by
any other letter not appearing as a free index does not change the meaning of the term in
which they occur. In general, no index occurs more than twice in a properly written term.
If it is absolutely necessary to use some index more than twice to satisfactorily express a
certain quantity, the summation convention must be suspended.

The number and location of the free indices reveal directly the exact tensorial character
of the quantity expressed in the indicial notation. Tensors of first order are denoted by
kernel letters bearing one free index. Thus the arbitrary vector a is represented by a symbol
having a single subscript or superseript, i.e. in one or the other of the two forms,

ai, al

The following terms, having only one free index, are also recognized as first-order tensor
quantities:
aijbj, Fli, R?qp, €4k U Vi

Second-order tensors are denoted by symbols having two free indices. Thus the arbitrary
dyadic D will appear in one of the three possible forms

; o i
D, D; or DI.,‘, Dy

In the “mixed” form, the dot shows that j is the second index. Second-order tensor
quantities may also appear in various forms as, for example,

Assio, B3, Sisttsvn

By a logical continuation of the above scheme, third-order tensors are expressed by symbols
with three free indices. Also, a symbol such as A which has no indices attached, represents
a scalar, or tensor of zero order.

In ordinary physical space a basis is composed of three, noncoplanar vectors, and so
any vector in this space is completely specified by its three components. Therefore the
range on the index of a; which represents a vector in physical three-space, is 1,2,3.
Accordingly the symbol a; is understood to represent the three components ai, @s,as. Also,
a; is sometimes interpreted to represent the ith component of the vector or indeed to rep-
resent the vector itself. For a range of three on both indices, the symbol A; represents
nine components (of the second-order tensor (dyadic) A). The tensor Ay is often presented
explicitly by giving the nine components in a square array enclosed by large parentheses as

Ay Ar As
Ay = |An Axn Ax (1.62)
) An An Awn
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In the same way, the components of a first-order tensor (vector) in three-space may be
displayed explicitly by a row or column arrangement of the form

as

[253
a; = (ax.az,an') oY G = (ag) (1.63)

In general, for a range of N, an nth order tensor will have N* components.

The usefulness of the indicial notation in presenting systems of equations in compact
form is illustrated by the following two typical examples. For a range of three on both
1 and 7 the indicial equation
Xy = Cilj {1-54)

represents in expanded form the three equations

&1 = €121 -+ C1e22 + €132
Xe = €mZ1 + Coale + €223 (1.65)
Xy = CmZ; + C32%e + Cgala

For a range of two on i and j, the indicial equation
Ay = BipCieDpa (1.66)
represents, in expanded form, the four equations
Ay = BuCuDyu + BuCiDie + B:2C11Des + B12Cr2Doe
A = BuCnDu + BuCaDiz + BiuCaDay + B1aCaDas
Aa; = BaCuDit + BaCuDya + BaxCnDar + Ba:Ci2Daa
Asy = BnCouDiy + BaiCoDie + BaaCaiDar + BaeConDoo

For a range of three on both 7 and 7, (1.66) would represent nine equations, each having
nine terms on the right-hand side.

(1.67)

110 SUMMATION CONVENTION USED WITH SYMBOLIC NOTATION

The summation convention is very often em-
ployed in connection with the representation of
vectors and tensors by indexed base vectors
written in the symbolic notation. Thus if the
rectangular Cartesian axes and unit base vectors
of Fig. 1-5 are relabeled as shown by Fig. 1-8,
the arbitrary vector v may be written

v = 118 + Vs + Vs (1.68)
in which vy, vs, vs ave the rectangular Cartesian
components of v. Applying the summation con-
vention to (1.68), the equation may be written in
the abbreviated form

v = 0@ (1.69)
where i is a summed index. The notation here is
essentially symbolic, but with the added feature
of the suwmmation convention. In such a *‘com-
bination” style of notation, tensor character is
not given by the free indices rule as it is in true
indicial notation. Fig. 1-8

d2ga

]
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Second-order tensors may also be represented by summation on indexed base vectors.
Accordingly the dyad ab given in nonion form by (1.58) may be written

S ab = (@B)(08) = abRS (1.70)

It is essential that the sequence of the base vectors be preserved in this expression. In
similar fashion, the nonion form of the arbitrary dyadic D may be expressed in compact

notation by AA
D = DijEiEj (1.71)

111 COORDINATE TRANSFORMATIONS. GENERAL TENSORS

Let o' represent the arbitrary system of coordinates a1, 2% 2% in a three-dimensional
Fuclidean space, and let 4 represent any other coordinate system 6%, 6% 6% in the same
space. Here the numerical superscripts are labels and not exponents. Powers of 2 may
be expressed by use of parentheses as in (x)® or (x)°. The letter superscripts are indices
as already noted. The coordinate transformation equations

gt = oz, a?, o) (1.72)

assign to any point (z%, 2% 2°) in the o' system a new set of coordinates (%, 42, 6% in the ¢
system. The functions ¢' relating the two sets of variables (coordinates) are assumed to
be single-valued, continuous, differentiable functions. The determinant

o0t 80" 3!
gxl gz axd

J = g%i % g% (1.73)
dxt  dx*  9at
or, in compact form, a6t
7= | (2.74)

is called the Jacobian of the transformation. If the Jacobian does not vanish, (1.72)
possesses a unique inverse set of the form

' = (6, 62, 6°) (1.75)

The coordinate systems represented by ' and ¢ in (1.72) and (1.75) are completely general
and may be any curvilinear or Cartesian systems.

From (1.72), the differential vector d#' is given by
. TR
i — - i
ag - 37 da (1.76)
This equation is a prototype of the equation which defines the class of tensors known as
contravariant vectors. In general, a set of quantities bi associated with a point P are said
to be the components of a contravariant tensor of order one if they transform, under a
coordinate transformation, according to the equation
B A A
b = 52 b (1.77)
where the partial derivatives are evaluated at P. In (1.77), b’ are the components of the
tensor in the o/ coordinate system, while &'t are the components in the. §f system. In general
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tensor theory, contravariant tensors are recognized by the use of superscripts as indices.
It is for this reason that the coordinates are labeled «* here rather than a;, but it must be
noted that it is only the differentials daf, and not the coordinates themselves, which have
tensor character.

By a logical extension of the tensor concept expressed in (1.77), the definition of con-
travariant tensors of order two requires the tensor components to obey the transformation

law .
aa‘ iﬁ_‘l Brs

i e 20
B oxT ox’

(1.78)

Contravariant tensors of third, fourth and higher orders are defined in a similar manner.

The word contravariant is used above to distinguish that class of tensors from the
class known as covariant tensors. In general tensor theory, covariant tensors are recognized
by the use of subscripts as indices. The prototype of the covariant vector is the partial
derivative of a scalar function of the coordinates. Thusif ¢ = ¢(x!,a% %) is such a function,

o _ 99 0v

a0 - axi Y (1‘79)

In general, a set of quantities b are said to be the components of a covariant tensor of
order one if they transform according to the equation

’ o’

o= Zp, 1.8

b 2 U’ (1.80)
In (1.80), : are the covariant components in the ¢ system, b; the components in the x:
system. Second-order covariant tensors obey the transformation law

gx” 9n®

B.'J = 5‘@‘; B—G;Brs {1'81)

Covariant tensors of higher order and mixed tensors, such as

287" 9z gz

T = -ém—m'é“e—smT”fuq ' (1.82)

are defined in the obvious way.

112 THE METRIC TENSOR. CARTESIAN TENSORS

Let xt represent a system of rectangular Cartesian coordinates in a Euclidean three-
space, and let 6% represent any system of rectangular or curvilinear coordinates (e.g. cylindri-
cal or spherical coordinates) in the same space. The vector x having Cartesian components
%' is called the position vector of the arbitrary point P(a?, 27, °) referred to the rectangular
Cartesian axes. The square of the differential element of distance between neighboring
points P(x) and Q(x +dx) is given by

dsp = doidat (1.83)

From the coordinate transformation ‘
xt = (0, 6% 6% (1.84)

relating the systems, the distance differential is

i
dot = gi;;den (1.85)
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and therefore (1.83) becomes
367 a6 .
where the second-order tensor g¢pq = (9x/36°)(8Y/a6%) is called the metric tensor, or funda-

mental tensor of the space. If 6 represents a rectangular Cartesian system, say the '
system, then

(ds)? derden = gpadordon (1.86)

axt 9t
Opa = I g = 8pq (1°87)

where 8, is the Kronecker delta (see Section 1.13) defined by 85 = 0 if ps=q and 8 =1
if p=q.

Any system of coordinates for which the squared differential element of distance takes
the form of (1.88) is called a system of homogeneous coordinates. Coordinate transforma-
tions between systems of homogeneous coordinates are orthogonal transformations, and
when attention is restricted to such transformations, the tensors so defined are called
Cartesian tensors. In particular, this is the case for transformation laws between systems
of rectangular Cartesian coordinates with a common origin. For Cartesian tensors there
is no distinction between contravariant and covariant components and therefore it is cus-
tomary to use subscripts exclusively in expressions representing Cartesian tensors. As
" will be shown next, in the transformation laws defining Cartesian tensors, the partial
derivatives appearing in general tensor definitions, such as (1.80) and (1.81), are replaced
by constants.

1.13. TRANSFORMATION LAWS FOR CARTESIAN TENSORS.
THE KRONECKER DELTA. ORTHOGONALITY CONDITIONS

Let the axes Oxixaws and Oxizix§ represent
two rectangular Cartesian coordinate systems
with a common origin at an arbitrary point O
as shown in Fig. 1-9. The primed system may be
imagined to be obtained from the unprimed by
a rotation of the axes about the origin, or by a
reflection of axes in one of the coordinate planes,
or by a combination of these. If the symbol a;;
denotes the cosine of the angle between the ith
primed and jth unprimed coordinate axes, ie.
a; = cos (¢!, x;), the relative orientation of the
individual axes of each system with respect to the
other is conveniently given by the table

X X2 x3
?
Xy @y @2 Qg
3 @2y Qay Qag
1
X a; [ ag; .
3 31 32 33 Fig.1-9

or alternatively by the transformation tensor
au (130 a3 ‘ - ..,l,'_ o R
A = @21 Qe Goz |
azn Q32 Qs
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From this definition of a;;, the unit vector ’é'l along the 21 axis is given aceording to (1.48)
and the summation convention by

@; = @8 + @128 + Q€ = 41;€; (1.88)
. . . . . I3 s " Al
An obvious generalization of this equation gives the arbitrary unit base vector e; as
’é: = @€ (1.89)

In component form, the arbitrary vector v shown in Fig. 1-9 may be expressed in the
unprimed system by the equation
v = ;8 (1.90)
and in the primed system by

At

v = €; (1.91)
Replacing €, in (1.91) by its equivalent form (1.89) yields the result
v = 'vfa,ﬁé“; (1.92)

Comparing (1.92) with (1.90) reveals that the vector components in the primed and unprimed
systems are related by the equations

Vi = aij’va{ (1"93)

The expression (1.93) is the transformation law for first-order Cartesian tensors, and as
such is seen to be a special case of the general form of first-order tensor transformations,
expressed by (1.80) and (1.77). By interchanging the roles of the primed and unprimed
base vectors in the above development, the inverse of (1.93) is found to be

v o= @i ’ (1.94)

It is important to note that in (1.93) the free index on a;; appears as the second index. In
(1.94), however, the free index appears as the first index.

By an appropriate choice of dummy indices, (1.93) and (1.94) may be combined to pro-
duce the equation
vy = QijicVn (1.95)

Since the vector v is arbitrary, (1.95) must reduce to the identity v; =v; Therefore the
coefficient a;;an, whose value depends upon the subseripts 7 and k, must equal 1 or 0
according to whether the numerical values of j and k& are the same or different. The
Kronecker delta, defined by
1 fori=j
& = { (1.96)

0 for i+#j

may be used to represent quantities such as a;ax. Thus with the help of the Kronecker delta
the conditions on the coefficient in (1.95) may be written

aiitic = S (1.97)

In expanded form, (1.97) consists of nine equations which are known as the orthogonalily
or orthonormality conditions on the direction cosines a;. Finally, (1.93) and (1.94) may also

be combined to produce v = a;axve from which the orthogonality conditions appear in the
alternative form
@ik = Bk (1.98)

A linear transformation such as (1.98) or (1.94), whose coefficients satisfy (1.97) or (1.98),
is said to be an orthogonal transformation. Coordinate axes rotations and reflections of
the axes in a coordinate plane both lead to orthogonal transformations.
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The Kronecker delta is sometimes called the substitution operator, since, for example,

3iib; = 8uby + 8ubs + 8ubs = b (1.99)
and, likewise,
85F . = 8uFu + 83iF o + 83iF ' = Fi (1.100)
1t is clear from this property that the Kronecker delta is the indicial counterpart to the
symbolic idemfactor 1, which is given by (1.54).

According to the transformation law (1.94), the dyad uw; has components in the primed
coordinate system given by
WV, = (Qpp)(@iVe) = Qipliqly¥q (1.101)

In an obvious generalization of (1.101), any second-order Cartesian tensor T'; obeys the

transformation law ’
T = QipijqTpq (1 .102)

With the help of the orthogonality conditions it is a simple calculation to invert (1.102),
thereby giving the transformation rule from primed components to unprimed components:
T = Gpitos Tha (1.103)

The transformation laws for first and second-order Cartesian tensors generalize for an
Nth order Cartesian tensor to
r

Tiik... = QipQiqQxm - . . Tpam. .. (1.104)

114 ADDITION OF CARTESIAN TENSORS. MULTIPLICATION BY A SCALAR
Cartesian tensors of the same order may be added (or subtracted) component by com-
ponent in accordance with the rule
Age... = Big... = Tipe. .. (1.105)
The sum is a tensor of the same order as those added. Note that like indices appear in the
same sequence in each term.

Multiplication of every component of a tensor by a given scalar produces a new tensor of
the same order. For the scalar multiplier A, typical examples written in both indicial
and symbolic notation are

bi = Aa; or b = Aa (1.106)

Bi; = Mg or B = )M (1.107)

115 TENSOR MULTIPLICATION

The outer product of two tensors of arbitrary order is the fensor whose components
are formed by multiplying each component of one of the tensors by every component of the
other. This process produces a tensor having an order which is the sum of the orders of
the factor tensors. Typical examples of outer products are

(a) a;b; = Ty (€} DijTim = Pijim
() viFy = @y (d) €iuvm = Oijkm

As indicated by the above examples, outer products are formed by simply setting down the
factor tensors in juxtaposition. (Note that a dyad is formed from two vectors by this very
procedure.)
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Contraction of a tensor with respect to two free indices is the operation of assigning
to both indices the same letter subscript, thereby changing these indices to dummy indices.
Contraction produces a tensor having an order two less than the original. Typical examples
of contraction are the following.

(a) Contractions of T; and u:;
Ti = Tu+ T+ T

WY = W3 + Uz + UVs

(b) Contractions of Eyax

Eua; = b
E;ja,- = Cj
Euar = dx

(¢} Contractions of EyFim
EiFim = Gim EiFu. = Py
EsFu = Hx EsFim = Qim
Eiika - Kkm Ei}F};} = Ru;
An inner product of two tensors is the result of a contraction, involving one index from
each tensor, performed on the outer product of the two tensors. Several inner products

important to continuum mechanics are listed here for reference, in both the indicial and
symbolic notations.

Outer Product Inner Product
Indicial Notation Symbolic Notation
1. aib) a:b: a*h
2. wBEx alx = fx aE =f
aEx =Ml Era=nh
8. EyFm EyFim = Gim E'F=G
4, EyFxm EyEim = Bim E‘E = (E)2

Multiple contractions of fourth-order and higher tensors are sometimes useful. Two
such examples are

1. EyFnm contracted to EiiFy, or E:F
2, EyEnEypq contracted to EyEmEmqe, or (E)®

116 VECTOR CROSS PRODUCT. PERMUTATION SYMBOL. DUAL VECTORS

In order to express the cross product a X b in the indicial notation, the third-order tensor
€0 known as the permutation symbol or alternating tensor, must be introduced. This
useful tensor is defined by

r 1 if the values of 4,7,k are an even permutation of 1,2,3 (i.e. if
they appear in sequence as in the arrangement 12312).

_ —1 if the values of 2,7,k are an odd permutation of 1,2,3 (i.e. if
G T they appear in sequence as in the arrangement 3213 2).

0 if the values of 4,7,k are not a permutation of 1,2,3 (i.e. if
L two or more of the indices have the same value).
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From this definition, the cross product aXb =e¢ is written in indicial notation by

eaibe = 6 (1.108)
Using this relationship, the box product axb-+c= ) may be written
A= &bl (1.109)

Since the same box product is given in the form of a determinant by (1.52), it is not sur-
prising that the permutation symbol is frequently used to express the value of a 3X3
determinant.

It is worthwhile to note that ¢ obeys the tensor transformation law for third order
Cartesian tensors as long as the transformation is a proper one (detai; = 1) such as arises
from a rotation of axes. If the transformation is improper (deta;= —1), e.g. a reflection
in one of the coordinate planes whereby a right-handed coordinate system is transformed
into a left-handed one, a minus sign must be inserted into the transformation law for .
Such tensors are called pseudo-fensors.

The dual vector of an arbitrary second-order Cartesian tensor Ty is defined by
vi = €l (1.110)

which is observed to be the indicial equivalent of Ty, the “vector of the dyadic T, as defined
by (1.15).

1.17 MATRICES. MATRIX REPRESENTATION OF CARTESIAN TENSORS

A rectangular array of elements, enclosed by square brackets and subject to certain laws
of combination, is called a matriz. An M XN matrix is one having M (horizontal) rows
and N (vertical) columns of elements. In the symbol Ay used to represent the typical
element of a matrix, the first subscript denotes the row, the second subscript the column
occupied by the element. The matrix itself is designated by enclosing the typical element
symbol in square brackets, or alternatively, by the kernel letter of the matrix in seript.
For example, the M x N matrix o4, or [Ay] is the array given by

Au A;z e AXN
‘o | s
Ay A Ann

A matrix for which M =N, is called a square matriz. A 1 XN matrix, written [aw],
is called a row matriz. An M X 1 matrix, written [a:], is called a column matric. A matrix
having only zeros as elements is called the zero matriz. A square matrix with zeros every-
where except on the main diagonal (from A;; to Any) is called a diagonal matriz. If the
nonzero elements of a diagonal matrix are all unity, the matrix is called the unit or identity
matriz. The N x M matrix <47, formed by interchanging rows and columns of the M XN
matrix o4, is called the transpose matriz of 4.

Matrices having the same number of rows and columns may be added (or subtracted)
element by element. Multiplication of the matrix [Aij] by a sealar A results in the matrix
[rAi]. The product of two matrices, 4B, is defined only if the matrices are conformable,
i.e. if the prefactor matrix ¢4 has the same number of columns as the postfactor matrix
B has rows. The product of an M x P matrix multiplied into a P X N matrix is an M XN
matrix. Matrix multiplication is usually denoted by simply setting down the matrix
symbols in juxtaposition as in

AB = ¢ or [Ay)[Bix] = [Cul (1.112)
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Matrix multiplication is not, in general, commutative: cAB 7= BeAd.

A square matrix ¢4 whose determinant |As| is zero is called a si'ngular matriz. The
cofactor of the element A;; of the square matrix e, denoted here by Ay, is defined by

AL = (1M (1.118)

in which My is the minor of Ay; i.e. the determinant of the square array remaining after the
row and column of Ay are deleted. The adjoint matrix of oA is obtained by replacing each
element by its cofactor and then interchanging rows and columns. If a square matrix
o4 = [A4) is non-singular, it possesses a unique inverse matrix o4 which is defined as

the adjoint matrix of o4 divided by the determinant of 4. Thus

{Aji]
g1 = 1.114
oA ( )
From the inverse matrix definition (Z.114) it may be shown that

A-teA = eAeA™t = (1.115)

where J is the identity matriz, having ones on the principal diagonal and zeros elsewhere,
and so named because of the property

Jod = cAg = A ‘ (1.116)

1t is clear, of course, that J is the matrix representation of §;, the Kronecker delta, and of |,
the unit dyadic. Any matrix o4 for which the condition AT =41 is satisfied is called
an orthogonal matriz. Accordingly, if oA is orthogonal,

ATeA = AAT = (1.117)

As suggested by the fact that any dyadic may be expressed in the nonion form (1.53),
and, equivalently, since the components of a second-order tensor may be displayed in the
square array (1.62), it proves extremely useful to represent second-order tensors (dyadies)
by square, 8 X 3 matrices. A first-order tensor (vector) may be represented by either a
1 x 8 row matrix, or by a 3 X 1 column matrix. Although every Cartesian tensor of order
two or less (dyadics, vectors, scalars) may be represented by a matrix, not every matrix
represents a tensor.

If both matrices in the product 4B =( are3x3 matrices representing second-order
tensors, the multiplication is equivalent to the inner product expressed in indicial notation by

AUB};; e Cik (1.118)

where the range is three. Expansion of (1.118) duplicates the “row by column” multiplica-
tion of matrices wherein the elements of the ith row of the prefactor matrix are multiplied
in turn by the elements of the kth column of the postfactor matrix, and these products
summed to give the element in the ith row and kth column of the product matrix. Several
such products oceur repeatedly in continuum mechanics and are recorded here in the various
notations for reference and comparison.

(a) Vector dot product
a*b = bra = A [ay][bs] = [A]
b

aibi = bai = A [a,az.aa}| b2 | = [@1bs + azbz + asbs] (1.119)
bs



CHAP. 1] MATHEMATICAL FOUNDATIONS 19

(b) Vector-dyadic dot product

a‘E=> a = B
ally = b; [au][Ey] = [by]
Enw En Eun [a1E11 + GoFoy + asls, (1.120)
[araz.as]| B Eaz Eu| = @FBp+ 6:En+ a:Ep,
By Ezp Eg 113 + aaFs + a3F )
(¢} Dyadic-vector dot product
Era = ¢ Ea = ¢
Esa; = o [Bylan] = [eu]
EII Eys Em ay . a By + aﬁl'_’. + aslFy; (1121)
By Fa Egl|a| = @Elor + asFae + asEx
Ey Espn Ey || as 01 Esi + aally + asEys

118 SYMMETRY OF DYADICS, MATRICES AND TENSORS

According to (1.86) {or (1.87)), a dyadic D is said to be symmetric (anti-symmetric) if it is
equal to (the negative of) its conjugate D.. Similarly the second-order tensor Dj is
symmetric if

Dy = Dy (1.122)
and is anti-symmetric, or skew-symmetric, if
Dy = ~Dy (1.123)
Therefore the decomposition of D;; analogous to (1.98) is
Dy = 3(Di+ Dy) + 3(Dy— Dy) (1.124)
or, in an equivalent abbreviated form often employed,
Dy = Duap + Dup (1.125)

where parentheses around the indices denote the symmetric part of Dy, and square brackets
on the indices denote the anti-symmetric part.

Since the interchange of indices of a second-order tensor is equivalent to the interchange
of rows and columns in its matrix representation, a square matrix o4 is symmetric if it is
equal to its transpose c4T. Consequently a symmetric 3 X 3 matrix has only six independent
components as illustrated by

Ay A An
A = AT = Ap A Ax (1.126)
A Ay Agx

An anti-symmetric matrix is one that equals the negative of its transpose. Consequently
a 3 X 3 anti-symmetric matrix B has zeros on the main diagonal, and therefore only three
independent components as illustrated by
0 By Bis
B = —BT = —Bie 0 Bos (1.127)
—Biz —Bax 0



20 MATHEMATICAL FOUNDATIONS {[CHAP. 1

Symmetry properties may be extended to tensors of higher order than two. In general,
an arbitrary tensor is said to be symmetric with respect to a pair of indices if the value of
the typical component is unchanged by interchanging these two indices. A tensor is anti-
symmetric in a pair of indices if an interchange of these indices leads to a change of sign
without a change of absolute value in the component. Examples of symmetry properties
in higher-order tensors are

(@) Ripm = Rujm (symmetric in & and 7)
(B) € = —&5 (anti-symmetric in k and 1)
(¢) Gijpm = Giim (symmetric in ¢ and'j; Iz and m)

(@) B = Bing = Brji = Biin (symmetric in all indices)

119 PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF SYMMETRIC
SECOND-ORDER TENSORS

In the following analysis, only symmetric tensors with real components are considered.
This simplifies the mathematics somewhat, and since the important tensors of continuum
mechanics are usually symmetric there is little sacrifice in this restriction.

For every symmetric tensor T, defined at some point in space, there is associated with

.

each direction (specified by the unit normal ) at that point, a vector given by the inner

product
vy = Ts;n; (1.128)

Here T;; may be envisioned as a linear vector operator which produces the vector v; conjugate
to the direction n;. If the direction is one for which v is parallel to n;, the inner produet,
may be expressed as a scalar multiple of n;. For this case,

Tyn; = A (1.129)
and the direction : is called a principal direciion, or principal axis of Ty With the help
of the identity =i = 8im;, (1.129) can be put in the form

(Ty—Asyyn; = 0 (1.130)
which represents a system of three equations for the four unknowns, 7 and X, associated
with each principal direction. In expanded form, the system to be solved is

(T3 — Ay + Tiene + Tisng = 0
Tosny + (Toe— Mz + Taans = 0 (1.181)
Taints + Taotta + (Tas—Ang = 0

Note first that for every ), the trivial solution 7 =0 satisfies the equations. The purpose
here, however, is to obtain non-trivial solutions. Also, from the homogeneity of the system
(1.181) it follows that no loss of generality is incurred by restricting attention to solutions
for which n: =1, and this condition is imposed from now on.

For (1.130) or, equivalently, (1.131) to have a non-trivial solution, the determinant of

coefficients must be zero, that is,
Ty— A8y = 0 (1.132)

Expansion of this determinant leads to a cubic polynomial in A, namely,

M-I+ I -1 =0 (1.183)
which iz known as the characteristic equation of Ti;, and for which the scalar coefficients,
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I; = Ts = tr Ty (trace of Ty) (1.13%)
Iy = ${TuTu—TuTu) (1.135)
L = [Ty = detTy (1.136)

are called the first, second and third invariants, respectively, of Ti. The three roots of the
cubic (1.133), labeled A, A2y, A, are called. the principal values of Ty, For a symmetric
tensor with real components, the principal values are real; and if these values are distinet,
the three principal directions are mutually orthogonal. When referred to principal axes,
both the tensor array and its matrix appear in diagonal form. Thus

Ay O 0 Ay O 0
T = 0 Ay 0 or T = 0 ey 0 (1-137)
0 0 A 0 0 Aen

If Aw = A, the tensor has a diagonal form which is independent of the choice of A
and Ay axes, once the principal axis associated with A has been established. If all
principal values are equal, any direction is a principal direction. If the principal values are
ordered, it is customary to write them as A, Aan, Aam and to display the ordering as in
Aay 2 ap 2 Aam-

For principal axes labeled Ox#a¥a?, the transformation from Oziw.vs axes is given by
the elements of the table
N Xa Xy
xy agy = n{h g = i ayg = i
z§ gy = n{® @as = 0l oy = P
w} ag = ni® agy = n{® agy = n{®

in which n{” are the direction cosines of the jth principal direction.

120 POWERS OF SECOND-ORDER TENSORS. HAMILTON-CAYLEY EQUATION

By direct matrix multiplication, the square of the tensor T;; is given as the inner
product T T;: the cube as Ti Tim Tmj; ete. Therefore with T; written in the diagonal form
(1.187), the nth power of the tensor is given by

/\1(!;) 0 0 D 0 0
mr = 0 Xo O or ™ = 0 Ao O (1.138)
0 0 Ao 0 0 Nem

A comparison of (1.188) and (1.137) indicates that T;; and all its integer powe.s have the
same principal axes.

Since each of the principal values satisfies (1.183), and because of the diagonal matrix
form of T™ given by (1.138), the tensor itself will satisfy (1.133). Thus

‘T“ —_ Ir‘TZ -+ IITCI_ - IIIrJ] = 0 (1139)

in which J is the identity matrix. This equation is called the Hamilton-Cayley equation.
Matrix multiplication of each term in (1.139) by T produces the equation,

T4 = Ix‘Ta — IITTQ + IIIT‘T {1140)
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Combining (1.140) and (1.139) by direct substitution,
Tt = (-T2 + (= LT + LIS (1.141)

Continuation of this procedure yields the positive powers of T as linear combinations of
T2, T and J.

121 TENSOR FIELDS. DERIVATIVES OF TENSORS

A tensor field assigns a tensor T(x,t) to every pair (x,t) where the position vector x
varies over a particular region of space and ¢ varies over a particular interval of time.
The tensor field is said to be continuous (or differentiable) if the components of T(x,t) are
continuous (or differentiable) funetions of x and t. If the components are functions of x
only, the tensor field is said to be steady.

With respect to a rectangular Cartesian coordinate system, for which the position vector
of an arbitrary point is < = 2l (1.142)

tensor fields of various orders are represented in indicial and symbolic notation as follows,
(@) scalar field: ¢ = ¢(x,t) or & = o(x, t) (1.1!,3)‘
(b) vector field: o= wlx,t) or v = v(xi) (1.144)

(¢) second-order tensor field:
Ty = Ts(x,t) or T =Tx, t) (1.145)

Coordinate differentiation of tensor components with respect to x; is expressed by the
differential operator 8/dw:, or briefly in indicial form by 8, indicating an operator of tensor
rank one. In symbolic notation, the corresponding symbol is the well-known differential
vector operator V, pronounced del and written explicitly
eia_ﬂ;'
Frequently, partial differentiation with respect to the variable x: is represented by the
comma-subseript convention as illustrated by the following examples.

v = = e (1.146)

dp _ P _

@ Gz, = b @) szram — P
v _ Ty _

(b) ax‘ - 'v“( (e) A% - T{j,k
v _ Ty

() om; Pus ) Ty 0T kM

From these examples it is seen that the operator & produces 2 tensor of order one higher
if 7 remains a free index {(z) and (c) above), and a tensor of order one lower if ¢ becomes
a dummy index ((b) above) in the derivative.

Several important differential operators appear often in continuum mechanics and are
given here for reference.

gradé = Vo = g-%a or 34 = b, (1.147)
divy = Vv or 9v, = U, (1.148)
curlv = ¥ Xv or g9V = Y, (1.149)

Vip = V'V or 9,6 = b (1.150)
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122 LINE INTEGRALS. STOKES” THEOREM
In a given region of space the vector function of position, F = F(x), is defined at every
point of the piecewise smooth curve C shown in Fig. 1-10. If the differential tangent vector
to the curve at the arbitrary point P is dx, the integral
j;F-dx = | Fedx (1.151)
taken along the curve from A to B is known as the line infegral of F along C. In the indicial
notation, (1.151) becomes
‘J; F i dﬂ:.'

(xdp
ﬁ Fiday (1 g 52)

Tda

Fig. 1-18 Fig, 1-11

Stokes’ theorem says that the line integral of F taken around a closed reducible curve
C, as pictured in Fig. 1-11, may be expressed in terms of an integral over any two-sided
surface S which has C as its boundary. Explicitly,

‘ﬁF-dx - Ln-(vxF)dS (1.159)

in which 1 is the unit normal on the positive side of S, and 4S is the differential element of
surface as shown by the figure. In the indicial notation, (1.153) is written

‘§; F.dy, = L ')‘L.‘eijl:FJc.de (1.154)

1.23 THE DIVERGENCE THEOREM OF GAUSS

The divergence theorem of Gauss relates a volume integral to a surface integral. In
its traditional form the theorem says that for the vector field v = v(x),

j; divvdV = Ln-vdS ’ (1.155)

where n is the outward unit normal to the bounding surface S, of the volume V in which
the vector field is defined. In the indicial notation, (1.155) is written

J; v, dV = Lvm; ds (1.156)

The divergence theorem of Gauss as expressed by (1.156) may be generalized to incor-
porate a tensor field of any order. Thus for the arbitrary tensor field Tij... the theorem is

written
j:’ Tik...p dV = j; Tij.mp dS (1.157)



Summary of Notation — Diffusion Equation

A

Oc
— — Ddi de)=R
9 iv(gradc)

) Vo
. LA v _ i _ oy w0/ L "
Tensor: ASSAV(-DVO =R with V=191 and V-V=07 .40/ ¢ 7

2
Matrix: A¢—=V'DVe=R with V=19 and V-V=V'V=V’

2
Indicial:
2 2 2 2
A% pde ¢ Oy oo 4% DO "R or Aé-De, =R or
ot Oz, Oz, Oz, ot Oz, ’
2 2 2

Epanded: A%—D(aC O 8C):R

ot or®  0x° 0y

Advective-Diffusive Flows

Odc

A—+V-(=DVe¢)=R—-v-Vc

ot

Momentum Transfer - Fluid Mechanics — Navier-Stokes Equations (Incompressible)
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Momentum Transfer - Solid Mechanics (strain positive in extension)
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Chapter 2

Mathematical Concepts and Weighted
Residual Techniques

2.1 Introduction
The present chapter begins with a brief resumé of the mathematical
equations governing the motion of viscous incompressible {luids. Some closed
from solutions of these equations have been presented in many well known
texts and will not be discussed. However, the necessary steps in the
transformation of these equations into a form suitable for the application of
the F.E.M. is considered in some detail.
Quite frequently, when utilising a finite difference approach, the governing
 equations are first written in terms of the basic variables — stream function
and vorticity. The pressure distribution is then evaluated subsequent to
solving for these variables. Whilst a similar approach is possible using the
F.E.M., the authors have, however, followed a policy of solving for the
primitive variables u,0,p, which are the local point values of velocity in the x
cartesian coordinate, y cartesian coordinate directions and the pressure,
respectively. Once these primitive variables are evaluated then the distribution
of the stream function, vorticity, tractive force etc. can be readily evaluated.

2.2 Two dimensional form of the governing equations

The governing equations are those normally quoted in the literature!’ and a
detailed derivation is omitied. However, there are some salient features of the
equations which bear repetition and thercfore a general outline is included.

2.2.1 Conservation of mass
Equating the quantity of mass entering and leaving an elemental volume,
the non-steady flow of a compressible fluid in two dimensions is governed by,
dp 0 )
R N —{pp)=0 2.1
5 +ax("“)+ay(p") (2.1
where p is the mass densily and ¢ represents time.
For an incompressible fluid, p=constant, and (2.1} reduces to,

du dv

e o e 2
Ix * ady @2)

Since the primitive variables are employed the above equation should be
satisfied explicitly, pointwise, everywhere within a flow domain.

10

(Fvec OMPLEES BT FeuD >
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Fig. 2.1  Stress notation and distribution on an clemental area

2.2.2  Conservation of momentum
The conservation of momentum, again obtained by examining the faces on
an clemental area of fluid, can be written!?,

du  Ou du do, Ot
E‘"ﬁ'lla"f'va—y—rx'l‘(‘é;‘}' ay ) (23)
dv dv  Ov do, o1

— i — = P AN .3

ot +“(3x * Uay Fy (ay + ax ) @4

where 6,,0,,7,,,7,, are stress components, Fig. 2.1 and F,F are body forces in
the x,y directions respectively. For a Newtonian fluid these stresses can be
related to local pressure and rate of strain via Poisson’s Constitutive Law'?

du  Ov ou
= g Al o [ 2
O, p+ (Bx +(3y)+ #ﬂx {a)
du v dv
Oy= =P '*"{5"{“*“5;)“ “_(3_; (b)
du v
rxjﬁrjx*:“ "5_}7+6Y (C}
See (2.9) £ inc
where u is the molecular viscosity and A= —%y when the pressure is assumed

to be equal, but opposite in sign, to the normal stresses, ie. the Stokes
postulation®,

Utilising (2.5),(2.3) and (2.4} a form of the Navier Stokes equation assuming
constant viscosity is,
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du  du  du I 1op 1 @[du v *u  d*u
?77*'“&*%;“;’1“;51?*“3‘5.?(51*5;)*‘(5}7*5?) @
dv v v | 1op 1 dfou dv v
5?+“é§+v5)7_51:>'_;;7y+§‘3}<3§+5})+1(5;7+6_;7f) {b)
. (2.6)
in which v=-,
e . . du oo
If the fluid is assumed incompressible, 5;4»5} =0, then (2,6) reduces (o,
6u+ au+ du 1. 10[)_'_‘, (72u+r')2u @)
5t T Max T Vay T p < Tpax  \axt T 3y ’
and
Bv+ c'}v+vc')v_1' _16p+ 6zu+6zv (b)
o M E T T pdy "\ax* 782
@7

Two points are worthy of note at this juncture. The first is that if the
incompressibility condition is invoked the stress equations now become,

0= _H?'“é? (a)
dv
o, = m-p+2yb—3-’ {b)
and
o du dv (©
Txyp™=Tyx = M 5;; -+ é}'
(2.8}

which can be used to evaluate the local stress at boundarics or along a line
within the fluid. Although the program developed in later chapters is
specifically formulated to solve the steady state Navier-Stokes equations,
clearly equations of the form,
ou  Ou 1 1dp
T ey (R
“8x+vf}y p* pox @

(EULER)

au+ dv 1 1dp
"y p 0 pdy
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when the fluid is assumed inviscid, and, on ignoring the convective terms,

1 1 ap ?u  u
O—EF‘“E'(;)“;'{‘\(W’FEB;'E> (a)
{(STOKES)
1 {dp v 9%
[ Fp0 N M WY R W
pry P ay t ‘(axz'*'ayz (b)
(2.10)

can also be analysed.
The general steady state equations, which are analysed in detail are,

u@-ﬂﬁg—l . Lap (2% 9%

dx  dy p * pox ‘5,{14‘(7_3)2 @)
1193+4;a”~14 19p (9% 9% (b)
T Ty e ey

2.11)

where both the convective terms and viscous forces are retained. In the
coordinate system normally adopted the ‘y’ direction corresponds to the
vertical. Usually, the body force F =0 and F,= — pyg per unit volume of fluid
where ¢ is the gravitational acceleration. For the examples cited in the text
both FF_and F, are assumed to be zero, although provision is made for their
inclusion in the computer program.

2.2.3 Vorticity-stream function form of the governing equations

As stated earlier a form of the governing equations which can be used when
an analysis is conducted by either the {inite difference or finite element method
is commonly called the vorticity-stream function formulation. The essential
steps in the derivation of these equations will now be outlined. Eliminating the
pressure from (2.11) by differentiating (2.11a) with respect to y and (2.11b)with
respect to x, adding and introducing the definition for vorticity,

du v
w= —{ —— 2,12

(6): i_()x) 212)
we obtain the generalised steady state momentum equation in terms of
vorticity,

2 2
dw  dw ((7 w 8(0) (2.13)

u;,);—%v?];:v ERT‘{*W
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Defining the velocities in terms of a stream function, i,

. o
oy fa)
and
o
=5 ®

(2.14)

such that the continuity equation is satisfied automatically and the vorticity
can be re-defined,

o4y d?
Wa\’é’ Ty‘f - o (2.15)
such that (2.13) becomes,
o d P

When analysing for the spatial distribution of stream function and vorticity
the following form of the equations are widely employed,

Vi = — gy 217N
and re-writting (2.13),

_0 dw 9 dw
Sy Ox ox dy

Some early solutions, utilising the finite element method, to these equations
were published by Baker™ and Cheng. It must be noted, however, that this
choice of variables, as opposed to the primitive form, has the associated
problem of defining vorticity boundary conditions.

Although the methods adopted for solving equations (2.17) and {(2.18)is not
outlined in this text, it is useful to note that if the velocity distribution is known
then both values of stream function and vorticity can be evaluated quite
readily from (2.12) and (2.15).

Wi (2.18)

2.3 Axisymmetric flow

Flow of a fluid through pipes is a particularly common occurrence. This
quasi-three dimensional situation can be described by equations similar to
those already present for two dimensional flow, providing there is no rotation
about the axis of symmetry.

Adopting a right hand cylindrical coordinate system, Fig, 2.2, where x is
measured along the longitudinal axis of the duct, » measured radially and ® the
azimuth angle on a plane normal to the longitudinal axis.
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Fig. 2.2 Cylindrical co-ordinate system - axisymmetric flow

2.3.1 Conservation of mass

Assuming the flow to be unidirectional along the x axis such that all
variations with respect to @ are zero. The steady state equation for
axisymmetric incompressible flow is,

dv v Ou

AT T, 2.19
(]J"ll'+(7,\’ 0 { )

where u denotes the velocity in the x, axial, direction and v in the orthogonal
direction r. This, as in (2.2), involves only two primitive variables.

2.3.2 Conservation of momentum
Again assuming stcady state incompressible flow the equations depicting
conservation of momentum are!V’,

du  du I/ a a
AT DO - STIET S {5 2.20
p(llax -+ U(.)r> x + ’_(ax(’ O'x) + a,_(’ Trx)) ( )
(’)U 31) 1 0 a O-m
p(lla; - l)»a:i)—rr‘i‘;(éj{(f Txr)‘f“[,j';(f O'f)>—"')'.~ (221)

The body forces in the x and r directions are now represented by F_ and F,
respectively. As before the stresses can be written as,

= —pt2 l?ﬁ (a)
Tu= =Pl “
g,=—p+ 2;1%:— {b)

I3
on=—p+2u ©
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and
dv du
Txr =Trx =p(b_{ +‘a“r (d)

(2.22)

Combining (2.21) and (2.22) the required form of the momentum equation is,

du  du | 1dp ,Ozu 100 9*u
“ax a5 Tpax <53-7+F77+5;7 @
and
dv  dv 1 1dp v 1dv vt %
_— N L i P— b
u@,\'+v"c7"; pr" por |_‘<6x2+r6r Ft e ®)
(2.23)

which are, basically, quite similar to (2.11). It can be stated, therefore, that the
principles developed for solving two dimensional problems would be equally
applicable to axisymmetric flow and this facility is included in the programs
subsequently presented.

The remaining quantities usually required, the stream [unction and
vorticity, can, once the velocity is known, be evaluated using the following
definitions,

_lay

"_7'5,7 {(a)
oy
(2.24)
and
104 1y 9% du v
] et —————— el P W ER e e e 2. 5
’.<axz rar—* ar? YE\E T ax (2:23)

2.4 Method of weighted residuals

Having defined the governing equations the method chosen for solution
depends, largely, on the physical problem being analysed. If the flow domain
and boundary conditions are well posed then an analytical solution could well
be possible. For the majority of flow problems of practical interest, however,
the flow domain is geometrically complex and recourse has to be made to an
approximate method which may then be amenable to direct analysis. The
authors have chosen to limit discussions to one, the Method of Weighted
Residuals, which has been used quite extensively in the field of fluid mechanics.
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Boundary

Fig. 23 Definition of flow domain and boundary type

Weighted residual methods are, in essence, numerical techniques which can
be used to solve a single or set of partial differential equations. Consider sucha
set, say representative of (2.2) and (2.11),

Llu)= ﬁ (2.26)

in a domain Q, Fig. 2.3, where u is the exact solution and may represent a single
variable or a column vector of variables. The two prevalent type boundary
conditions are,

essential (Dirichlet) Glu)j=ugson I, (a)

where the value of the variable is prescribed, and

natural (Neumann) Sw)=gonl, (b)
(2.27)

where at least the first order gradient in the variable is prescribed.

The relevance and full explanation of each type boundary condition will
become apparenl when considering a specific example. The first step in the
application of the weighted residual procedure is to assume that u can be
approximated over the whole domain by,

n
u=y of; (2.28)
i=1
where « are functions described in terms of independent variables, such as
spatial coordinates (x,y), and f§ arc undetermined parameters.
Ulilising this approximation and incorporating {2.28) in (2.26) results in an
error or residual, & such that
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g= ()~ JS%O (2.29)

where £ is exactly zero when fi=u ie. an exact solution is possible.
In order to make g identically zero a set of ‘arbitrary’ weighting functions, ¥
are employed such that over the whole domain, Q,

JWF, dQ=0 {2.30)
!

If the number of unknown parameters is s and there are s linearly independent
weighting functions and (2.30) can be re-written,

kaa dQ:JWk( LH)-§)dQ=0 k=123 s (2.31)
Q

The only limitation, at this stage, placed on W, is that this must be, positive,
single valued and finite.

There are a number of ways in which the above concepts can be utilised to
transform the differential equations into a form where finite element tech-
niques can be adopted with effect. These have been expounded in various
texts!>67® and the deliberate policy of confining for simplicity, the present
text to one method will again be invoked and only the Galerkin®® method will
be considered.

2.4.1 The Galerkin weighted residual method

Before embarking on the main objective of this section a further brief
introduction must be given to the commonly adopted concept of trial or shape
functions in a finite element context.

The technique of defining approximated values of the required variable viaa
discrete summation was introduced in (2.28). The approximate values were
defined in terms of some functions « and discrete vatues f. This applied over
the whole domain under consideration in which s refers to the total number of
discrete values. If we now refine this concept and subdivide the domain into
clements, Fig. 2.4, the variable value within that subregion can now be defined
in terms of discrete values on the boundary of or within that region,

i= 3 N, (2.32)

where N are a set of trial functions written in terms of local coordinates
associated with n discrete values within or on the boundary of an element.
Each element will, normally, possess a unique set of equations and f is now
confined to each element. ‘
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Boundary

__~Subdomain or element

n=8

X

Fig. 24 Definition of subdomain or element

The residual now becomes,

o= & ( 5 (N,v/ff))—f (2.33)

i=1

such that {2.31) can be rewritten,

j w,(( & ( 5 N,.[}i)— ﬁ) dQ=0 k=125 (2.34)
Q

i=1

In the Galerkin method the same approximating functions are used for the
weighting and trial functions, i.e. W, =N, and the generalised equation is,

J Nk(g (éj‘N,ﬁJ— ja) dQ =0 (2.35)

where orthogonalisation has been cffected with the same functions.

Example: Flow between parallel plates

The example chosen is that of flow between infinite parallel plates, Fig. 2.5,
which has well known exact analytical solutions. The flow is assumed to be
fully developed and subject to the following boundary conditions,

h h
X, :0 X, pu
u(\, 2> s u(x,z) 0

v=0 for all x and —

(E2.1.1)
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u=0
\\\\\\\\\\\\x
h/
3
———
h
I
f//////////////

u=0
Fig. 2.5 Laminar flow between stationary parallel plates
The continuity equation,

du v

N T =2.1.2
T (E2.1.2)

together with the steady state momentum equation,
ou  du 1 dp du  *u
= e et E2.1.3
"ox i D(?y pox + v(ﬁx“ + ay* ( )

are the governing equations for the {aminar flow under consideration. For the
steady state fully developed conditions imposed then the convective terms arc
zero and {E2.1.3) can be written,

0= —2P LY E2.1.4
3 (E2.1.4)

Integrating twice with respect to y and applying the boundary conditions
(E2.1.1), equation (E2.1.4) becomes,

_ lap(hr
e iﬁﬁ?(f_} ) (E2.1.5)
and
n ap
e e e =2
i, e (E2.1.6)

where u, is the centre-line velocity.
A trial function which leads to exact answers for the current example

L fa N, =1
v=[1 y-].{al} I (E2.1.7)

is,

where both o, and «, are, as yet, unknown constants.
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The Galerkin weighted residual leads to,

2

1 dp  *u
j W"("ﬁ'éf%”aﬁ) dy=0 (E2.1.8)

~hi2

inserting, when

{i: 1, W, =1
=2, Wy=y?

For the condition i=1, N, =1 gives

+hi2
{ dp
J (m;.5;+2‘,a2> dy=0 (E2.1.92)
- if2
and when i=2, N,=y?
+ 2
1 @
J <_;. 5{\’:+2‘,a2)y1 dy=0 (E2.1.9b)
- i{2

On integrating (E2.1.9a) or (E2.1.9b), this trivial example results in,

_if)p 5 0
;5;-1- VoL, =
and
2" 2pvdx | 2udx (E2.1.10)
such that
He=g, 4+ ap 2
Y (E2.1.11)

The other term in equation (E2.1.11) can be evaluated using the boundary
conditions,

umo’ P o= i{!
- 2
which gives,
1 aph?
al L —
2u0x 4

and (E2.1.11) becomes,
B
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h*\1 dp
- 12-—-.__. B 2
u <3 7] )Z,uax (E2.1.12)

which, as expected, is the exact solution.

Repeating the same example but now choosing an arbitrary function which
simply satisfies the boundary conditions, e.g.

n=o cos(’%l> (E2.1.13)

the equivalent equation to (2.31) is,

B2

a 2
j (-%5%_0% cos(%)) cos(fhﬂ> dy=0 (E2.1.14)

~hf2

after integration and imposing the limits indicated,

4h% dp
a_n“?pa_,\: (E2.1.15)
which results in the velocity distribution
4h* dp Ty
e - E2.1.16
{ max COS( h ) { )

Introducing numerical values,

h=0.1 metres

dp -3 2
5= —~50x1077 N/m

and
p=1073 Ns/m?

leads to the comparison shown in Table 2.1 between the exact and the
approximate solution.

1t is evident from Table 2.1 that even with a very crude approximation quite
reasonable results can be obtained.

The above example was confined to the case where the operators are sell
adjoint and only essential boundary conditions imposed. Generally, both the
trial and weighting functions must be such that the {le—1)" derivative is
continuous, where k is the order of differentiation of governing differential
equation. For the example problem chosen this can be demonstrated by
considering Fig. 2.6 where the original trial function results in an integrable
second order differential. It is immediately apparent that this is a minimum
requirement. Such a function is said to be C, continuous. Generally a p order
derivative would require C,,_ ; continuity for the resulting weighted residual to
be integrable.
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Table 2.t

Velocity m/sec

Weighted
y Exact . residual
0.0 6.25x107? 6.45x% 1073
0.01 60 x107? 6.13x 1077
0.02 525x 1073 5.22x 1073
0.03 400x 107? 379%x 1078
0.04 2.25x 1073 199 % 1073
0.05 0.0 0.0
u 8u
% dy *
L g »
y Y
alu
ayZ
/; Second derivatives square

] integrable

N >

Fig. 2.6

The above requircment leads to the conclusion that obvious advantages
would be gained if the order of the governing equation werc reduced. This
would result in a lower order requirement in both the trial and weighting
functions. This is exploited in the following section.

2.5 ‘Weak’ formulation of the governing equations
Starting again with the Galerkin form of the weighted residual process
applied to the general operator,
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fj PW, dx dy=0 (2.36)
stW,- dx dy=0 (2.37)
111

subject to the usual essential and natural boundary conditions.

The sequence required to reduce the order of a governing cquation can be
illustrated by considering the second order heat conduction equation for a
homogeneous conducting medium,

a( 0o a(p
— K2 2.
Bx(Kax)+6)r( 6;'>+Q 0 (2.38)

subject to the following boundary conditions

or

essential ¢ =@ on boundary T,
and
natural g=q on boundary I',

(2.39)

The weighted residual form of this equation is,

a( o af o
(MRt es o
)

Integrating (2.40) by parts with respect to ¢ and W, results in,

aw, _dp oW, 6(,0 ; o
JJ( E K(') Aot By QW) dx dy-l-jW Kéw =0 (2.41)
a r

where I represents the complete boundary. (2.41) can be re-written,

oW, E)(p oW, a(p e du
IJ(B\ F —} -mw«QM dx dy

(2.42)

2
k2 ar- | wk22 ar=o
on on

Fy e
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In equation {2.42) the sccond integral is re-writien as,

jW,q dr
rl’
In the abovc equations
dp  dp O
s b3y "dy

where [,/ are the components of the unit outward normal vectors at the
boundary.

The boundary integral terms in (2.42) require some further explanation
before proceeding to demonstrate the application by example. Clearly, the
physical significance of g can be interpreted as an outward flux. On common
faces between two elements the nett flux will, if the distribution of ¢ is correct,
be zero. Therefore, for elements within a domain under consideration the nett
effect of the third terms in equation (2.42) is zero and can, for all intents and
purposes, be ignored. On that part of the boundary where the values of ¢ are
defined,

p=
then the third term becomes redundant since the equation would be eliminated

from the solution technique. On these boundaries the flux can, however, be
evaluated from

dg
JW;KEI di (2.43)
Fe
Therefore, without loss of generality, {2.42} can be re-written,

oW, dp OW, 6({) ) o
J\[(MEF;KE;'*‘ n (') OW) dx dy— J‘W"q dI'=0  (2.44)
Q

I

where the boundary integral is only retained on boundaries where a flux type
boundary condition is imposed.

Example Flow between parallel plates — weak formation

The main objective of the present example is to introduce the weak
formulation incorporating the ‘gradient’ type boundary condition. Again
consider the Couette type flow where each wall is stationary, Fig. 2.5, utilising
the same trial functions,

=1 ™ Ny=1 E2.2.1
u=[t J]{a,} szyz} (E2.2.1)
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with the boundary conditions,

essential =1, at y=0
tural du du at ,__h
naty é—’; ay = (] ¥ —2

Invoking the Galerkin weighted residual approach the relevant weak
formulation leads to

W2

1dp BWB .
J, (pﬁA W+ ay By 3y ) dy— JvWiq dI'=0 (E2.2.2)
o T,

which, when (E2.2.1) is used becomes,

2

1 oW, .
% vy 25y ) dy— [ ving dr =0 (E2.2.3)
pox dy
0 £,
when
. oW,
i=1, ——-—ay ={)

and, for this condition the L.H.S. of equation (E2.2.3) gives,

hi2

18 .
j (pa”Ho) dy— jvq dr=0 (E2.2.4)
0 r,
Integrating and applying the limits of integration,
I dp .
e e \J m 2
553 jxq dI'=0 (E2.2.5)
When r‘a
W,
=2 Zli_nay,
i=2, 3 23
and equation (E2.2.3) now gives,
2
1dp 2y - 25
ET}! +vdo,y? | dy— | vy*q dT'=0 (E2.2.6)
0 r'
which, upon integration, results in
h* op
RS Y 2
24 E +6l oy qu dIr=0 (E2.2.7)
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Adding equations (E2.2.5) and (E2.2.7) leads to a general expression of the

I dp H-; 0 h? 1(’)14
Bt 1) te TN T T g

in which the last term refers to the boundary at 0,i/2. Using the same variable
values as before i.c.

=0 (E2.2.8)

0.h{2

f1==0.1 metres

op -3 )
i —50x 107 N/m

and

u=10"3 Ns/m?
with the additional boundary conditions,

u=6.25x 1072 m/sec at y=0
and

on

EJ‘F —0.25 at y=h/2

Substituting these values into equation (E2.2.8) the value of a, is found to be

—2.5. Note that this could have been obtained from (E2.2.7) only.
Substituting into (E2.2.1) and using the velocity boundary condition at y

=0, o, =6.25 x 1073, The general equation for the velocity is, therefore,

u=625x10"3-2.5y* (E2.2.9)

which, as expected, yields the exact answers.

The question still remains, however, regarding the compatability of resuits
when a lower order trial function is utilised in conjunction with the ‘weak’
formulation. This can be demonstrated by assuming an equation of the form,

w=[1 y]- {i;} (E2.2.10)

which would be too low an order when the weak formulation is not utilised.
Using the weak formulation this gives rise to the equation,

hi2

1dp héu
j (Eg;%% vaz) dy— a 78y
4]

=0 (E2.2.11)

0,02




28 FINITE ELEMENT PROGRAMMING OF THE NAVIER STOKES EQUATIONS

Table 2.2 Comparison of cxact velocity profile and weak formulation with minimum
order of trial function

Velocity m/sec

Weak weighted

¥ Exact residual
0.0 6.25x 1073 6.25x 1073
0.0! 6.0 %107 500x 103
0.02 525x1073 3.75%x 1072
0.03 400x107° 2.5 x107°
0.04 225x1073 125x 1077
0.05 0.0 0.0
or
h dp du
e — Vg =0 £2.2,
A + var, ‘éy o (E2.2.12)
Substituting values we have,
o,=—0.125
and
a0, =625x1073
The resulting equation for the velocity distribution, now linear, is
u=6.25x10"*—-0.125y (E2.2.13)

A comparison with the exact velocity distribution is shown in Table 2.2,
which illustrates the considerable errors which have been incurred when a

linear profile is assumed.
The concept of ‘weak’ formulation can be extended to include higher order

equations, for instance the biharmonic equation”), where the natural boun-
dary conditions assume considerable importance. Further reading on this
topic is left, however, to the interested reader. The stage has now been reached
where the weighted residual technique and the F.E.M. can be combined
leading to a general integrable form of equation where both trial and shape
functions are defined explicitly.
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Solid Mechanics (from J C Sheng, J Liu, WC Zhu, D Elsworth, in submittal)
GOVERNING EQUATIONS

Behavior is defined in terms of mechanical equilibrium, with components included to

represent the heat and fluid transport in a porous medium.

1 Mechanical Equilibrium
For an elastic medium the constitutive relation (Hooke’s Law) is defined in terms of the

total stress o, (positive for tension), strain ¢, pore fluid pressure change p (negative

for suction) and temperature change 7 as

2Gv ,
o, =2Gg, +m5kk§[j —apo,; —K'a,;To,, (1)

in which G is the shear modulus, v is the drained Poisson’s ratio, J; is the Kronecker

delta defined as 1 for i=j and 0 for i = j, K' (=2G(1+v)/3(1-2v)) is the drained bulk
modulus of the medium, «, is coefficient of volumetric expansion of the bulk medium

under constant pore pressure and stress ("C"), the parameter « (<1) is Biots
coefficient which depends on the compressibility of the constituents and can be defined

as

a=1-K __ 3V 2)

K. Ba-2)(1+v,)’
where K is the effective bulk modulus of the solid constituent, and the effective stress

is defined as o, = o, +apd,.

Using compact notation, the equations of equilibrium and the strain-displacement

relations can be expressed as

c;;, +F, =0 (3)
and

! 4
& :E(ui,j_‘_uj,[) ( )

respectively. Where F, and u, (i =x,y,z) are the components of the net body force and

displacement in the i-direction. From eqns (1) and (4), a modified Navier equation may



be derived via eqn (3), in terms of displacement under a combination of changes of

applied stresses, pore fluid pressures, and temperature as

u,, —ap,—K'a,T,+F =0. (5)

2 Flow Equation

For a porous solid filled with an interstitial and freely diffusing pore fluid, where solid and
fluid are assumed in thermal equilibrium, the rate of change of volume V' caused by
changes of temperature, pore fluid pressure, and strains can be expressed as (Zhou et
al., 1998)

1oV o¢ oT
o Vg 4, + (- Pa 1S~

vV or o o \B K. Jor 3K UV

where ¢ is time (s), ¢, is the volume stain (=&, +¢, +¢_.), ¢, is the water flux/unit area

(Lﬂja_m;, 5 )

(m/s), ¢ is the porosity in a general continuum, ¢, is the coefficient of volumetric
thermal expansion of the liquid (‘C"), «, is the coefficient of volumetric thermal
expansion of the solid matrix ("C™"), and p, is the bulk modulus of the pore fluid (Pa).

Rearrangement of eqn (6) results in the fluid mass conservation equation

Vg, =—a‘€; +[¢a,+(1—¢>as]6—T—(i+ﬂja—p+La 5 @)

0 oo \p K, )or 3K, TV

By neglecting effects of thermal-osmosis, the constitutive relation for fluid diffusion can
be expressed by Darcy’s law, as,

q, =—KkV(p+p,gz) (8)
where z is the vertical coordinate, x is the coefficient of permeability [m*/(N-s)] with
x =k/u, , where g, is the dynamic fluid viscosity (N's'm™), k is the intrinsic permeability
in a general continuum (m?), p, is the liquid density (kg/m®), and g is gravitational

acceleration (m/s?). Substitution of eqns (8) and (1) into eqn (7) results in

o€, oT 0
A g g =V kP V2] ©
where
K’ 3(v, —v)
¢ =l-—=

K. B(l+v,)1-2v)’



¢, =pa;+ (=P, ———, (10)

£+1—¢_ o1-2v, )(v,—-Vv)
B, K., 2GB*(1-2v)(1+v,)*’

3 Energy Conservation Equation

By neglecting thermal-filtration effects, the constitutive relation for heat diffusion is given
by Fourier’s law as

q, =-4,VT (11)
where ¢, is the heat flux transmitted by conduction in the fluid-solid mixture, with

Ay =(1=P)A, +dA, . (12)
Here, A, and A, are the thermal conductivities of the solid (rock) and liquid [J/(s-m-°C)]

components. Due to the assumption of thermal equilibrium between the fluid and solid
phases, the heat energy balance equation over an REV can be expressed in terms of a
single equation which neglects the terms representing the interconvertibility of thermal
and mechanical energy (Zhou et al., 1998; Noorishad and Tsang, 1996; Kurashige,
1989)

oT ,  0s,
(pC)ME_(To"'T)alﬁzv%_(T0+T)Kar o =-V-q, -V-(p,Hgq,) (13)

where 7, is the absolute reference temperature in the stress-free state (K), p, is the

reference mass density, H represents the specific enthalpy of the pore fluid, (oC),, is
the specific heat capacity of the fluid-filed medium, defined as
(PC)y =0(p,C)+(1-9)p,C,), Wwhere p_ is the mass density of the rock matrix (kg/m?),
and C, and C, are the fluid and solid specific heat constants at constant volume (J-kg’

tec.

The first term on the left-hand side of eqn (13) represents the rate of internal heat
energy change per unit volume due to an increase in temperature. The second term
represents a heat sink due to thermal dilatation of the fluid. The last term represents a
heat sink due to thermal expansion of the medium. For a small variation of temperature

(the temperature changes (7' ) are small compared to the absolute ambient temperature),

3



T, +T = T,, this term is identical to that given by Biot (1956). The second and third terms

on the left-hand side of eqgn (13) represent the thermoporoelastic coupling in the heat
energy balance equation (Zhou et al., 1998). The last term on the right-hand side of egn
(13) represents the convective heat flux (the transportation of enthalpy by fluid flow

through pores).

We assume that heat exchange between the solid matrix and the pore fluid is rapid in
comparison with the global heat and fluid diffusion processes. Thus, the local heat

equilibrium is established (Kurashige, 1989) as,
H =(pC)y T/(¢p,) - (14)
Substitution of eqns (11) and (14) into egn (13) results in

(pC),, ‘Z—f F (T, + T, BV - (55p + p,gV2)

(15)

—(T,+T)K'a, %_&
ot é

The last term on the left-hand side of eqn (15) represents the convective heat flux.

k(Vp+ p,gVz)-VT =4,V -q,

Equations (5), (9) and (15) represent a set of fully coupled non-linear equations
governing the thermo-poroelastic response of a saturated medium. The equations
account for thermodynamically coupled heat and mass transfer, mechanical and thermal

compressibility of the constituents, and importantly in this work, convective heat flow.

4 Initial and Boundary Conditions

The triply coupled THM physics of the system is defined through equations (5), (9) and
(15). For completeness, standard boundary conditions and initial conditions are defined
as follows.

4.1 Boundary conditions

Stress-displacement conditions for the mechanical analysis are defined as
u(x,?) = u(x,z), t e [0,0), (16)



o(x,t)-n(x) = F(x,t), t e [0,). (17)
Fluid flow is defined in terms of boundary conditions representing:
The Dirichlet condition: p(x,7) = p(x,t), t € [0,0). (18)
The Neumann condition: x-(Vp—p,8)-n(x) = Q0,(x,t), t € [0,). (19)
And likewise for heat transport:
The Dirichlet condition: T(x,7) = T(x,t), t € [0,). (20)
The Neumann condition: 4, VT -n(x) = Q,(x,t), t € [0,). (21)

where n is the outward unit normal vector on the domain boundary.

4.2 Initial conditions

Initial conditions for the mechanical, flow and thermal analyses are defined as

u(x,0) =0onV, (22)
o(x,00 =0on V, (23)
p(x,0) =0on V', (24)
T(x,00 =0on V. (25)

The dependent variables, u, p, and T, represent incremental deviations from the

strain-free state assumed by the above choice of initial conditions. The quantity V

represents the volume under consideration.
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Abstract

The evolution of matrix structural analysis (MSA) from 1930 through 1970 is outlined. Highlighted are major
contributions by Collar and Duncan, Argyris, and Turner, which shaped this evolution. To enliven the narrative the
outline is configured as a three-act play. Act I describes the pre-WWII formative period. Act II spans a period of
confusion during which matrix methods assumed bewildering complexity in response to conflicting demands and re-
strictions. Act III outlines the cleanup and consolidation driven by the appearance of the direct stiffness method,
through which MSA completed morphing into the present implementation of the finite element method (FEM). No
attempt is made at chronicling the more complex history of FEM itself. © 2001 Elsevier Science Ltd. All rights
reserved.

Keywords: Matrix structural analysis; Finite elements; History; Displacement method; Force method; Direct stiffness method; Duality

1. Introduction

Who first wrote down a stiffness or flexibility matrix?

The question was posed in a 1995 paper [1]. The
educated guess was ‘“‘somebody working in the aircraft
industry of Britain or Germany, in the late 1920s or
early 1930s”. Since then the writer has examined reports
and publications of that time. These trace the origins of
matrix structural analysis (MSA) to the aeroelasticity
group of the National Physics Laboratory (NPL) at
Teddington, a town that has now become a suburb of
greater London.

The present paper is an expansion of the historical
vignettes in Section 4 of [1]. It outlines the major steps in
the evolution of MSA by highlighting the fundamental
contributions of four individuals: Collar, Duncan, Ar-
gyris and Turner. These contributions are lumped into
three milestones:

" Tel.: +1-303-492-6547; fax: +1-303-492-4990.
E-mail address: carlos@titan.colorado.edu (C.A. Felippa).

Creation: Beginning in 1930 Collar and Duncan
formulated discrete aeroelasticity in matrix form. The
first two journal papers on the topic appeared in 1934—
1935 [2,3] and the first book, coauthored with Frazer,
in 1938 [4]. The representation and terminology for
discrete dynamical systems is essentially that used to-
day.

Unification: In a series of journal articles appearing in
1954 and 1955 [5] Argyris presented a formal unification
of force and displacement methods (FDM) using dual
energy theorems. Although practical applications of the
duality proved ephemeral, this work systematized the
concept of assembly of structural system equations from
elemental components.

FEMinization: In 1959 Turner proposed [6] the direct
stiffness method (DSM) as an efficient and general
computer implementation of the then embryonic, and as
yet unnamed, finite element method (FEM). This tech-
nique, fully explained in a follow-up article [7], naturally
encompassed structural and continuum models, as well
as nonlinear, stability and dynamic simulations. By 1970
DSM had brought about the demise of the classical

0045-7949/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0045-7949(01)00025-6
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force method (CFM), and become the dominant im-
plementation in production-level FEM programs.
These milestones help dividing MSA history into
three periods. To enliven and focus the exposition these
will be organized as three acts of a play, properly sup-
plemented with a “matrix overture” prologue, two in-
terludes and a closing epilogue. Here is the program:

Prologue — Victorian artifacts: 1858-1930.
Act I — gestation and birth: 1930-1938.
Interlude I — WWII blackout: 1938-1947.
Act II — the matrix forest: 1947-1956.
Interlude II — questions: 1956-1959.

Act IIT — answers: 1959-1970.

Epilogue — revisiting the past: 1970-date.

Act I, as well as most of the prologue, takes place in
the UK. The following events feature a more interna-
tional cast.

2. Background and terminology

Before departing for the theater, this Section offers
some general background and explains historical ter-
minology. Readers familiar with the subject should skip
to Section 3.

[1DEALIZATION]  [DISCRETIZATION] [soLuTioN

Physical Math ical Discrete Discrete
system model model solution

| Solution error I

Discretization + solution error

Modeling + discretization + solution error

| VERIFICATION & VALIDATION |

Fig. 1. Flowchart of model-based simulation (MBS) by com-
puter.

Discrete
Mathematical
Models

The overall schematics of model-based simulation
(MBS) by computer is flowcharted in Fig. 1. For me-
chanical systems such as structures the FEM is the most
widely used discretization and solution technique. His-
torically the ancestor of FEM is MSA, as illustrated in
Fig. 2. The morphing of the MSA from the pre-com-
puter era — as described for example in the first MSA
book [4] — into the first programmable computers took
place, in wobbly gyrations, during the transition period
herein called Act II. Following a confusing interlude, the
young FEM begin to settle, during the early 1960s, into
the configuration shown on the right of Fig. 2. Its basic
components have not changed since 1970.

MSA and FEM stand on three legs: mathemati-
cal models, matrix formulation of the discrete equa-
tions, and computing tools to do the numerical work. Of
the three legs the latter is the one that has undergone the
most dramatic changes. The “human computers” of the
1930s and 1940s morphed by stages into programmable
computers of analog and digital type. The matrix for-
mulation moved like a pendulum. It begins as a simple
displacement method in Act I, reaches bewildering
complexity in Act II and goes back to conceptual sim-
plicity in Act III.

Unidimensional structural models have changed lit-
tle: a 1930 beam is still the same beam. The most no-
ticeable advance is that pre-1955 MSA, following
classical Lagrangian mechanics, tended to use spatially
discrete energy forms from the start. The use of space-
continuum forms as basis for multidimensional element
derivation was pioneered by Argyris [5], successfully
applied to triangular geometries by Turner et al. [8], and
finalized by Melosh [9] and Irons [10,11] with the precise
statement of compatibility and completeness require-
ments for FEM.

Matrix formulations for MSA and FEM have been
traditionally classified by the choice of primary un-
knowns. These are those solved for by the human or
digital computer to determine the system state. In the

Continuum
Mathematical

Formulation

Fig. 2. Morphing of the pre-computer MSA (before 1950) into the present FEM. On the left “human computer’” means computations
under direct human control, possibly with the help of analog devices (slide rule) or digital devices (desk calculator). The FEM con-

figuration shown on the right settled by the mid 1960s.
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displacement method (DM) these are physical or gen-
eralized displacements. In the CFM these are amplitudes
of redundant force (or stress) patterns. (The qualifier
“classical” is important because there are other versions
of the force method (FM) which select for example stress
function values or Lagrange multipliers as unknowns.)
There are additional methods that involve combinations
of displacements, forces and/or deformations as primary
unknowns, but these have no practical importance in the
pre-1970 period covered here.

Appropriate mathematical names for the DM are
range-space method or primal method. This means that
the primary unknowns are the same type as the primary
variables of the governing functional. Appropriate
names for the CFM are null-space method, adjoint
method, or dual method. This means that the primary
unknowns are of the same type of the adjoint variables
of the governing functional, which in structural me-
chanics are forces. These names are not used in the
historical outline, but are useful in placing more recent
developments, as well as nonstructural FEM applica-
tions, within a general framework.

The terms stiffness method and flexibility method
are more diffuse names for the displacement and force
methods, respectively. Generally speaking these apply
when stiffness and flexibility matrices, respectively, are
important part of the modeling and solution process.

3. Prolog — Victorian artifacts: 1858-1930

Matrices — or “determinants” as they were initially
called — were invented in 1858 by Cayley at Cambridge,
although Gibbs (the co-inventor, along with Heaviside,
of vector calculus) claimed priority for the German
mathematician Grassmann. Matrix algebra and matrix
calculus were developed primarily in the UK and Ger-
many. Its original use was to provide a compact lan-
guage to support investigations in mathematical topics
such as the theory of invariants and the solution of al-
gebraic and differential equations. For a history of these
early developments the monograph by Muir [12] is un-
surpassed. Several comprehensive treatises in matrix
algebra appeared in the late 1920s and early 1930s [13—
15].

Compared to vector and tensor calculus, matrices
had relatively few applications in science and technol-
ogy before 1930. Heisenberg’s 1925 matrix version of
quantum mechanics was a notable exception, although
technically it involved infinite matrices. The situation
began to change with the advent of electronic desk cal-
culators, because matrix notation provided a convenient
way to organize complex calculation sequences. Aero-
elasticity was a natural application because the stability
analysis is naturally posed in terms of determinants of
matrices that depend on a speed parameter.

The nonmatrix formulation of discrete structural
mechanics can be traced back to the 1860s. By the early
1900s the essential developments were complete. A
readable historical account is given by Timoshenko [16].
Interestingly enough, the term “matrix” never appears
in this book.

4. Act I — gestation and birth: 1930-1938

In the decade of World War I aircraft technology
begin moving toward monoplanes. Biplanes disap-
peared by 1930. This evolution meant lower drag and
faster speeds but also increased disposition to flutter.
In the 1920s aeroelastic research began in an interna-
tional scale. Pertinent developments at the NPL are
well chronicled in a 1978 historical review article by
Collar [17], from which the following summary is ex-
tracted.

4.1. The source papers

The aeroelastic work at the Aerodynamics Division
of NPL was initiated in 1925 by R.A. Frazer. He was
joined in the following year by W.J. Duncan. Two years
later, in August 1928, they published a monograph on
flutter [18], which came to be known as “The Flutter
Bible” because of its completeness. It laid out the prin-
ciples on which flutter investigations have been based
since. In January 1930 A.R. Collar joined Frazer and
Duncan to provide more help with theoretical investi-
gations. Aeroelastic equations were tedious and error
prone to work out in long hand. Here are Collar’s own
words [17, p. 17] on the motivation for introducing
matrices:

“Frazer had studied matrices as a branch of ap-
plied mathematics under Grace at Cambridge;
and he recognized that the statement of, for exam-
ple, a ternary flutter problem in terms of matrices
was neat and compendious. He was, however,
more concerned with formal manipulation and
transformation to other coordinates than with nu-
merical results. On the other hand, Duncan and I
were in search of numerical results for the vibration
characteristics of airscrew blades; and we recog-
nized that we could only advance by breaking the
blade into, say, 10 segments and treating it as hav-
ing 10 degrees of freedom. This approach also was
more conveniently formulated in matrix terms, and
readily expressed numerically. Then we found that
if we put an approximate mode into one side of the
equation, we calculated a better approximation on
the other; and the matrix iteration procedure was
born. We published our method in two papers in
Phil. Mag. [2,3]; the first, dealing with conservative
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systems, in 1934 and the second, treating damped
systems, in 1935. By the time this had appeared,
Duncan had gone to his Chair at Hull”.

The aforementioned papers appear to be the earliest
journal publications of MSA. These are amazing docu-
ments: clean and to the point. They do not feel outdated.
Familiar names appear: mass, flexibility, stiffness, and
dynamical matrices. The matrix symbols used are [m],
[f], [¢] and [D] = [¢] '[m] = [f][m], respectively, instead
of the M, F, K and D in common use today. A general
inertia matrix is called [a]. As befit the focus on dy-
namics, the DM is used. Point-mass displacement de-
grees of freedom are collected in a vector {x} and
corresponding forces in vector {P}. These are called [g]
and [Q], respectively, when translated to generalized
coordinates.

The notation was changed in the book [4] discussed
below. In particular matrices are identified in Ref. [4] by
capital letters without surrounding brackets, in more
agreement with the modern style; for example mass,
damping and stiffness are usually denoted by A, B and
C, respectively.

4.2. The matrix structural analysis source book

Several papers on matrices followed, but apparently
the traditional publication vehicles were not viewed as
suitable for description of the new methods. At that
stage Collar notes [17, p. 18] that

“Southwell (Sir Richard Southwell, the “father” of
relaxation methods) suggested that the authors of
the various papers should be asked to incorporate
them into a book, and this was agreed. The result
was the appearance in November 1938 of “Elemen-
tary Matrices” published by Cambridge University
Press [4]; it was the first book to treat matrices as a
branch of applied mathematics. It has been re-
printed many times, and translated into several lan-
guages, and even now after nearly 40 years [this
was written in 1975], stills sells in hundreds of cop-
ies a year — mostly paperback. The interesting thing
is that the authors did not regard it as particularly
good; it was the book we were instructed to write,
rather than the one we would have liked to write”.

The writer has copies of the 1938 and 1963 printings.
No changes other than minor fixes are apparent. Unlike
the source papers [2,3] the book feels dated. The first
245 pages are spent on linear algebra and ODE-solution
methods that are now standard part of engineering and
science curricula. The numerical methods, oriented to
desk calculators, are obsolete. That leaves the modeling
and application examples, which are not coherently in-

terweaved. No wonder that the authors were not happy
about the book. They had followed Southwell’s
“merging” suggestion too literally. Despite these flaws
its direct and indirect influence during the next two
decades was significant. Being first excuses imperfec-
tions.

The book focuses on dynamics of a complete air-
plane and integrated components such as wings, rud-
ders or ailerons. The concept of structural element is
primitive: take a shaft or a cantilever and divide it
into segments. The assembled mass, stiffness or flexi-
bility is given directly. The source of damping is
usually aerodynamic. There is no static stress analysis;
pre-WWII aircraft were overdesigned for strength
and typically failed by aerodynamic or propulsion ef-
fects.

Readers are reminded that in aeroelastic analysis
stiffness matrices are generally unsymmetric, being the
sum of a symmetric elastic stiffness and an unsymmetric
aerodynamic stiffness. This clean decomposition does
not hold for flexibility matrices because the inverse of a
sum is not the sum of inverses. The treatment of [4] in-
cludes the now called load-dependent stiffness terms,
which represent another first.

On reading the survey articles by Collar [17,19] one
cannot help being impressed by the lack of pretension.
With Duncan he had created a tool for future genera-
tions of engineers to expand and improve upon. Yet he
appears almost apologetic: “I will complete the matrix
story as briefly as possible” [17 p. 17]. The NPL team
members shared a common interest: to troubleshoot
problems by understanding the physics, and viewed
numerical methods simply as helpers.

5. Interlude I — WWII blackout: 1938-1947

Interlude I is a “silent period” taken to extend from
the book [4] to the first journal publication on the matrix
FM for aircraft [20]. Aeroelastic research continued.
New demands posed by high strength materials, higher
speeds, combat maneuvers, and structural damage sur-
vival increased interest in stress analysis. For the beam-
like skeletal configurations of the time, the traditional
flexibility-based methods such as CFM were appropri-
ate. Flexibilities were often measured experimentally by
static load tests, and fitted into the calculations. Pun-
ched-card computers and relay calculators were in-
creasingly used, and analog devices relied upon to solve
ODE:s in guidance and ballistics. Precise accounts of
MSA work in aerospace are difficult to trace because of
publication restrictions. The blackout was followed by a
2-3 year hiatus until those restrictions were gradually
lifted, R&D groups restaffed, and journal pipelines re-
filled.
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6. Act II — the matrix forest: 1947-1956

As Act II starts MSA work is still mainly confined to
the aerospace community. But the focus has shifted
from dynamics to statics, and especially stress, buckling,
fracture and fatigue analysis. Turbines, supersonic flight
and rocket propulsion brought forth thermomechanical
effects. The Comet disasters forced attention on stress
concentration and crack propagation effects due to cy-
clic cabin pressurization. Failsafe design gained impor-
tance. In response to these multiple demands aircraft
companies staffed specialized groups: stress, aerody-
namics, aeroelasticity, propulsion, avionics, and so on.
A multilevel management structure with well defined
territories emerged.

The transition illustrated in Fig. 2 starts, driven by
two of the legs supporting MSA: new computing re-
sources and new mathematical models. The matrix for-
mulation merely reacts.

6.1. Computers become machines

The first electronic commercial computer: Univac I,
manufactured by a division of Remington-Rand, ap-
peared during summer 1951. The six initial machines
were delivered to US government agencies [21]. That
model was joined in 1952 by the Univac 1103, a scien-
tific-computation oriented machine built by ERA, a
R-R acquisition. This was the first computer with a
drum memory. T.J. Watson Sr., founder of IBM, had
been once quoted as saying that six electronic computers
would satisfy the needs of the planet. Turning around
from that prediction, IBM launched the competing 701
model in 1953.

Big aircraft companies began purchasing or leasing
these expensive wonders by 1954. But this did not mean
immediate access for everybody. The behemoths had to
be programmed in machine or assembly code by spe-
cialists, who soon formed computer centers allocating
and prioritizing cycles. By 1956 structural engineers were
still likely to be using their slides rules, Marchants and
punched card equipment. Only after the 1957 appear-
ance of the first high level language (Fortran I, offered
on the IBM 704) were engineers and scientists able (and
allowed) to write their own programs.

6.2. The matrix CFM takes center stage

In static analysis the nonmatrix version of the CFM
had enjoyed a distinguished reputation since the source
contributions by Maxwell, Mohr and Castigliano. The
method provides directly the internal forces, which are
of paramount interest in stress-driven design. It offers
considerable scope of ingenuity to experienced structural
engineers through clever selection of redundant force

systems. It was routinely taught to aerospace, civil and
mechanical engineering students.

Success in hand-computation dynamics depends on
“a few good modes”. Likewise, the success of CFM
depends crucially on the selection of good redundant
force patterns. The structures of pre-1950 aircraft were a
fairly regular lattice of ribs, spars and panels, forming
beam-like configurations. If the panels are ignored, the
selection of appropriate redundants was well under-
stood. Panels were modeled conservatively as inplane
shear-force carriers, circumventing the difficulties of
two-dimensional elasticity. With some adjustments and
experimental validations, sweptback wings of high as-
pect ratio were eventually fitted into these models.

A matrix framework was found convenient to orga-
nize the calculations. The first journal article on the
matrix CFM, which focused on sweptback wing analy-
sis, is by Levy [20], followed by publications of Rand
[22], Langefors [23], Wehle and Lansing [24] and Denke
[25]. The development culminates in the article series of
Argyris [5] discussed in Section 6.5.

6.3. The delta wing challenge

The DM continued to be used for vibration and
aeroelastic analysis, although as noted above this was
often done by groups separated from stress and buckling
analysis. A new modeling challenge entered in the early
1950s: delta wing structures. This rekindled interest in
stiffness methods.

The traditional approach to obtain flexibility and
stiffness matrices of unidimensional structural members
such as bars and shafts is illustrated in Fig. 3. The
governing differential equations are integrated, analyti-
cally or numerically, from one end to the other. The
end quantities, grouping forces and displacements, are
thereby connected by a transition matrix. Using simple
algebraic manipulations three more matrices shown
in Fig. 3 can be obtained: deformational flexibility, de-
formational stiffness and free—free stiffness. This well
known technique has the virtue of reducing the number
of unknowns since the integration process can absorb
structural details that are handled in the present FEM
with multiple elements.

Notably absent from the scheme of Fig. 3 is the free—
free flexibility. This was not believed to exist since it is
the inverse of the free—free stiffness, which is singular.
A general closed-form expression for this matrix as a
Moore-Penrose generalized stiffness inverse was not
found until recently [26,27].

Modeling delta wing configurations required two-
dimensional panel elements of arbitrary geometry, of
which the triangular shape, illustrated in Fig. 4, is the
simplest and most versatile. Efforts to follow the ODE-
integration approach lead to failure. (One particularly
bizarre proposal, for solving exactly the wrong problem,
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Fig. 3. Transition, flexibility and stiffness matrices for unidimensional linear structural elements, such as the plane beam depicted here,
can be obtained by integrating the governing differential equations, analytically or numerically, over the member to relate end forces
and displacements. Clever things were done with this “‘method of lines”” approach, such as including intermediate supports or elastic

foundations.
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Fig. 4. Modeling delta wing configurations required panel elements of arbitrary geometry such as the triangles depicted here. The
traditional ODE-based approach of Fig. 3 was tried by some researchers who (seriously) proposed finding the corner displacements in
(a) produced by the concentrated corner forces in (b) on a supported triangle from the elasticity equations solved by numerical in-
tegration! Bad news: those displacements are infinite. Interior fields assumptions were inevitable, but problems persisted. A linear
inplane displacement field is naturally specified by corner displacements, whereas a constant membrane force field is naturally defined
by edge tractions (c). Those quantities “live”” on different places. The puzzle was first solved in Ref. [8] by lumping edge tractions to

node forces on the way to the free—free stiffness matrix.

is mentioned for fun in the label of Fig. 4.) This moti-
vated efforts to construct the stiffness matrix of the panel
directly. The first attempt in this direction is by Levy
[28]; this was only partly successful but was able to il-
luminate the advantages of the stiffness approach.

The article series by Argyris [5] contains the deriva-
tion of the 8 x 8 free—free stiffness of a flat rectangular
panel using bilinear displacement interpolation in Car-
tesian coordinates. But that geometry was obviously
inadequate to model delta wings. The landmark contri-
bution of Turner, Clough, Martin and Topp [8] finally
succeeded in directly deriving the stiffness of a triangular
panel. Clough [29] observes that this paper represents

the delayed publication of 1952-1953 work at Boeing. It
is recognized as one of the two sources of present FEM
implementations, the second being the DSM discussed
later. Because of the larger number of unknowns com-
pared to CFM, competitive use of the DM in stress
analysis had necessarily to wait until computers become
sufficiently powerful to handle hundreds of simultaneous
equations.

6.4. Reduction fosters complexity

For efficient digital computation on present com-
puters, data organization (in terms of fast access as well
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as exploitation of sparseness, vectorization and paral-
lelism) is of primary concern whereas raw problem size,
up to certain computer-dependent bounds, is secondary.
But for hand calculations minimal problem size is a key
aspect. Most humans cannot comfortably solve by hand
linear systems of more than 5 or 6 unknowns by direct
elimination methods, and 5-10 times that through
problem-oriented “relaxation” methods. The first-gen-
eration digital computers improved speed and reliability,
but were memory strapped. For example the Univac |
had 1000 45-bit words and the IBM 701, 2048 36-bit
words. Clearly solving a full system of 100 equations was
still a major challenge.

It should come as no surprise that problem reduction
techniques were paramount throughout this period, and
exerted noticeable influence until the early 1970s. In
static analysis reduction was achieved by elaborated
functional groupings of static and kinematic variables.
Most schemes of the time can be understood in terms of
the following classification:

primary {
Generalised forces

secondary {

primary {
Generalised displacemetns

secondary {

Here applied forces are those acting with nonzero val-
ues, that is, the ones visibly drawn as arrows by an en-
gineer or instructor. In reduction-oriented thinking zero
forces on unloaded degrees of freedom are classified as
condensable because they can be removed through static
condensation techniques. Similarly, nonzero applied
displacements were clearly differentiated from zero dis-
placements arising from support conditions because the
latter can be thrown out while the former must be re-
tained. Redundant displacements, which are the coun-
terpart of redundant forces, have been given many
names, among them ‘“kinematically indeterminate dis-
placements™ and ‘“‘kinematic deficiencies’.

Matrix formulation evolved so that the unknowns
were the force redundants y in the CFM and the dis-
placement redundants z in the DM. Partitioning matri-
ces in accordance to (1) fostered exuberant growth
culminating in the matrix forest that characterizes works
of this period.

To a present day FEM programmer familiar with the
DSM, the complexity of the matrix forest would strike
as madness. The DSM master equations can be assem-
bled without functional labels. Boundary conditions are
applied on the fly by the solver. But the computing

limitations of the time must be kept in mind to see the
method in the madness.

6.5. Two paths through the forest

A series of articles published by J.H. Argyris in four
issues of Aircraft Engrg. during 1954 and 1955 collectively
represents the second major milestone in MSA. In 1960
the articles were collected in a book, entitled “Energy
Theorems and Structural Analysis” [5]. Part I, sub-enti-
tled General Theory, reprints the four articles, whereas
Part II, which covers additional material on thermal
analysis and torsion, is co-authored by Argyris and Kel-
sey. Both authors are listed as affiliated with the Aero-
space Department of the Imperial College at London.

The dual objectives of the work, stated in the preface,
are “‘to generalize, extend and unify the fundamental
energy principles of elastic structures” and “to describe
in detail practical methods of analysis of complex
structures — in particular for aeronautical applications”.

applied forces f,

redundant forces y
condensable forces f, =0
support reactions f

applied displacements u,
redundant displacements z
condensable displacements u,
support conditions u, = 0

The first objective succeeds well, and represents a key
contribution toward the development of continuum-
based models. Part I carefully merges classical contri-
butions in energy and work methods with matrix
methods of discrete structural systems. The coverage is
methodical, with numerous illustrative examples. The
exposition of the FM for wing structures reaches a level
of detail unequaled for the time.

The DM is then introduced by duality — called
“analogy” in this work:

“The analogy between the developments for the
flexibilities and stiffnessess ... shows clearly that
parallel to the analysis of structures with forces
as unknowns there must be a corresponding theory
with deformations as unknowns”.

This section credits Ostenfeld [30] with being the first
to draw attention to the parallel development. The du-
ality is exhibited in a striking form in Table II, in which
both methods are presented side by side with simply an
exchange of symbols and appropriate rewording. The
steps are based on the following decomposition of in-
ternal deformation states g and force patterns p:
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p= BOfa + Blya g= Aoua + AlZ> (2)

where the notation of [1] is used. Here B; and A; denote
system equilibrium and compatibility matrices, respec-
tively. The vector symbols on the right reflect a partic-
ular choice of the force—displacement decomposition (1),
with kinematic deficiencies taken to be the condensable
displacements: z = u..

This unification exerted significant influence over the
next decade, particularly on the European community.
An excellent textbook exposition is that of Pestel and
Leckie [31]. This book covers both paths, following
Argyris’ framework, in Chapters 9 and 10, using 83
pages and about 200 equations. These chapters are
highly recommended to understand the organization of
numeric and symbolic hand computations in vogue at
that time, but it is out of print. Still in print (by Dover) is
the book by Przemieniecki [32], which describes the DM
and CFM paths in two Chapters: 6 and 8. The DM
coverage is strongly influenced, however, by the DSM;
thus duality is only superficially used.

6.6. Dubious duality

One key application of the duality in Ref. [5] was to
introduce the DM by analogy to the then better known
CFM. Although done with good intentions this ap-
proach did not anticipate the forthcoming development
of continuum-based finite elements through stiffness
methods. These are naturally derived directly from the
total potential energy principle via shape functions, a
technique not fully developed until the mid-1960s.

The side by side presentation of Table II of Ref. [5]
tried to show that CFM and DM were going through
exactly the same sequence of steps. Some engineers,
eventually able to write Fortran programs, concluded
that the methods had similar capabilities and selecting
one or the other was a matter of taste. (Most structures
groups, upholding tradition, opted for the CFM.) But
the few engineers who tried implementing both noticed a
big difference. And that was before the DSM, which has
no dual counterpart under the decomposition (2), ap-
peared.

The paradox is explained in Section 4 of Ref. [1]. It is
also noted there that Eqgs. (2) is not a particularly useful
state decomposition. A better choice is studied in Sec-
tion 2 of that paper; that one permits all known methods
of classical MSA, including the DSM, to be derived for
skeletal structures as well as for a subset of continuum
models.

7. Interlude II — questions: 1956-1959

Interlude I was a silent period dominated by the war
blackout. Interlude IT is more vocal: a time of questions.

An array of methods, models, tools and applications is
now on the table, and growing. Solid-state computers,
Fortran, ICBMs, the first satellites. So many options.
Stiffness or flexibility? Forces or displacements? Do
transition matrix methods have a future? Is the CFM—
DM duality a precursor to general-purpose programs
that will simulate everything? Will engineers be allowed
to write those programs?

As convenient milestone this outline takes 1959, the
year of the first DSM paper, as the beginning of Act I11.
Arguments and counter-arguments raised by the fore-
going questions will linger, however, for two more
decades into diminishing circles of the aerospace com-
munity.

8. Act III — answers: 1959-1970

The curtain of Act 111 lifts in Aachen, Germany. On 6
November 1959, M.J. Turner, head of the Structural
Dynamics Unit at Boeing and an expert in aeroelasticity,
presented the first paper on the DSM to an AGARD
Structures and Materials Panel meeting [6]. (AGARD is
NATO’s Advisory Group for Aeronautical Research
and Development, which had sponsored workshops and
lectureships since 1952. Bound proceedings or reports
are called AGARDographs.)

8.1. A path outside the forest

No written record of Ref. [6] seem to exist. None-
theless it must have produced a strong impression since
published contributions to the next (1962) panel meeting
kept referring to it. By 1960 the method had been ap-
plied to nonlinear problems [33] using incremental
techniques. In July 1962 Turner et al. presented an ex-
panded version of the 1959 paper, which appeared in an
AGARDograph volume published by Pergamon in 1964
[7]. Characteristic of Turner’s style, the introduction
goes directly to the point:

“In a paper presented at the 1959 meeting of the
AGARD Structures and Materials Panel in Aa-
chen, the essential features of a system for numer-
ical analysis of structures, termed the DSM, were
described. The characteristic feature of this partic-
ular version of the DM is the assembly procedure,
whereby the stiffness matrix for a composite struc-
ture is generated by direct addition of matrices as-
sociated with the elements of the structure”.

The DSM is explained in six text lines and three equa-
tions:

“For an individual element e the generalized nodal
force increments {AX*} required to maintain a set
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of nodal displacement increments {Au} are given
by a matrix equation

{AX“} = K {Au} 3)

in which K¢ denotes the stiffness matrix of the indi-
vidual element. Resultant nodal force increments
acting on the complete structure are

{AX} =3 {AX‘} = K{Au} )

wherein K, the stiffness of the complete structure, is
given by the summation

K=> K (5)

which provides the basis for the matrix assembly
procedure noted earlier”.

Knowledgeable readers will note a notational glitch.
For Eq. (5) to be correct matrix equations, K¢ must be
an element stiffness fully expanded to global (in that
paper: “basic reference’’) coordinates, a step that is
computationally unnecessary. A more suggestive nota-
tion used in present DSM expositions is K =
ST(L)TKeL¢, in which L¢ are Boolean localization ma-
trices. Note also the use of A in front of ¥ and X and
their identification as “increments”. This simplifies the
extension to nonlinear analysis, as outlined in the next
paragraph:

“For the solution of linear problems involving
small deflections of a structure at constant uniform
temperature which is initially stress-free in the ab-
sence of external loads, the matrices K¢ are defined
in terms of initial geometry and elastic properties
of the materials comprising the elements; they re-
main unchanged throughout the analysis. Problems
involving nonuniform heating of redundant struc-
tures and/or large deflections are solved in a se-
quence of linearized steps. Stiffness matrices are
revised at the beginning of each step to account
for charges in internal loads, temperatures and geo-
metric configurations”.

Next are given some computer implementation de-
tails, including the first ever mention of user-defined
elements:

“Stiffness matrices are generally derived in local

reference systems associated with the elements (as

prescribed by a set of subroutines) and then trans-
formed to the basic reference system. It is essential
that the basic program be able to accommodate ar-
bitrary additions to the collection of subroutines
as new elements are encountered. Associated with
these are a set of subroutines for generation of
stress matrices S relating matrices of stress compo-

nents ¢° in the local reference system of nodal dis-
placements:

{o°} = 5°{u} (6)

The vector {ii} denotes the resultant displacements
relative to a local reference system which is at-
tached to the element. ... Provision should also be
made for the introduction of numerical stiffness
matrices directly into the program. This permits
the utilization and evaluation of new element rep-
resentations which have not yet been programmed.
It also provides a convenient mechanism for intro-
ducing local structural modifications into the analy-

(ST}

S1S.

The assembly rule in Eqgs. (3)—(5) is insensitive to
element type. It work the same way for a 2-node bar, or
a 64-node hexahedron. To do dynamics and vibration
one adds mass and damping terms. To do buckling one
adds a geometric stiffness and solves the stability
eigenproblem, a technique first explained in [33]. To do
nonlinear analysis one modifies the stiffness in each
incremental step. To apply multipoint constraints the
paper [7] advocates a master-slave reduction method.

Some computational aspects are missing from this
paper, notably the treatment of simple displacement
boundary conditions, and the use of sparse matrix as-
sembly and solution techniques. The latter were first
addressed in Wilson’s thesis work [34,35].

8.2. The fire spreads

DSM is a paragon of elegance and simplicity. The
writer is able to teach the essentials of the method in
three lectures to graduate and undergraduate students
alike. Through this path the old MSA and the young
FEM achieved smooth confluence. The matrix formu-
lation returned to the crispness of the source papers
[2,3]. A widely referenced correlation study by Gallagher
[36] helped dissemination. Computers of the early 1960s
were finally able to solve hundreds of equations. In an
ideal world, structural engineers should have quickly
razed the forest and embraced DSM.

It did not happen that way. The world of aerospace
structures split. DSM advanced first by word of mouth.
Among the aerospace companies, only Boeing and Bell
(influenced by Turner and Gallagher, respectively) had
made major investments in DSM by 1965. Among aca-
demic institutions the Civil Engineering Department at
Berkeley become a DSM evangelist through Clough,
who made his students — including the writer — use DSM
in their thesis work. These codes were freely dissemi-
nated into the non-aerospace world since 1963. Martin
introduced the DSM at Washington, and Zienkiewicz,
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influenced by Clough, at Swansea. The first textbook on
FEM [37], which appeared in 1967, makes no mention of
force methods. By then the application to nonstructural
field problems (thermal, fluids, electromagnetics,. . .) had
begun, and again the DSM scaled well into the brave
new world.

8.3. The final test

Legacy CFM codes continued, however, to be used at
many aerospace companies. The split reminds one of
Einstein’s answer when he was asked about the reaction
of the old-guard school to the new physics: “we did not
convince them; we outlived them”. Structural engineers
hired in the 1940s and 1950s were often in managerial
positions in the 1960s. They were set in their ways. How
can duality fail? All that is needed are algorithms for
having the computer select good redundants automati-
cally. Substantial effort was spent in those “‘structural
cutters” during the 1960s [32,38].

That tenacity was eventually put to a severe test. The
1965 NASA request-for-proposal to build the NA-
STRAN finite element system called for the simulta-
neous development of Displacement and Force versions
[39]. Each version was supposed to have identical
modeling and solution capabilities, including dynamics
and buckling. Two separate contracts, to MacNeal—
Schwindler and Martin—-Marietta, were awarded ac-
cordingly. Eventually the development of the Force
version was cancelled in 1969. The following year may
be taken as closing the transition depicted in Fig. 2, and
as marking the end of the FM as a serious contender for
general-purpose FEM programs.

9. Epilogue — revisiting the past: 1970—date

Has MSA, now under the wider umbrella of FEM,
attained a final form? This seems the case for general-
purpose FEM programs, which by now are truly “1960
heritage” codes.

Resurrection of the CFM for special uses, such as
optimization, was the subject of a speculative technical
note by the writer [40]. This was motivated by concerted
efforts of numerical analysts to develop sparse null-space
methods [41-45]. That research appears to have been
abandoned by 1990. Section 2 of [26] elaborates on why,
barring unexpected breakthroughs, a resurrection of
CFM is unlikely.

A more modest revival involves the use of non-CFM
flexibility methods for multilevel analysis. The structure
is partitioned into substructures and then into subdo-
mains, each of which is processed by DSM; but the
subdomains are connected by Lagrange multipliers that
physically represent node forces. A key driving appli-
cation is massively parallel processing in which subdo-

mains are mapped on distributed-memory processors
and the force-based interface subproblem solved itera-
tively by finite element tearing and interconnecting
(FETI) methods [46]. Another set of applications in-
clude inverse problems such as system identification and
damage detection. Pertinent references and a historical
sketch may be found in a recent article [47].

The true duality for structural mechanics is now
known to involve displacements and stress functions,
rather than displacements and forces. This was discov-
ered by Fraeijs de Veubeke in the 1970s [48]. Although
extendible beyond structures, the potential of this idea
remains largely unexplored.

10. Concluding remarks

The patient reader who has reached this final section
may have noticed that this is a critical overview of MSA
history, rather than a recital of events. It reflects per-
sonal interpretations and opinions. There is no attempt
at completeness. Only what are regarded as major
milestones are covered in some detail. Furthermore
there is only spotty coverage of the history of FEM itself
as well as its computer implementation; this is the topic
of an article under preparation for Applied Mechanics
Reviews.

In particular, contributions from the 1938-1947
“Interlude” period will be examined in more detail in
that review, including some largely forgotten publica-
tions pointed out by readers of a draft of this article. To
date the best summary of the early history of FEM from
circa 1800 B.C. (Egyptian contributions to geometry)
through 1970, is given in Chapter 1 of the textbook by
Martin and Carey [49].

This article can be hopefully instructive in two re-
spects. First, matrix methods now in disfavor may come
back in response to new circumstances. An example is
the resurgence of flexibility methods in massively par-
allel processing. A general awareness of the older liter-
ature helps. Second, the sweeping victory of DSM over
the befuddling complexity of the “matrix forest” period
illustrates the virtue of Occam’s proscription against
multiplying entities: when in doubt chose simplicity.
This dictum is relevant to the present confused state of
computational mechanics.
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CHAPTER TWO

APPROXIMATION TECHNIQUES

2.1 Methods of Weighted Residual

Methods of weighted residual are useful to obtain approximate solutions to a
differential governing equation. In order to explain the methods, we consider the
following sample problem:

dPu
&3 U=, <zl
{ u(0) =0, and u(1) =0 (2.1.1)

The first step in the methods of weighted residual is to assume a trial function which
contains unknown coefficients to be determined later. For example, a trial function,
# = az(l — z), is selected as an approximate solution to BEq. (2.1.1). Here, ~ denotes
an approximate solution which is usually different from the exact solution. The trial
function is chosen here such that it satisfies the boundary conditions (ie., #(0) = 0
and #(1) = 0), and it has one unknown coefficient a to be determined.

In general, accuracy of an approximated solution is dependent upon proper
selection of the trial function. However, a simple form of trial function is selected for
the present example to show the basic procedure of the methods of weighted residual,
Once a trial function is selected, residual is computed by substituting the trial function
into the differential equation. That is, the residual R becomes

R:%—ﬁ-{»x:—?a——am(l-—-z)-&—x (2.1.2)
Because i is different from the exact solution, the residual does not vanish for all
values of z within the domain. The next step is to determine the unknown constant a
such that the chosen test function best approximates the exact solution. To this end,
a test (or weighting) function w is selected and the weighted average of the residual
over the problem domain is set to zero. That is,

1 1 2~
I::/ wRdx‘-':/ w(i—";—ﬁﬁ-x)d:z:
8 0 d:z:
1

= / w{—2a — az(l - z)+ z}dz =0 (2.1.3)
0

31
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Table 2.1.1 Comparison of Solution to Eq. (2.1.1) at x=0.5

Exact Solution  Collocation  Least Squares ~ Galerkin

0.0566 0.0556 0.0576 0.0568

The next step is to decide the test function. The resulant approximate solution
differs depending on the test function. The methods of weighted residual can be
classified based on how the test function is determined. Some of the methods of
weighted residual are explained below. Readers may refer to Refs [1-3] for other
methods.

1. Collocation Method. The Dirac delta function, &(z — z;), is used as the test
function, where the sampling point z; must be within the domain, 0 < z; < 1.
In other words,

w = 5(:2: - .1:,') (2.1.4)

Let z; = 0.5 and we substitute the test function into the weighted residual,
Eq. (2.1.3), to find a = 0.2222. Then, the approximate solution becomes
i = 0.2222z(1 — z).

9. Least Squares Method. The test function is determined from the residual such
that '

Applying Eq.(2.1.5) to Eq. (2.1.2) yields w = —2—z(1—=z). Substitution of the
test function into Eq. (2.1.3) results in a = 0.2305. Then & = 0.2305z(1 — z).

3. Qalerkin’s Method. For Galerkin’s method, the test function comes from the
chosen trial function. That is,

di
w= (2.1.6)
For the present trial function, w = z(1 — z). Applying this test function to
Eq. (2.1.3) gives a = 0.2272 so that @ = 0.2272z(1 — z). Comparison of these
three approximate solutions to the exact solution at z = 0.5 is provided in Table
9.1.1. As seen in the comparison, all three methods result in reasonably accurate
approximate solutions to Eq. (2.1.1).

In order to improve the approximate solutions, we can add more terms to
the previously selected trial function. For example, another trial function is & =
a;z(1l — ) + apz?(1 — z). This trial function has two unknown constants to be
determined. Computation of the residual using the present trial function yields

R= al(——2—:c+:c2)—;—a2(2—-6:c-z2+a:3)+:c (2.1.7)

We need the same number of test functions as that of unknown constants so that the
constants can be determined properly. Table 2.1.2 summarizes how to determine test
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Table 2.1.2 Test Functions for Methods of Weighted Residual

Method Description

Collocation wi =6(z—=zi), i=12.,7

where z; is a point within the domain

Least Squares w; = OR/Ba;, i=1,2,..,7n,
where R is the residual and

a; is an unknown coefficient in the trial function

Galerkin w; = 0ifBa;, 1=12,.,7n

where 7 is the selected trial function

functions for a chosen trial function which has n unknowns coefficients. Application
of Table 2.1.2 to the present trial function results in the following test functions for
each method.

Collocation Method : w1 = 6(z — 1), w2 = §(z — z2) (2.1.8)
Least Squares Method : wy =—2—2z+ g%, wy=2~—6z— 22+ 2% (2.1.9)
Galerkin’s Method : wy =z(l— %), w2 = z3(1-1z) (2.1.10)

For the collocation method,  an z2 must be selected such that the resultant weighted
residual, ie. BEq. (2.1.3), can produce two independent equations to determine
unknowns a; and a; uniquely. The least squares method produces a symmetric matbrix
regardless of a chosen trial function. Example 2.1.1 shows symmetry of the matrix
resulting from the least squares method. Galerkin’s method does not result in a
symmetric matrix when it is applied to Eq. (2.1.1). However, Galerkin’s method may
produce a symmetric matrix under certain conditions as explained in the next section.

& Example 2.1.1 A differential equation is written as
Luy=f (2.1.11)
where L is a linear differential operator. A trial solution is chosen such that
n
i=) aig (2.1.12)
i=1

in which g; is a known function in terms of the spatial coordinate system and it
is assumed to satisfy boundary conditions. Substitution of Eq. (2.1.12) into Eq.
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(2.1.11) and collection of terms with the same coefficient a; yield the residual as
seen below;

n
R=3 ahi+p (2.1.13)

i=l

Here, h; and p are functions in terms of the spatial coordinate system. Test
functions for the least squares method are

wj:hj, j=1,2,...,n (2114)

The weighted average of the residual over the domain yields the matrix equation

n
I:fHJdeQZZA{jai—-bJ‘=O, i=12,...,n (2.1.15)
Q

i=]

where

Ai = fnh;hde (2.1.16)

Equation (2.1.16) shows that A;; = Aj; (symmetzy). 1

2.2 Weak Formulation

We consider the previous sample problem, Eq. (2.1.1), again. The formulation
described in the preceeding section is called the strong formulation of the weighted

residual method. The strong formulation requires evaluation of fol w(0?i/0z>)dz,
which includes the highest order of derivative term in the differential equation. The
integral must have a non-zero finite value to yield a meaningful approximate solution
to the differential equation. This means a trial function should be differentiable twice
and its second derivative should not vanish.

So as to reduce the requirement for a trial function in terms of order of
differentiability, integration by parts is applied to the strong formulation. Then Eq.

(2.1.3) becomes
1 25
I::/ w(d ? —ft-i-:c)dx
0 dz?

Ly dwda dil’
= _ - 11 —_— = 2. .
/0 ( T da wu-i—:cw)da:—l— [wdz]{, 0 (2.2.1)

As seen in Eq. (2.2.1), the trial function needs the first order differentiation instead
of the second order differentiation. As a result, the requirement for the trial function
is reduced for Eq. (2.2.1). This formulation is called the weak formulation.

Weak formulation has an advantage for Galerkin’s method where test functions
are obtained directly from the selected trial function. If a governing differential equa-
tion is the self-adjoint operator, Galerkin’s method along with the weak formulaiion
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Figure 2.3.1 Piecewise Linear Functions

Figure 2.3.2 Piecewise Linear Trial Function

results in a symmetric matrix in terms of unknown coefficients of the trial function.
Using a trial function @ = az(l — z) for the weak formulation, Eq. (2.2.1) results
in the same solution as obtained from the sirong formulation as expected. However,
when a piecewise function is selected as a trial function, we see the advantage of the
weak formulation over the sirong formulation.

2.3 Piecewise Continuous Trial Function

Regardless of the weak or strong formulation, the accuracy of an approximate
solution so much depends on the chosen trial function. However, assuming a proper
trial function for the unknown exact solution is not an easy task. This is especially
true when the unknown exact solution is expected to have a large variation over
the problem domain, the domnain has a complex shape in two-dimensional or three-
dimensional problems, and/or the problem has complicated boundary conditions. In
order to overcome these problems, a trial function can be described using piecewise
continuous functions.

Consider piecewise linear functions in an one-dimensional domain as defined
below:

(zigy — z)/higr For i ST Tig (2.3.1)
0 otherwise

(:I:—-—:Z!i_l)/h,’ forz;_y <z @
d),(z) = {

The function defined in Eq. (2.3.1) is plotted in Fig. 2.3.1 and Example 2.3.1
illustrates the use of the function as a trial function.
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& Example 2.3.1 Consider the same problem as given in Eq. (2.1.1). It is
rewritten here

dﬂ
d——uﬁ-—-a:,{)<$<1 91.1
{f)-ﬂ,anéu(l):@ (2.1.1)
The weak formulation is also rewritten as below:
o)
1 —41
dw du du
--/0 (—E;E—wu+zw>d:c+ [u}%]o =0 (2.2.1)

A trial function is chosen such that @ = a1 ¢1(z) + aa¢a2{z) in which a; and a»
are unknown constants to be determined, and ¢, and @2 are defined as below:

3z, OSmﬁ%

$1(z) = 2—%,%§x§§ (2.3.2)
0, ogxg%

$o(z) = { 3z -1, %5_:05 2 (2.3.3)
3—3z, 5<z<1

#1(z) and ¢a(z) are plotted in Fig. 2.3.2. For the present trial function,
the problem domain is divided into three subdomains and two piecewise linear
functions are used. Of course, more piecewise functions can be used along with
more subdomains to improve accuracy of the approximate solution. The trial
function can be rewritten as

01(3-’3), 0 Sz < %
7= mﬂm&ﬂ+@@z—ﬂ,§gmgé (2.3.4)
a2(3 — 3z), <<l
Use of Galerkin’s method yields the following test functions
3z, 0<z< %)
w =< 2— 3z, 5‘5 <z<j (2.3.5)
0, §<z<1
and
0, ogzgi
wy = { 3z — 1, é <z<% (2.3.6)
3-3z, 5<z<1
Averaged weighted residuals are
1 ~
dw; d
L = ./o —-%a—z— — w i+ zwy)dz =0 (2.3.7)

I = / (_f’ﬂ_@i — wail + zwy)dz =0 (2.3.8)
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where [w22]} is omitted because wy(0) =w; (1)=wa(0)=w2(1)=0. Substitution
of both trial and test functions into Bq. (2.8.7) and Eq. (2.3.8) respectively gives

I = ]3 [-3(3a;) — 32(3a1z) + z(3z)]dz+
0

2
/ [3(—3a: + 3ap) — (2~ 3z)(2a; — 3a1z -+ 3622 — az) (2.3.9)
1

1
+ (2 — 3z)}dz + /n 0dz

— - 6.292a, + 2.9444as +0.1111 =0

1 a
I :—-/ Odz + /3 [-3(—3a; + 3a2)
0 1

3

— (3¢ — 1)(20; — 3a1z + 3027 — as) + z{3z — 1)]dz+ (2.3.10)

/; [3(—3as) — (3 — 3z)(3a2 - 3asz) + z(3 — 3z)}dz

3

-9 .944da, — 6.2222a; + 0.2222 = 0

Solutions for a@; and ap are @y = 0.0488 and ao = 0.0569 from Eq. (2.3.9)
and Eq. (2.3.10). That is, the approximate solution is % = 0.0448¢, (z) +
0.0569¢o(z). 1f the trial function Eq. (2.3.4) were used for the strong
formulation Eq. (2.1.3), it would not give a reasonable, approximate solution

=h .
because Q;" vanishes completely over the domain.
dz P Y

9.4 Galerkin’s Finite Element Formqiation

As seen in the previous section, use of piecewise continuous functions for the trial
function has advantages. As we increase the number of subdomains for the piecewise
functions, we can represent a complex function by using sum of simple piecewise linear
functions. Later, the subdomains are called finite elements. From now on,” used to
denote a trial function is omitted unless there is any confusion.

This section shows how to compute weighted residual in a systematic manner
using finite elements and piecewise continuous functions. In the previous section, the
piecewise continuous functions were defined in terms of the generalized coefficients
(i.e. a3, as, ete.). For a systematic formulation, the piecewise continuous functions
are defined in terms of nodal variables.

Consider a subdomain or a finite element shown in Fig. 2.4.1. The element has
two nodes, one at each end. At each node, the corresponding coordinate value (z; or
zi41) and the nodal variable (u; or Ujpy) are assigned. Let us assume the unknown
trial function to be

w=c1z+c2 (24.1)
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I
U Ugyg
Figure 2.4.1 Two-Node Linear Element
We want to express Eq. (2.4.1) in terms of nodal variables. In other words, c;

and ¢, need to be replaced by u; and uiyi. To this end, we evaluate u at £ = z; and
z = 2;43. Then

u(zi) = c1zi + €2 = Ui (2.4.2)
u(:c;.;.l) = C1%ig1 02 = Uigd (2.4.3)

Solving Eq. (2.4.2) and Eq. (2.4.3) simultaneously for ¢, and ¢, gives

Uipy — Ui
i+1 — T
WiLint — Uja1Ti
g = ATERLT T (2.4.5)
Titr = T

Substitution of Eq. (2.4.4) and Eq. (2.4.5) back into Eq. (2.4.1) and rearrangement
of the resultant expression result in

v = Hi(z)w + Ha(z)uig (2.4.6)
where
Hi(z) = m—‘*—;fi (2.4.7)
Hay(z) = = ;f" (2.4.8)
By = Tig1 — (2.4.9)

Equation (2.4.6) gives an expression for the variable u in terms of nodal variables,
and Eq. (2.4.7) and Eq. (2.4.8) are called linear shape functions. The shape functions
are plotted in Fig. 2.4.2. These functions have the following properties:

1. The shape function associated with node i has a unit value at node ¢ and vanishes
at other nodes. That is,

H;(.’Df) = 1, Hl(z;+1) = 0, HQ(.’C;) = 0, HQ((C{+1) =1 (2.4.10)
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Hfz) Hyz)

Figure 2.4.2 Linear Shape Functions

glemj]  elem§? elemid
| | } i
! AR ’
.’C;:[} .Tz:'-j 3325 :r4:i
Y Uy 3 Lt

Figure 2.4.3 Finite Element Mesh With 3 Linear Elements

9. Sum of all shape functions is unity.

2
S Hi(z) =1 (2.4.11)

=1

These are important properties for shape functions. The first property, Eq.
(2.4.10), states that the variable u must be equal to the corresponding nodal variable
at each node (ie. u(z;) = w; and u(zi41) = uiy1 as enforced in Eq. (2.4.2) and Eq.
(2.4.3)). The second property, Eq. (2.4.11), tells that the variable u can represent
» uniform solution within the element. If the solution remains constant within the
element, U = U; = Uit1- Substitution of this condition into Eq. (2.4.6) gives

u={H(z)+ Ha(z) }ui = v (2.4.12)
Equation (2.4.12) results in the second property of shape functions, Eq. (2.4.10).

& Example 2.4.1 We solve the same problem as given in Example 2.3.1
using the linear finite elements. The weighted residual can be written as

o [T dwdu !
I= WA wutzwldz+ |Ww| =0 2.4.13
; ./ i ( dz dz * ) * [ 0 ( )
for 7 elements. I the problem domain is discretized into three equal size of
elements, i.e. n = 3, Fig. 2.4.3 shows the corresponding finite element mesh.
Consider the ith element (ie. i=1, 2, or 3). The integral for this element is

Tigy
f (— Eiiv-‘-iy— — wu+ :rw) dz (2.4.14)

Ti
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The trial function u is expressed as
u = Hy(z)u; + Ha(z)uigr (2.4.68)

and test functions for Galerkin’s method are wy = Hiy(z) and wy = Ha{z).
Putting these u and w into Eq. (2.4.13) gives

[ (o (B ) L

T H -
+L_ z { Hi } dz (2.4.15)
where H} denotes ﬂ%‘éﬁ and H; is given in Eq. (2.4.7) and Eq. {2.4.8).
Computation of these integrals finally yields
Lok 1 By . hifo. oy
_{ nT3H + 1 { u }_;_{Qsi(;*fl*“ :c‘.)} (2.4.16)
- t% nTE Uit1 s( Tipy + Ti)
For each element, Eq. (2.4.16) can be written as
Element #1
~3.111 2.9444 Uy 0.0185
[2.9444 —3.111] {ug} + {0.0370} (24.17)
Element #2
-3.111 2.9444 ug 0.0741
[ 9.9444 —3.111] { s } + {0.0926} (2:4.18)
Element #3
-3.111 2.9444 us 0.1296
[ 2.9444 —3.111] { u4} + { 0.148}} (2:4.19)

As shown in Eq. (2.4.13), we need to sum Egs (2.4.17) through (2.14.19). Each
element has different nodes associated with it. As a result, we expand each
equation such that the equation has a matrix and a vector of size m which is
the total number of degrees of freedom in the system. For the present problem,
m = 4. The number of total degrees of freedom is the same as the total number
of nodes because each node has one degree of freedom for the present problem.
Rewriting Eq. (2.4.17) for the expanded matrix and vector gives

~3.111 2.9444 0 0 Uy 0.0185
2,044 3111 0 O Ug 0.0370
0 0 o0 o0lYus(T) O (2.4.20)
0 0 0 0 Us O
Similarly, Eq. (2.4.18) and Eq. (2.4.19) can be rewritten as
0 0 0 0 Uy 0
0 -3.111 29444 O U 0.0741
0 20444 31111 0| Yus [T ) 0.0026 (2.4.21)
0 0 0 0 Ua 0
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00 0 0 Uy 0
0 0 0 0 us 0
0 0 —3.1111 29444 | \us [ ) 0.1206 (24.22)
0 0 29444 —3.1111 g 0.1481
Adding directly Egs. (2.4.20) through (2.4.22) results in
—-3.1111 2.9444 0 0 Uy
2.9444 --6.2222 2.9444 0 Ug
0 2.9444 —6.2222 2.9444 Ug
0 0 29444 -3.1111 Uy
0.0185 — u/(0)
0.1111 _
0.9222 =0 (2.4.23)

0.1481 + /(1)

The Neuman boundary conditions are added to the right-hand side vector from
Eq. (2.4.13). For the present problem, the Dirichlet boundary conditions are
provided at both ends (i.e. uy = 0 and ug = 0). Therefore, the Neumann
boundary conditions (i.e. u'(0) and u/(1)) are not provided. Equation (2.4.23)
can be solved with the given boundary conditions, u; = 0 and uq = 0, to
find the rest of nodal variables and unknown Neumann bourdary conditions.
In actual finite element programming, Eqs (2.4.17) through (2.4.19) are directly
summed into Eq. (2.4.23) without using Egs (2.4.20) through {(2.4.22). Equations
(2.4.20) through (2.4.22) are used here only to help the conceptual understanding
of the assembly process. Furthermore, in computer programming, unknown
nodal values, celled the primary variables, are solved first and then the unknown
boundary conditions are solved later. To this end, Eq. (2.4.23) is modified with
the known boundary conditions.

1 o 0 0 u 0

9.0444 —6.2222 29444 0 w | _ J —0.1111 (2.4.24)
0 20444 62222 2.9444 | | u ~0.2222 &
0 0 0 1 U4 0

The first and last equations in Eq. (2.4.23) are replaced by the Dirichlet
boundary conditions. From Eq. (2.4.24), the solution gives u; = 0, us = 0.0448,
uz = 0.0569, and uq = 0. These nodal solutions can be substituted into Eq.
(2.4.23) to find w'(0) and u/(1). Once the nodal variables are determined,
the solution within each element can be obtained from corresponding nodal
variables and shape functions. For example, the solution within the first element
(0 <z < Lyisu= Hy(z)u + Haz)uy = 0.13442. |
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2.5 Variational Method

The variational method is also commonly used to derive the finite element matrix
equation. We want to derive the functional for the sample problem

d?u
oz — U= I, 0<zxl 61
{mmzo,mdqn:o (2.1.1)

The variational expression for Eq. (2.1.1) is

Y du du 1!
6 = /0 <-E§ +u— m)éudz + [EEML (2.5.1)

where & is the wariational operator. The first term in the above equation is
the differential equation and the second term is the unknown Neumann boundary
condition (or natural boundary condition). Applying integration by parts to the first
term of Eq. (2.5.1) yields

1
5§57 = / (fl_y..(.i._(ﬁy'_). + ubu — z&;) dz (2.5.2)
o \dz dz

Since the variational operator is commutative with both differential and integral
operators (i.e. by} 6(3—;) and [éudz = & [udz), Eq. (2.5.2) can be written

dz
as
Lry/du\? 1,
5]—-5[0 {5(3‘5) —§-§u —zu}da: (2.5.3)

The functional is obtained from Eq. (2.5.3) as

ey fdu\®? 1,
J-—]D {5(2:;) +§u —zu}dx (2.5.4)

Conversely, taking variation of Eq. (2.5.4) will result in the differential equation as
given in Eq. (2.1.1). Functional represents energy in many engineering applications.
For example, the total potential energy in solid mechanics is a functional. The solution
to the governing equation is obtained by minimizing the functional. The principle of
minimum total potential energy in solid mechanics is one example to determine the
stable equilibrium solution [4,5]. Energy principles are discussed in later chap-ars.
For more detailed information for variational method, readers may refer to Refs [6-8].

2.6 Rayleigh-Ritz Method

The Rayleigh-Rilz method obtains an approximate solution to a differential
equation with given boundary conditions using the functional of the equation. The
procedure of this technique can be summarized in two steps as given below:
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1. Assume an admissible solution which satisfies the Dirichlet boundary condition
(or essential boundary condition) and contains unknown coefficients.

9. Substitute the assumed solution into the functional and find the unknown
coefficients to minimize the functional.

& Example 2.6.1  In order to solve Eq. (2.1.1) using the Rayleigh-Ritz
method, we assume the following function as an approximate solution.

u=az(l—z) (2.6.1)

where @ is an unknown coefficient. This function satisfies the essential boundary
conditions. Substituting Eq. (2.6.1) into the functional, Eq. (2.5.4), yields

1, [ 2 '-’_2_,,,_.,21:,;2,_2,
J;ia/o[(a-zx) 4221 —2)°)d /0 (1-2)de  (26.2)

Minimizing the functional with respect to the unknown coefficient a, i.e. ‘;—i.—:i),

yields a=0.2272. Therefore, the approximate solution is u = 0.2272z(1 — z)
which is the same as that obtained in Sec. 2.1 using Galerkin’s method. In order
to improve the approximate solution, we need to add more terms. For example,
we may assume

= a1z(1l — ) + a2z’(1 — @) (2.6.3)

where a; and ag are two unknown coefficients. We substitute the expression
into the functional and take derivatives with respect to aj and @z in order to
minimize the functional.
aJ oJ
=2 =0

—— =0 and

5o 5o (2.6.4)

This operation will give solutions for unknown coefficients a3 and az. 1

2.7 Rayleigh-Ritz Finite Element Method

The Rayleigh-Rilz method can be applied to a problem domain using continuous
piecewise functions. As a result, the problem domain is divided into subdomains of
finite elements. For elements with two nodes apiece, the linear shape functions as
in Eqs (2.4.7) and (2.4.8) can be used for the Rayleigh-Ritz method. The following
example explains the finite element procedure using the Rayleigh-Ritz method.

& Example 2.7.1  We will solve Example 2.4.1 again using the Rayleigh-
Ritz method. The problem domain and its discretization are shown in Fig. 2.4.3.
The functional can be expressed for the discretized domain as

noopee (1 fdut 1,
J-——Z/; {5(&;) +§u —zu}dz (2.7.1)

i=1 i
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wheren = 3, 21 = 0, ¢2 = 1/3, 23 = 2/3 and z4 = 1 as shown in Fig. 2.4.3.
Using the linear shape functions, the solution u for the it" element is expressed

u= Hy(z) i + Ha(z) wipr = [H){v'} (2.7.2)

where
[H] = [H: Ho] (2.7.3)
{v'} = {w wipa}” (2.7.4)

and H; and Hs are given in Egs (2.4.7) and (2.4.8). Substituting Eq. (2.7.2)
into the functional yields

L) 3 [ 2] e

LT B} - Y 2 fdo (27.5)
in which
[‘fﬂ [d—ﬁi di 2} (2.7.6)

Evaluation of the integral in Eq. (2.7.5) gives

e [57, F) ()

6 ($‘+1 -i‘ 2.’17;

— fus wier) { St m;} (2.1.7)

Here, the matrix expression in Eq. (2.7.7) came from the first and second terms of
the right-hand side of Eq. (2.7.5) while the vector expression came from the last
term. Summing Eq. (2.7.7) over the total number of elements and substituting

proper values give the functional

3.1111  —2.9444 0 0 g
1 {1y s u3 s} —92.0444 6.2222 -2.9444 O ug
TopltiT e 0 ~2.0444 62222 -2.9444 | ) ug
0 0 —-2.9444 3.1111 ug
0.0185
0.1111
- {111 Un Ug u‘l} 0‘2222 {2-7-8)
0.1481

The summation process for Eq. (2.7.8) is the same as explained in Example 2.4.1.
In order to find the solution, we need to minimize the functional with respect to
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the unknown nodal vector {u} = {uy u2 u3 u4}7. Invoking d_%:% = 0 results
in

31111 -2.9444 O 0 Ut
90444 62222 —29444 O g

0 _20444 62222 -2.9444| ) us
0 0 —2.9444 32111 1 Qug
0.0185
01111 | _

~ 902222 { =0 (2.79)
0.1481

Applying the boundary conditions u; = 0 and ug = 0 to Eq. (2.7.9) yields
Eq. (2.4.24) in Example 2.4.1. The solutions for nodal variables are u; = 0,
us = 0.0448, uz = 0.0569, and uq = 0 again as before.




Some Simple Matrix Operations Using MatLab:

Define a matrix, A

> A = [12 3 ; 45 6]

Multiply by its transpose A"
>> B = A'*A
B =

17 22 217

22 29 36
27 36 45

Add 5 to the 2" row and 2" column of B(row,column)
>> B(2,2) = B(2,2) + 5
B =

17 22 27
22 34 36
27 36 45

Invert B as B!

>> inv (B)

ans =
1.3000 -0.1000 -0.7000
-0.1000 0.2000 -0.1000
-0.7000 -0.1000 0.5222
>> Binverse = inv (B)
Binverse =
1.3000 -0.1000 -0.7000
-0.1000 0.2000 -0.1000
-0.7000 -0.1000 0.5222

Evaluate matrix product BH'B'=1

>> Binverse' * B



ans =
1.0000 -0.0000 -0.0000

0.0000 1.0000 0.0000
-0.0000 -0.0000 1.0000

Extract the second column of B
>> C=B(1:3,2)
c =

22

34
36

Solve the equation A x = C by decomposition

>> x=B\C
% =
-0.0000
1.0000
-0.0000

Solve the equation A x = C by inversion

>> x=inv (B) *C

0.0000
1.0000
-0.0000



Use Elementary Functions to Solve Simple FE-Type Equations

function y = SpringElementStiffness (k)

%SpringElementStiffness This function returns the element stiffness
matrix for a spring with stiffness k.

The size of the element stiffness matrix

is 2 x 2.

o° 0o oe

=
Il
i
|
P
|
PO
o

function y = SpringAssemble (K, k,1,73)

%SpringAssemble This function assembles the element stiffness

% matrix k of the spring with nodes i and j into the
% global stiffness matrix K.

% This function returns the global stiffness matrix K
% after the element stiffness matrix k is assembled.
K(i,i) = K(i,1) + k(1,1);

K(i,3) = K(i,3) + k(1,2);

K(j,i) = K(j,1) + k(2,1);

K(j,3) = K(J,3) + k(2,2);

y = K7

function y = SpringElementForces (k,u)

%SpringElementForces This function returns the element nodal force
vector given the element stiffness matrix k
and the element nodal displacement vector u.

o

oe

y = k * u;
Solve:
4 1 -1 h =20
¢, =0p=10"|-1 (1+2) 2| &
4 -2 2|k =25

>> kl=SpringElementStiffness (le-06)
>> k2=SpringElementStiffness (2e-06)
>> K=zeros (3, 3)

>> K=SpringAssemble (K, k1l,1,2)

>> K=SpringAssemble (K, k2,2, 3)

>> g=zeros(3,1)

>> h=[20; 0; 25]

>> g = g - SpringElementForces (K, h)



>> K
>> h
>> h(2,1) = gq(2,1)/K(2,2)

>> g=K*h

Full Solution Including Output

>> kl=SpringElementStiffness (le-06)

kl =
1.0e-006 *
1.0000 -1.0000
-1.0000 1.0000

>> k2=SpringElementStiffness (2e-06)
k2 =
1.0e-005 *

0.2000 -0.2000
-0.2000 0.2000

>> K=zeros (3, 3)

K =
0 0 0
0 0 0
0 0 0

>> K=SpringAssemble (K, k1,1,2)

K =
1.0e-006 *
1.0000 -1.0000 0
-1.0000 1.0000 0
0 0 0

>> K=SpringAssemble (K, k2,2, 3)

K =
1.0e-005 *
0.1000 -0.1000 0
-0.1000 0.3000 -0.2000

0 -0.2000 0.2000



>> g=zeros(3,1)

q =

20
0
25

>> g = g - SpringElementForces (K, h)

q =
1.0e-004 *
~0.2000
0.7000
~0.5000
>> K
K =
1.0e-005 *
0.1000 -0.1000 0
~0.1000 0.3000 -0.2000
0 -0.2000 0.2000
>> h
h =
20
0
25

>> h(2,1) = gq(2,1)/K(2,2)

h =
20.0000
23.3333
25.0000

>> g=K*h

q =

1.0e-005 *



>>

-0.3333
0.0000
0.3333
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COMPUTATIONAL GEOMECHANICS (GeoEE 557)
Coupled Processes in Geologic Media

3. Hydraulic Behavior (H) Flow
3.1. Conservation of mass and Darcy’s law
3.2. Steady behavior
3.2.1. 1-dimensional elements
3.2.2. 2-dimensional behavior — 2-D triangular, and 2-D isoparametric elements
3.3. Transient behavior
3.3.1. Time stepping methods
3.4. Dual porosity flows
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Figure 2.2.2. Two dimensional geometries (a) Confined vertical
section; (b) Confined flow in a horizontal aquifer.
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Figure 2.3.1 (a) Single element representing flow
in a pipe; (b) Multiple elements joined in series
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Figure 2.3.1.2 Form of global shape functions.

Note for node 12 the shape or basis function has

a magnitude of unity at node 12 and zero at all
other nodes in the grid.
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Summary of Notation — Diffusion Equation for Darcy Flow

Tensor:
y
oz
ap B _ : _] s _ Bk 57
Aat+V( DVp)=0 with V= oy and VV—/x2+Ay2+ 5,2 (1)
%
Jz
Matrix:
7
oz
Ap—-V'DVp=0 with V= 3? , and V-V=V'V=V’ (2)
dy
2
Jz
Parameters:

A = [ (reservoir compressibility or storage); D = — (permeability /dynamic viscosity) 3)

= | >

Finite Element Statement

Galerkin — Pre-weight by b” and integrate over the volume of the domain:
[ 67145~ V"D Vp =0]dV (4)
#

Note that we can define pressures at a point, p, and pressure gradients, Vp or p, in terms of nodal

pressures, p , as,

p=bp (5)

p=Vp=Vbp=ap (6)

Substituting the nodal pressures of equation (5) and the gradient of pressure of equation (6) into equation
(4) yields

b'[Ab p—V'Dap=0]dV (7)
v
And noting the standard result for transposed matrices that b" V' =[V b]" = a" yields on substitution

into equation (7).

[l"Abp-b"V' Dap=0]av ®)
g
that results in
[lb"abp—a'Dap=0]av ©)
14 S a K B

Yields

H+Ep=q (10)
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1.5 Inversion {(Adjoint Matrix)

It can be shown that
a(adj a) = iajl (1.11)

where |aj is the determinant of the matrix a and adj a, called the adjoint
matrix, is the transpose of the matrix of cofuctors of the determinant.

Comparing (I1.10) and (I.11) we see that
gt = 3018 (1.12)
jal

from which it is clear that the inverse does not exist when |a] is zero, in which
case a is said to be singular.
To illustrate the method we shall Jdetermine the inverse of the matrix
1 ¢ »
H= 1|1 X3 ¥4 (11.13)

i Xm Ym

If we delete the pth row and.gth column from the determinant of the
matrix we obtain the minor H ;q. e.g. deleting row 3 and column 1 we have

X1 Ji

Hy = (I1.14)

Xy X

The cofactor Hpq is the product of the minor and (—1)t#+0). When the
cofactors are written as a matrix and then transposed we have the adjoint
TRAMTiX

X5y x  »n xi ]
Xm Ym B Xm Ym Xx§ i
adjH = | - oo ol M ans
1 Ym 1 ¥m 1 b7
1 X5 1 Xi 1 Xy
| )1 Xm h Xm 1 x;

For example H}, of (I1.14) is transposed to row 1 column 3. Expanding the

determinants we have

(X;¥m—Xm¥i) —(Xi}'m— Xm}¥i) {x1y3—X35)
adjH = | —O'm—J1) Om—y1) ~ (=31 (11.16)
(xm—X1) —(xm—Xi) (x3—x3)

The inverse is obtained by dividing adj H by the determinant of H.
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THE FINITE ELEMENT METHOD
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Figure 2.4.4.2.1 Transient response at node 2.
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QOO0

(@

SUBROUTINE ELMT04 (D,UL,XL,IX,TL,S,P,NDF,NDM,NST, ISW)

IMPLICIT REAL*8 (A-H,0-Z)

QOO0 0000000000000000a0

C
C.. THREE NODED CONSTANT GRADIENT FLOW ELEMENT
C
C USER INFORMATION
C
C INPUT
C
C VAR FORMAT DESCRIPTION
C __________________________________________________________
C
C D(1) F10.0 HYDRAULIC CONDUCTIVITY
C D(2) F10.0 SPECIFIC STORAGE
C
LOCAL NODAL NUMBERING MUST BE COUNTER-CLOCKWISE
VARIABLES
NEL - NUMBER OF NODES PER ELEMENT
NDF - NUMBER OF DEGREES OF FREEDOM PER NODE
NST - NUMBER OF DEGREES OF FREEDOM PER ELEMENT (NEN*NDEF')
ISwW - FUNCTION CALL NO.
1 = READ ELEMENT SPECIFIC INPUT DATA
2 = PERFORM MESH CHECK
3 = FORM ELEMENT STIFENESS MATRIX - TANG
4 = EVALUATE ELEMENT STRESSES - STRE
5 = FORM CONSISTENT/LUMPED MASS MATRIX - CMAS/LMAS
6 = FORM LOAD VECTOR - FORM
OR EVALUATE NODAL FORCES - REAC
ARRAYS - GIVEN
UL (1,J) SPECIFIED HEAD BOUNDARY CONDITION FOR
DEGREE OF FREEDOM J (J=1, 3)
XL(I,Jd) COORDINATE IN THE I DIRECTION AT NODE J

EG. XL(1,3) IS X COORDINATE OF NODE K

ARRAYS - EVALUATED

A( ) A MATRIX
Cc( ) D MATRIX
S(I,J) CONDUCTANCE MATRIX S = AT*D*A DV
FOR ROW (VERTICAL) I AND COLUMN (HORIZ.) J
P(I) MODIFIED LOAD VECTOR FOR LOCAL DOF I (IGNORE)

FOR LMAS CALCULATION THE VECTOR LOCATIONS P(1l), P(2), P(3)
ARE USED FOR THE STORAGE VECTOR



CHARACTER*4 O, HEAD
COMMON /CDATA/ O,HEAD (20), NUMNP, NUMEL, NUMMAT, NEN, NEQ, IPR
COMMON /ELDATA/ DM, N,MA,MCT, IEL,NEL
DIMENSION D(2),UL(1,1),XL(NDM,1),IX(1),TL(1),S(NST,1),P (1)
1 +A(2,3),C(2,2)

C.... GO TO CORRECT ARRAY PROCESSOR
GO TO(1,2,3,4,5,3),ISW

C.... INPUT MATERIAL PROPERTIES

1 READ (5,1000) D(1),D(2)

WRITE (6,2000) D(1),D(2)

RETURN

MESH CHECKING FACILITY

RETURN

CONDUCTANCE MATRIX COMPUTATION

CONTINUE

EVALUATE TERMS IN THE CONDUCTIVITY

TENSOR ...I.E. THE D( ) MATRIX IN CLASS

AND PLACE THEM IN THE C(2,2) ARRAY

EVALUATE COEFFICIENTS IN A( ) MATRIX

COMPLETE TRIPLE MATRIX PRODUCT AT*D*A
AND PLACE THE RESULT IN THE S(3,3) ARRAY

PERFORM VOLUME INTEGRATION (*AREA)
BY EVALUATING THE DETERMINANT OF THE
COORDINATE MATRIX

END OF YOUR MODIFICATIONS

QOO0 waanQO

MODIFY LOAD VECTOR FOR BOUNDARY CONDITIONS
DO 320 1I=1,3

DO 320 J=1,3

320 P(I) = P(I) - S(I,J)*UL(1,J)

RETURN

END OF CONDUCTANCE MATRIX DETERMINATION
RETURN

LUMPED MASS COMPUTATION

CONTINUE

EVALUATE DETERMINANT OF NODAL COORDINATE MATRIX
TO DEFINE AREA (VOLUME) OF ELEMENT.

APPLY PRODUCT OF VOLUME AND STORAGE EQUALLY

TO EACH OF THE NODES IN ARRAY P(3).

ONONONOHNONONONC NGO Ne!

RETURN

C.... FORMATS FOR INPUT AND OUTPUT

1000 FORMAT (2F10.0)

2000 FORMAT (/5X, 'THREE NODED CONSTANT STRAIN ELEMENT', //
1 10X, '"HYDRAULIC CONDUCTIVITY ', 6X,E14.7,/
2 10X, 'SPECIFIC STORAGE ', 6X,E14.7,/)



END



FEAP SIX TRIANGULAR ELEMENTS-FLOW-STEADY

8 6 1 2 1 3
COORD
1 2 0.0 0.0
7 0 3.0 0.0
2 2 0.0 1.0
8 0 3.0 1.0
ELEM
1 1 1 4 2
2 1 1 3 4
3 1 3 5 4
4 1 5 6 4
5 1 5 8 6
6 1 5 7 8
MATE
1 4 MATERIAL 1
1.0 1.0
BOUN
1 1
2 1
7 1
8 1
FORC
1 1.0
2 1.0
7 0.0
8 0.0
END
MACR
TANG
FORM
SOLV
DISP
END

STOP



FEAP SIX TRIANGULAR ELEMENTS-FLOW-TRANSIENT
8 6 1 2 1 3
COORD

w o w o
O O O o
R PR OO
O O O o

o N
ON O N

ELEM

oUW
R = S S
(G C IS, IO IS
q 0o U W
oy s N

MATE
1 4 MATERIAL 1
1.0 1.0

BOUN

FORC

=
=
o o

END

MACR

DT 0.1
TANG

FORM

LMAS

LOOP 10
TIME

IMPL

SOLV

DISP

NEXT

END

STOP



3

Mass Transport



[3:1] Mass Transport
Introduction
Advection-Diffusion Equation
Sc+[K,+K,]Jc=q+R
Galerkin method
1D Example — stability

Transient response



COMPUTATIONAL GEOMECHANICS (GeoEE 557)
Coupled Processes in Geologic Media

5. Mass (Chemical) Transport (C) Transport
5.1. Conservation of mass and Fick’s law
5.2. Steady behavior
5.3. Transient behavior
5.4. Considerations of local equilibrium
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TRANSPORT BQRUATIONS
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Summary of Notation — Advection-Diffusion Equation

Tensor:
5 Yba
oc (= — i —lo v/ 10 0’
Aat—i-v (-DVe)=R with V=194 and V-V éxz_'_ Ayg—&- 622
V2
Matrix:

A¢=V'DVe=R-y'Ve with V=19t v=1yt, and V-V=V'V=V’

%z Vs

Finite Element Statement

Galerkin — Pre-weight by b” and integrate over the volume of the domain:

fQT[A(: ~V'DVe—R+v'Ve=0]dV

1%

Note that we can define concentrations, ¢, and concentration gradients, c,, in termos of nodal

concentration, c, as,

Substituting the nodal concentrations of equation (4) and the gradient of concentration of equation (5)

into equation (3) yields

fQT[AQQ'*YTDQQ*RﬂLXTQQ:O]dV
v

“4)
)

(6)

And noting the standard result for transposed matrices that b" V' =[V b]" = a’ yields on substitution

in equation (6).

and noting that R=0 R

Yields

()

@®)

)
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[3:2] Mass Transport
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STABILITY REQUIREHENTES — GALERIIAS
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UPWIND WEGHTED EQUATIONS
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[3:3] Mass Transport

Sé+[K,+K,e=q+R
Recap B

Reactive transport
Sorption
First-order reactions

Multiple reactions



Reaction Rates

StV ew) =V (DVe) = B,

For the reaction:
ky
ky

A+ B C

Forward rate = k[A][B]
Reverse rate = k[C]

At equilibrium: Forward rate = Reverse rate
k[A][B] = k[C]

AllB) = 2[C]

For closed system and one mole each of [A] and of [B], with k& = 10 and &,

[AllB] _ A-X¢ 1

[C] X 10

And (1— X) = [A] = [B] = 0.916 and X=[C] = 0.0839.

Implementation:
R, = -K[4][B] + KIC]
R, = -Kk[4][B] + KIC]
R. = +k[A][B] - KIC]
Generalized:

N . N o
R =—k'T]le,/ 17 +k T lc,/ 1
Jj=1 j=1

Heats of reaction:
H, =RAH,
And heat balance requires:

oT

pcﬁ%—v-(Tu)—V-(AVT):HZ—

=1, then:

2)

3)

(4)
()

(6)

(7)

(8)

)

(10)
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2.4. THE RATE LAW
We can show experimentally that for the general irreversible reaction

A+2B+... -P+2Q...

reactants products
we can write the rate law,

d[A]

7 ~k[APR[B]°[P]°IQ]°. . . 2-1)
where
dfA] _ . : : .
T time rate of change in molar concentration of species A,
k = reaction rate constant, and
a, b, p,q, ... = constants

In this book, [ ] is used to signify concentration in moles/liter. We may
use concentration units other than moles/liter in the rate law but in doing
so we should use the same concentration unit for each species and realize
that both the numerical value and units of the reaction rate constant will
differ from those found when molecular concentrations are used.

Using our knowledge of the stoichiometry of the reaction, that is, the
relative number of moles of species reacting and the relative number of
moles of products being formed as the reaction proceeds, we can state
that

diA] _1dE] _—d[F]_-1dIQ) 22
dt 2dt ~° dt 2 dt 7 )
because 1 mole of A reacts for every 2 moles of B that react, and so forth,
and 1 mole of P is formed for every mole of A that reacts, and so forth. We
can determine the reaction order from the rate law. The overall reaction
order is

a+b+p+qg... (2-3)
while the order with respect to A is a, the order with respect to B is b, and
so forth. If the reaction is irreversible, thenp, q. . . .. the exponents of the
product concentration, are usually zero. For example, it

d[A]
—= = —k[A][B]?
= = ~k[A][B]

then we would say that the reaction was first order with respect to A,
second order with respect to B, and third order overall. It is important to
note that reaction order is generally not determined by the stoichiometry
of the overall reaction. Laboratory experimentation is necessary to de-
termine the order.

The following example illustrates several points that are important for
a good understanding of the rate law.



Integrated forms of the rate law are very useful for analyzing rate data
to determine reaction rate constants ond reaction order. Let us first
consider the irreversible reaction

A — products
which has the rate law

d[A]
dt
To determine the behavior of [A] as a function of time, we must integrate

the rate expression with respect to time. We will do this for several values
of the reaction order, n. When n = 0, the reaction is zero order, and

d[A]
dt

Upon integrating, we obtain

= —k[A]"

= ~k[A]® = -k (2-4)

[A] = [A], ~kt (2-5)

where [A], = the concentration of A att = 0, that is, the initial concentration
of A. The half-life, t, or time for S0 percent of the initial concentration
to react can be obtained from Eq. 2-5 by setting [A] = 0.5 [A], when t =
ty2. Then

When n = 1, the reaction is first order, both with respect to A and
overall, and we can write,

dlA] _ _
= ~kIA] (2-6)

Rearranging Eq. 2-6 and solving the integral,

[
1A} [ ] o
we find °
In [A] = In {A], — kt (2-7)
or
[A] = [Alpe™ (2-8)

Examination of Eq. 2.7 suggests that the rate constant k may be determined
experimentally from a plot of In [A] versus t, which has a slope of —k.
Also, from Eq. 2-8, when [A] = 0.5 [A),, we find the halt.life to be

- 0.693
12 k
If the reaction is greater than first order, then we can write
dlA] = —k[A]" (2-9)
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REACTION ALGORITHMS FOR MULTICOMPONENT SYSTEMS

Mathematical descriptions of reaction systems

The multicomponent, multi-species systems typical of those which occur in porous media
require some special treatment. both because they involve multiple unknowns and because they
are usually nonlinear. The mathematical description used, however, will depend on what form
the reactions in the system are assumed to take. It is instructive to derive a general approach to
handle muiticomponent, multi-species reactive systems. Formuiations for arbitrarily complex
reaction systems characterized by both equilibrium and non-equilibrium reactions have been
presented by Lichtner (1983}, Lichtner (this volumne), Friedly and Rubin (1992), Sevougian
et al. (1993), and Chilakapati (1995). A clear discussion of one possible way of doing so is
given by Chilakapati (1995). His approach begins with the most general case, a set of ordinary
differential equations for each species in the system and reactions between the species described
by kinetic rate laws. A sysiem containing N, species and N, reactions can be expressed as

dC
- —— z= v R,
I o v )

The raised dot indicates matrix multiplication. I is the identity matrix of dimension Ny X
N,or, C is the vector of solute concentrations of length Niot, v is a matrix of dimension Nyor X
N,,and R is a vector of length N,. For example. the matrix v and the vector R have the form

vy vz VLN, R
Vi Va2 Ut VN, R
Y om= R . r R = 2 (2)
UNiwd YN 00 VN Ny RN’

The multiplication of the identity matrix by the derivatives of the individual species concen-
rrations results in an ODE of similar form for each of the species in the system.

As an example, consider an agueous system consisting of Ca*? H*,OH™, CO;z, HCO7,
H,CO;, and CaCOs(s) (calcite). We ignore H,O for the sake of conciseness. In addidon,
we assume that the following reactions occur, without yet specifying whether they are to be
considered equilibrium or kinetically-controlled reactions,

CaCO; = Ca*? +CO3% Ry 3)
HCO; = CO3% + H* R, @)
H,CO3 = CO72+2HY  Rs (5)
Ht*+OH™ = H;0 Ra. (6)

In the above equations R; symbolizes the rate expression for reaction i. We also make no
assumptions at this stage about whether the set of reactions included are linearly independent
(although the reactions listed above are). We have shown the reactions to be reversible here (thus
the symbol =) but the results below apply whether the reactions are irreversible or reversible
since at this stage, one can think of the reaction rates as simply time-dependent expressions of
the mole balances inherent in a balanced chemical reaction. The reversibility or lack thereof
only determines whether the sign of the reaction rate can change. The term reversible is
generally used by thermodynamicists to refer to equilibrium reactions (Lichtner, this volume),
although we prefer to use it to refer to reactions which are sufficiently close to equilibrium
that the backward reaction is important. It is quite possible in a steady-state flow system, for
example. for backward reactions to be important and yet not to be at equilibrium (e.g. Nagy et



al., 1991; Nagy and Lasaga, 1992; Burch et al., 1993). According to this definition, the term
irreversible is used for those reactions which proceed in only one direction (i.e. those that can
be represented with a unidirectional arrow, —>).

For our example aqueous system, the rates for the individual species can be writien
d[H;CO
= ~R; A 8)

= R )

= —~Ry (10)

d[H*]
dt
diCa*?]
dt
d[CO3%)
dt

In matrix form the system of equations becomes
- d[H;C0n
d{H’tj:'on
dicitoq

dt
OH™

= Ra+ 2R3 — R4 amn

=R (12)

= R} + Ry + Rj. (13)

!
(]
y

oy

—

(14)
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As written in Equation (14), the stoichiometric reaction matrix, v, is referred to as being in
canonical form (Smith and Missen, 1982; Lichtner, 1985; Lichtner, this volume). The system
of equations is partitioned into the first four rows where the associated species (H,CO3. HCOy,
CaCO;(s), and OH™) are involved in only one reaction while in the remaining three rows the
species are involved in multiple reactions. The first four species are referred to as secondary or
non-component species, while the last three are the primary or component species (Lichtner,
this volume). These are also referred to as basis species because they form a basis which spans
the concentration space. In this example, we have written all of the carbonate reactions using
the species CO;2 precisely so as to restrict all of the other carbonate species to involvement
in a single reaction. This is an essential first step in obtaining either the canonical formulation
(Lichtner, 1985; Lichtner, this volume) or to writing the reactions in tableaux form (Morel and
Hering, 1993), both of which assume that one is dealing with a set of linearly independent
reactions, but it is not essential for what follows below. The procedure will also work if,
for example, the formation of HoCOs involved HT and HCOj rather than 2 H™ and CO;Z,
although we will not obtain the conserved quantities (total H™. total CO_;:. etc.) found in the
tableaux method without additional manipulations.

The system of ODEs could be solved directly in the form of Equation (14) if the reactions
are all described with kinetic rate laws. Alternatively, one can apply a Gauss-Jordan elimination



process to the matrix v and simultaneously to the identity matrix I until there are no pivots left
(Chilakapati, 1995). The resulting transformed set of ODE:s is now

d
M. 2€ 20 R (15)
dt

which partitions the system of equations into N, ODEs associated with reactions and N
conservation laws with zero right-hand sides (i.e. no associated reactions). The number of
conservation laws or mole balance equations is equal to

1Vf = IV"" - !‘ank Of V= N;o; - Nr. (16)

N,. therefore, refers to the number of linearly independent reactions between the species in
the system. For the sake of clarity, we make the first N, rows of the matrix M the ODEs with
associated reactions and the next N, rows the conservation equations, so that the left hand of
Equation (15) takes the form

— —

M oo My NN " 4Gy ]
. . de
M M dc
Nr.l Nr.Nr+Nc . J;VL (17)
My, =n - My, 21N, _
: ' dCN'*-N
st Al v sd AL
 My,eney 0 MNaNNeNe | LT ar A

In our example. the Gauss-Jordan elimination is carried out on the the matrix v on the right
hand side of Equation (14) and the same row transformations are applied to the identity matrix,
I, yielding

" d[HaCOa]
it
Jd{HCOY]

oy
d{CaC0On
dt
J[OH™) —
dr
d]H*]
dt
d[Ca*zl

di
= -1 a1c07?) ~ -

PRl S
- dt o

—y
—

(18)

OO OO —
— O s OO — O
— s OO = OO
col ~ocoo
OO — OO OO
Qe OOOOOD
DO O OO0
cocoolo
coo !l oco

- 3

|
cooco!l oo

COTCOOO

The stoichiometric reaction matrix, v*, now consists of a nonsingular 4 by 4 matrix (N, by
N,) and three rows of zeros corresponding to the N, conservation equations. Writing out the
ODEs in Equation (18), we find

d[H,COs]

= s (9)
L & 20)
glg—}?—-o—-ﬂ = —R 2N

d[OH™] = —Rs 22)

dt



Table 1. Tableaux for carbonate system. neglecting
H-O as a species and component.

Components
H* Cca*? CO7?
Species H,CO; 2 1
HCO; | 1
CaCOs i i
OH~ -l
H* 1
Cat? 1
CO3? 1
and
d - -
! (H*] + 2[H,COs] + [HCO3 ] — [OH7)) = 0 (23)
d
= (ICa*?) + [CaCO3]) =0 (24)
d - -
- (1CO3?) + [H2COs] + [HCO3 ) + [CaC0s]) = 0. (25)

From the example, itis apparent that we have eliminated the reactions in the equations originally
corresponding to the species HY, Ca*?, and CC);2 by making use of the relations in the first
four equations. The last three equations are mole balances for total H*, Ca*?, and CO;*

TOTH® = [H*] — [OH™] + [HCOZ] + 2[H2CO3) (26)
TOTCa*? = [Cat?] + [CaCO3) X))
TOTCO;? = [CO;?) + [H,COs] + [HCO7 ] + [CaCO;). (28)

Note that the canonical form of the stoichiometric reaction matrix is identical to the
tableaux form popularized by Morel and coworkers (Morel and Hering, 1993; Dzombak and
Morel, 1990). By transposing the last three rows of the matrix M in Equation (17), we can
write the matrix in tableaux form (Table 1).

The procedure has yielded expressions for the total concentrations of the N, primary or
component species. A more general form is given by

N,
TOT,=C,+ Y w,X, (29)

=]

where C, and X, refer to the concentration of the primary and secondary species respectively.
Note that the number of secondary species is equal to N,, the number of linearly independent
reactions in the system (i.e. the rank of the matrix v). Equation (27) and Equation (28)
are recognizable as the total concentrations of calcium and carbonate respectively. The total
concentration of H* is written in exactly the same form as the other equations, although its
physical meaning is less clear because it may take on negative values due to the negative
stoichiometric coefficients in the expression. The mole balance equation for total H¥ is just
the proton condition equation referred to in many aquatic chemistry textbooks. Oxidation-
reduction reactions are also easily handled with this method. If the redox reactions are written
as whole cell reactions, there is no need in any application not involving an electrical current

(see Lichmer, this volume) to introduce the electron as an unknown. Writing the reactions as
whole cell reactions allows redox reactions to be treated exactly like any other reaction.
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SUBROUTINE ELMTO5 (D,UL,XL,IX,TL,S,P,NDF,NDM,NST, ISW)
IMPLICIT REAL*8 (A-H,0-2)

ONONOHONONONONONONONONS!

THREE NODED CONSTANT GRADIENT TRANSPORT ELEMENT
USER INFORMATION
INPUT
VAR FORMAT DESCRIPTION
D(1) F10.0 DIFFUSIVITY OR DISPERSION
D(2) F10.0 HYDRAULIC COND/POROSITY
LOCAL NODAL NUMBERING MUST BE COUNTER-CLOCKWISE
VARIABLES
NEL - NUMBER OF NODES PER ELEMENT
NDF - NUMBER OF DEGREES OF FREEDOM PER NODE
NST - NUMBER OF DEGREES OF FREEDOM PER ELEMENT (NEN*NDEF)
Isw - FUNCTION CALL NO.
1 = READ ELEMENT SPECIFIC INPUT DATA
2 = PERFORM MESH CHECK
3 = FORM ELEMENT STIFEFNESS MATRIX - TANG
4 = EVALUATE ELEMENT STRESSES - STRE
5 = FORM CONSISTENT/LUMPED MASS MATRIX - CMAS/LMAS
6 = FORM LOAD VECTOR - FORM
OR EVALUATE NODAL FORCES - REAC
ARRAYS - GIVEN
UL (1,J) SPECIFIED HEAD BOUNDARY CONDITION FOR
DEGREE OF FREEDOM J (J=1, 3)
XL(I,Jd) COORDINATE IN THE I DIRECTION AT NODE J
EG. XL(1,3) IS X COORDINATE OF NODE K
TL (J) TEMPERATURE OR HEAD AT NODE J

ARRAYS - EVALUATED

A( ) A MATRIX
c( ) D MATRIX
S(I,J) CONDUCTANCE MATRIX S = AT*D*A DV
+ BT*V*A DV
FOR ROW (VERTICAL) I AND COLUMN (HORIZ.) J
P(I) MODIFIED LOAD VECTOR FOR LOCAL DOF I (IGNORE)

FOR LMAS CALCULATION THE VECTOR LOCATIONS P(1l), P(2), P(3)
ARE USED FOR THE STORAGE VECTOR



C _______________________________________________________________
CHARACTER*4 O, HEAD
COMMON /CDATA/ O,HEAD (20), NUMNP, NUMEL, NUMMAT, NEN, NEQ, IPR
COMMON /ELDATA/ DM,N,MA,MCT, IEL,NEL
DIMENSION D(2),UL(1,1),XL(NDM,1),IX(1),TL(1),S(NST,1),P (1)
1 +A(2,3),C(2,2)

C.... GO TO CORRECT ARRAY PROCESSOR
GO TO(1,2,3,4,5,3),1IsSwW

C.... INPUT MATERIAL PROPERTIES

=

READ (5,1000) D(1),D(2)

WRITE (6,2000) D(1),D(2)

RETURN

MESH CHECKING FACILITY

RETURN

DIFFUSIVE-ADVECTIVE MATRIX COMPUTATION

DIFFUSIVE MATRIX COMPONENTS

EVALUATE COEFFICIENTS IN A( ) MATRIX
AND PLACE IN A(2,3) ARRAY
CONTINUE

EVALUATE VX AND VY FROM NODAL HEADS TL(I)

EVALUATE CONSTITUTIVE MATRIX. THIS IS THE
D( ) MATRIX IN YOUR NOTES AND THE C(2,2) ARRAY.

COMPLETE TRIPLE MATRIX PRODUCT AT*D*A AND STORE
THE PRODUCT IN THE S(3,3) ARRAY.

PERFORM VOLUME INTEGRATION (*AREA)
AND MULTIPLY TERMS OF THE S(3,3) MATRIX BY
AREA.

EVALUATE
ADVECTIVE MATRIX COMPONENTS
SUBSTITUTE TERMS FOR ADVECTIVE FLUX

CALCULATE ADVECTIVE VELOCITIES (VX AND VY) FROM
THE NODAL HEADS (STORED IN THE TL( ) ARRAY) AND
THE HYDRAULIC CONDUCTIVITY

EVALUATE ADDITIONAL TERMS OF THE S(3,3) ARRAY
DUE TO ADVECTION.

THIS IS THE END OF YOUR ADDITIONS. RELAX.

QOO0 00000000000000wa00000aNnO

MODIFY LOAD VECTOR FOR BOUNDARY CONDITIONS
DO 325 I=1,3

DO 325 J=1,3

325 P(I) = P(I) - S(I,J)*UL(1,J)

RETURN



g Q>0

510

500

2000

1000

NOT USED

RETURN

LUMPED AND CONSISTENT MASS COMPUTATION
B1ll = XL(1,2)*XL(2,3) - XL(1,3)*XL(2,2)
B21 = XL(2,2) - XL(2,3)

B31 = XL(1,3) - XL(1,2)

D2 = XL(1,1)*B21 + XL(2,1)*B31 + B1l1l
D2 = D2/2.

DO 500 1=1,3
DO 510 J=1,3
S(I,J) = D2/12.

S(I,I) = S(I,I) + D2/12.
P(I) = D2/3.
RETURN

FORMATS FOR INPUT AND OUTPUT
FORMAT (2F10.0)

FORMAT (/5X, 'THREE NODED TRANSPORT ELEMENT
1 10X, 'DIFFUSIVITY OR DISPERSION ',6X,E14.7,/
2 10X, '"HYDRAULIC COND/POROSITY ', 6X,E14.7,/)

END

"/
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................................................. ELMTO06

SUBROUTINE ELMTOG6 (D, UL, XL, IX,TL,S,P,NDF,NDM,NST, ISW)
IMPLICIT REAL*8 (A-H,0-Z2)

TWO DIMENSIONAL MASS TRANSPORT ELEMENT

WITH UPWIND WEIGHTING

CHARACTER*4 O, HEAD

COMMON /CDATA/ O,HEAD (20), NUMNP, NUMEL, NUMMAT, NEN, NEQ, IPR
COMMON /ELDATA/ DM, N,MA,MCT, IEL,NEL

DIMENSION D(10),UL(1,1),XL(NDM,1),IX(4),TL(4),S(NST,1),P(8)
1 ,SS(4,4),SC(4,4),PS(4)

SET INITIAL PARAMETERS

PI = 3.141592654

XBAR = DABS (0.25* (XL (1,1)+XL(1,2)+XL(1,3)+xXL(1,4)))

RAD = XBAR*2.*PI

IF NOT AXISYMMETRIC

RAD = 1.0

CHECK DIMENSION OF INTERNAL ARRAYS

GO TO CORRECT ARRAY PROCESSOR
GO TO(1,2,3,2,5,3),ISW

INPUT MATERIAL PROPERTIES
READ (5,1000) D(1),D(2)

WRITE (6,2000) D(1),D(2)

RETURN
RETURN

FORM CONDUCTANCE MATRICES
CONTINUE

EVALUATE VELOCITIES VX AND VY FROM NODAL HEADS TL (I)
X1l = XL(1,2) - XL(1,1)

X12 = XL(2,2) - XL(2,1)

DL = DSORT (X11*X11+X12*X12)
X21 = XL(1,3) - XL(1,2)

X22 = XL(2,3) - XL(2,2)

DB = DSORT (X21*X21+X22*X22)
DH11 = TL(2) - TL(1)

DH12 = TL(3) - TL(4)

DH21 = TL(3) - TL(2)

DH22 = TL(4) - TL(1)

V1l =-D(2)*DH11/DL

V12 =-D(2)*DH12/DL

V21 =-D(2)*DH21/DB

V22 =-D(2)*DH22/DB

VX = (V11+V12)/2.

vY = (V21+V22)/2.

C**************

2222

WRITE (6,2222) VX,VY
FORMAT ( 'VX,VY ',2E16.6 ,/ )

C****************8

C....

ZERO MATRIX



DO 300 I=1,4
DO 300 J=1,4
300 S(I,J) = 0.0

C.... SET OPTIMUM (CRITICAL) PECLET NUMBER
COEF = 1./D(1)
PEC11 = COEF*DL*DABS (V11
PEC12 = COEF*DL*DABS (V12

PEC21

( )
( )
COEF*DB*DABS (V21)
PEC22 = COEF*DB*DABS ( )

V22

IF(PEC11.LE.2.) GO TO 301
All = DABS(1.-2./PEC11)*V11/DABS (V11)
GO TO 302

301 All = 0.0

302 IF(PECl2.LE.2.) GO TO 303
Al2 = DABS(1.-2./PEC12)*V12/DABS (V12)
GO TO 304

303 Al2 = 0.0

304 IF(PEC21.LE.2.) GO TO 305
A21 = DABS(1.-2./PEC21)*V21/DABS (V21)
GO TO 306

305 A21 = 0.0

306 IF(PEC22.LE.2.) GO TO 307
A22 = DABS(1.-2./PEC22) *V22/DABS (V22)
GO TO 308

307 A22 = 0.0

308 CONTINUE

C******************

WRITE (6,444) PECl1,PEC22,PEC12,PEC21

444 FORMAT ( '11,22,12,21 ',4E12.2 )
C*******************
C.... EVALUATE SYSTEM MATRICES
C.... FORM DIFFUSION MATRIX

CALL MAT4 (SS,DL,DB,0.,0.,0.,0.,D(1),0.,1)
DO 310 I=1,4
DO 310 J=1,4
310 S(I,J) = S(I,J) + SS(I,J)
C.... FORM ADVECTIVE MATRIX
CALL MAT4 (SS,DL,DB,All,A12,A21,A22,VX,VY,2)
DO 311 I=1,4
DO 311 J=1,4
311 S(I,J) = S(I,J) + SS(I,J)
C.... FOR RADIAL FLOW
DO 330 I=1,4
DO 330 J=1,4
330 S(I,J) = S(I,J)*RAD
C.... REARRANGE FOR BOUNDARY CONDITIONS
DO 400 I=1,4
DO 400 J=1,4

400 P(I) = P(I) - S(I,J)*UL(1,J)
RETURN
C.... EVALUATE CONSISTENT MASS APPROXIMATIONS
5 X11 = XL(1,2) - XL(1,1)

X12 = XL(2,2) - XL(2,1)
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DL = DSQRT (X11*X11+X12*X12)
X21 = XL(1,3) - XL(1,2)
X22 = XL(2,3) - XL(2,2)
DB = DSQRT (X21*X21+X22*X22)

CALL MAT4 (Ss,DL,DB,0.,0.,0.,0.,0.,0.,3)
FOR RADIAL FLOW
DO 510 I=1,4
DO 510 J=1,4
510 SS(I,Jd) = SS(I,J)*RAD
LUMP CONSISTENT MATRICES
DO 556 I=1,4
SUM1 = 0.0
DO 555 J=1,4
SUM1 = SUM1 + SS(I,J)

555 SS(I,J) = 0.0
SS(I,I) = SUM1

556 P(I) = SUM1
RETURN

.... FORMAT STATEMENTS
1000 FORMAT ( 2F10.0 )

2000 FORMAT ( 'HYDRAULIC DISPERSIVITY/DIFFUSION ',E18.5,/

} "HYDRAULIC CONDUCTIVITY/POROSITY ',E18.5,/ )
END

SUBROUTINE MAT4 (SS,DL,DB,ALPHAl,ALPHA2,BETALl,BETA2,D1,D2, ISW)
IMPLICIT REAL*8 (A-H,0-2)

TO EVALUATE CLOSED FORM COEFFICIENT MATRICES FOR
AN UPWIND WEIGHTED FOUR-NODED RECTANGULAR ELEMENT
SWITCH PARAMETERS

ISW = 1  FORM DIFFUSION MATRIX
ISW = 2  FORM ADVECTION MATRIX
ISW = 3  FORM CONSISTENT MASS
DIMENSION SS(4,4),SC(4,4)
DATA SC/4.,2.,1.,2.,2.,4.,2.,1.,
1.,2.,4.,2.,2.,1.,2.,4./

. ’
GO TO CORRECT PROCESSOR
GO TO(1,2,3),ISW

.... FORM DIFFUSION MATRIX

1 DB2 = DB*DB
DL2 = DL*DL

El = D1/ (6.*DB*DL)

Al = (DL2-2.*DB2)*El
A2 = - (DB2+DL2) *E1l

A3 = (DB2-2.*DL2)*El
SS(1,1) = -2.*A2
SS(1,2) = Al

SS(1,3) = A2

SS(1,4) = A3

SS(2,2) = -2.*A2
SS(2,3) = A3

SS(2,4) = A2



100

21

22

23

24

25

26

27

28

S5(3,3) = -2.*A2
SS(3,4) = Al
SS(4,4) = -2.*A2

DO 100 J=1,4

DO 100 I=J,4
SS(I,J) = SS(J,1I)
RETURN

FORM ADVECTION MATRIX

CONTINUE
Cl = -D2/DB
C2 = -D1/DL
DO 200 I=1,4
GO TO(21,22,23,24),1I

PARAMETERS FOR FIRST ROW

AA = 3.*ALPHAl*(-DL/12.)
BB = 3.*BETA2 * (-DB/12.)
GO TO 25

PARAMETERS FOR SECOND ROW
AA = -3.*ALPHAl* (-DL/12.)
BB = 3.*BETAl *(-DB/12.)
GO TO 25

PARAMETERS FOR THIRD ROW
AA = -3.*ALPHA2* (-DL/12.)
BB = -3.*BETAl * (-DB/12.)
GO TO 25

PARAMETERS FOR FOURTH ROW
AA = 3.*ALPHA2* (-DL/12.)
BB = -3.*BETA2 * (-DB/12.)
CONTINUE

EVALUATE OVERALL PARAMETERS

Al = DL/3. + AA

A2 = DL/6. + AA
A3 = DB/2. + 2.*BB
Bl = DB/3. + BB
B2 = DB/6. + BB
B3 = DL/2. + 2.*AA

FORM MATRIX BY ROW
GO TO(26,27,28,29),1I
FIRST ROW

SS(1,1) = CL1*A1*A3
SS(1,2) = CL1*A2*A3
SS(1,3) = -C1l*A2*A3
SS(1,4) = -C1*A1*A3
GO TO 200

SECOND ROW

S(2,1) = CI1*A2*A3
SS(2,2) = Cl*A1*A3
SS(2,3) = -CL*A1*A3
SS(2,4) = -CLl*A2*A3
GO TO 200

THIRD ROW

SS(3,1) = CL1l*A2*A3
SS(3,2) = CL*A1*A3
SS(3,3) = -C1*A1*A3
SS(3,4) = -CLl*A2*A3
GO TO 200

FOURTH ROW

C2*B1*B3
C2*B1*B3
C2*B2*B3
C2*B2*B3

C2*B1*B3
C2*B1*B3
C2*B2*B3
C2*B2*B3

C2*B2*B3
C2*B2*B3
C2*B1*B3
C2*B1*B3



29 SS(4,1) = CLl*Al1*A3 + C2*B2*B3
SS(4,2) = CLl*A2*A3 - C2*B2*B3
SS(4,3) = -CLl*A2*A3 - C2*B1*B3
SS(4,4) = -CL*A1*A3 + C2*B1*B3

200 CONTINUE
RETURN
FORM CONSISTENT MASS MATRIX

3 COEF = DL*DB/36.
DO 300 I=1,4
DO 300 J=1,4
300 SS(I,J) = COEF*SC(I,J)
RETURN
END



FEAP SIX TRIANGULAR ELEMENTS-TRANSPORT-STEADY

8 6 1 2 1 3
COORD
1 2 0.0 0.0
7 0 3.0 0.0
2 2 0.0 1.0
8 0 3.0 1.0
ELEM
1 1 1 4 2
2 1 1 3 4
3 1 3 5 4
4 1 5 6 4
5 1 5 8 6
6 1 5 7 8
MATE
1 5 MATERIAL 1
1.0 1.0
TEMP
1 0.0
2 0.0
3 0.1
4 0.1
5 0.2
6 0.2
7 0.3
8 0.3
BOUN
1 1
2 1
7 1
8 1
FORC
1 1.0
2 1.0
7 0.0
8 0.0
END
MACR
UTAN
FORM
SOLV
DISP
END

STOP



FEAP SIX TRIANGULAR ELEMENTS-TRANSPORT-TRANSIENT
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DT 0.1
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FORM
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LOOP 10
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NEXT

END

STOP
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22. Flow of Viscous Fluids:
Some Special Problems of
Convective Transport

22.1 Introduction

Throughout this book we have endeavoured to present the reader with a
systematic approach to a variety of problems of the physical world which.
once posed in mathematical terms, could be discretized and hence solved
numerically. Problems of solid mechanics have, however, been pre-
dominant and to redress the balance this chapter is devoted to fluid
mechanics.

Although we could start by writing the appropriate governing dif-
ferential equations—and then solve these by applying the general principles
of Chapter 3—we prefer to approach the mechanics of viscous fluid flow
via their analogy to solid mechanics, and the first sections of this chapter
are devoted to such an approach. This will permit the reader to utilize
directly, or with minor modification, some of the programs developed for
solids to solve certain fluid problems.

The major difference from the formulations already encountered lies
in the convective terms which enter the equations of fluid mechanics
problems. These lead to non-symmetric matrices if the conventional,
Galerkin, approach is used in their discretization. Further, instability of
computation can occur and this necessitates special discretization pro-
cedures so far not encountered in this text. We shall outline these in
section 22.8.

Space limitations will not allow an exhaustive treatment to be presented
here. In particular high-speed compressible (trans- or super-sonic) flow
will not be considered. For supplementation the reader is referred to a
series of conference proceedings and texts.!~® However, it is hoped that
the contents of this chapter, together with those of Chapters 17, 20, and
23 in which some special fluid flow cases are treated, will give the reader a
reasonably full picture of the possibilities open in this field. Some prior
knowledge of fluid mechanics is naturally assumed-—and for more detailed

607



608 THE FINITE ELEMENT METHOD

treatment of the essentials the reader should consult some of the well.
known texts.”-8

22.2 Basic Concepts of Viscous, Slightly Compressible Flow

22.2.1 Equilibrium. If an isolated volume of fluid is considered at some
instance of time (Fig. 22.1) then, just as in a solid, in its interior the stresses
o must be in equilibrium with the body forces b which include the
appropriate acceleration forces. Further, on its external surfaces the
stresses ¢ must be in balance with the applied traction t. Thus, both the
internal equilibrium equations and those on the boundary are identical
to those pertaining to the solid. Using the nomenclature of Chapter 3,
Eq. 3.40, and of Chapter 12, Eq. 12.14, we can write

L's+b =0 inQ (22.1a)
and
Go =1t onT, (22.1b)

where Q is the problem domain and I, its boundary on which tractions are
prescribed.
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Fig. 22.1 A two-dimensional fluid flow domain

Thus the virtual work relationships used in Chapter 2 and discussed
in Chapter 3 can once again be invoked. It is convenient now to apply
virtual velocities du in place of virtual displacements and we can write in
place of Eqgs. 22.1 the equivalent statement

f dete dQ—f Su’b dQ——f SuTtdrr =0 (22.2)
o o r

¢t

where I', stands for the part of the boundary on which tractions are
specified and Su # 0 there.
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In the above,
¢ =Ldéu and ¢ = Lu (22.3)

defines the virtual strain rate by an identical expression to that used
previously to define virtual strains (viz. Eq. 6.9. Chapter 6 for such a
definition in three dimensions).

In fluid mechanics, due to the continually changing displacements, it is
natural that we concentrate our attention on velocities and these at a
fixed point of space will be denoted by u—an identical symbol to that
previously used for displacements. The body forces b per unit volume can
be written, as in solid mechanics (vide Chapter 20), invoking d'Alembert's
principle, as

b = b,~pc (22.4)

where ¢ is the acceleration vector acting on each particle and p is the
density. As we have defined velocity u at a point in space rather than with
reference to a particle, the simple differentiation of the latter with respect
to time does not suffice to define the acceleration. This is now given by the
total (or particle) derivative of u, e.g. for the x component

Du 0w 0Oudx Oudy Ouo:z

= o e D e
R TR T NI P M PR P

As dx/0t = u, etc., we can write the total acceleration vector as

tc. {22.5a)

¢ = %?+(V'u1‘)7u (22.5b)
where V' = (@/6x, 6/8p, 8/@=] and (V-u") = J(u) is a Jacobian matrix.
Now even if the flow is steady, i.e., du/dr = 0, acceleration exists and
here lies the principal difference from the solid mechanics formulation.
Further, the expression for acceleration is non-linear in w and the problem
is immediately of a non-linear nature.

22.2.2 Constitutive relations. In a fluid, by definition, no deviatoric
stresses can be supported unless motion occurs. We can thus state quite
generally that the deviatoric stresses are a function of the strain rates é.

If we define the pressure p as

p=—0,= (0, +c,+0)/3 (22.6)

we can write a very general linear relationship between the deviatoric
stress ¢’ and strain rate as

Q
i

c+mp = D¢ (22.7)
with

m' = [1.1,1,000]
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For an isotropic incompressible fluid, by analogy with solid mechanic
one constant y, known as viscosity, defines completely the D’ matrix.

2

o
>

D' = pu - (228

3]
e

Clearly u plays here an identical role to that of the shear modulus G |
elasticity (vide Chapter 11, Eq. (11.22)).

The constitutive relationship (22.7) is thus of an identical form to th:
pertaining to incompressible solid mechanics with the strain rates no
playing the role of strains, and additional constraint is thus necessar
before the solution can be attempted.

22.2.3 Continuity equation. If an infinitesimal volume of space is cor
sidered then, quite generally, we can state that the nett rate of mas
inflow is equal to the rate of mass accumulation. Thus. if p is the densit
we can write

-~ -\ a
1

—(—(pu)+4 (pL)—i-—-—(pu) —£—~ = Vi(pu) [1) 0. (22.¢

Quite generally the pressure p and the density p are related by a suitab’
state relation

P o= p(p), (22.1¢

If, however, the density changes are small. the continuity relationshi
can be simplified to

Viu=gy=0 (22.11

stating simply that the rate of volumetric straining is identically zero. Th
is analogous to the constraint used in incompressible solid mechanic
(Chapters 11 and 12) and we shall in the main be concerned only wit
problems where this incompressibility is enforced

exists between the elastlmty and viscous ﬁuld mechanical problems.

Indeed, if we disregard the difference which occurs in the acceleratio
forces and consider a purely incompressible flow the analogy is exac
Thus all the methodology developed for the solution of incompressible elasti
solids is immediately available for the solution of viscous incompressibi
fow under steady-state conditions, omitting acceleration terms.
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Following identification of terms is necessary

Elasticity ey Viscous flow

displacement u et velocity u
strain e ey strain rate &
stress c - stress a
shear modulus G  — viscosity i

The flow in which acceleration effects are negligible is generally known
as creeping—and clearly for its solution any of the techniques already
described for the solution of incompressible elasticity are immediately
available.

Amongst these we have already encountered (and obviously more
alternatives are possible):

1. The use of u and p as variables—with p entering the variational
form as a Lagrangian multiplier (Chapter 12, p. 323).

The use of u as the only variable with the incompressibility con-
straint entering by use of a penalty function {Chapter 11, p. 286).
3. The use of equilibrating formulations (Chapter 12, p. 306).

4. The use of stream functions (Chapter 12, p. 324).

£}

If acceleration effects are not negligible—their insertion into the
discretization process (if this is achieved by Galerkin procedures) is
simple and follows the lines used in structural dynamic effects in Chapte