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Chapter 1

Mathematical Foundations

1.1 TENSORS AND CONTINUUM MECHANICS

Continuum mechanics deals with physical quantities which are independent of any
particular coordinate system that may be . used to describe them. At the same time, these
physical quantities are very often specified most conveniently by referring to an appropriate
system of coordinates. Mathematically, such quantities are represented by fensors.

As a mathematical entity, a tensor has an existence independent of any coordinate
system. Yet it may be specified in a particular coordinate system by a certain set of
guantities, known as its components. Specifying the components of a tengor in one
coordinate system determines the components in any other system. Indeed, the law of
transformation of the components of a tensor is used here as a means for defining the
tensor. Precise statements of the definitions of various kinds of tensors are given at the
point of their introduction in the material that follows,

The physical laws of continuum mechanics are expressed by tensor equations. Because
tensor transformations are linear and homogeneous, such tensor equations, if they are valid
in one coordinate system, are valid in any other coordinate system. This ‘nvariance of
tensor equations under a coordinate tyansformation is one of the principal reasons for the
usefulness of tensor methods in continuum mechanics.

1.2 GENERAL TENSORS. CARTESIAN TENSORS. TENSOR RANK.

In dealing with general coordinate transformations between arbifrary curvilinear
coordinate systems, the tensors defined are known as general tensors. When attention is
restricted to transformations from one homogeneous coordinate system to another, the
tensors involved are referred to as Cartesian tensors. Since much of the theory of con-
tinuum mechanics may be developed in terms of Cartesian tensors, the word “tensor” in
this book means “Cartesian tensor’” umnless specifically stated otherwise.

Tensors may be classified by rank, or order, according to the particular form of the
transformation law they obey. This same classification is also reflected in the number of
components a given tensor possesses in an n-dimensional space. Thus in a three-dimensional
Euclidean space such ag ordinary physical space, the number of components of a tensor is
8%, where N is the order of the tensor. Accordingly a tensor of order zero is gpecified in
any coordinate system in three-dimensional space by one component. Tensors of order
sero are called scalars. Physical quantities having magnitude only are represented by
scalars. Tensors of order one have three coordinate components in physical space and are
known as vectors. Quantities possessing both magnitude and direction are represented by
vectors. Second-order tensors correspond to dyadics. Several important quantities in con-
tinuum mechanics are represented by tensors of rank two. Higher order tensors such as
triadics, or tensors of order three, and tetradics, or tensors of order four are also defined
and appear often in the mathematics of continuum mechanies.

1



2 MATHEMATICAL FOUNDATIONS [CHAP.1

1.3 VECTORS AND SCALARS

Certain physical quantities, such as force and velocity, which possess both magnitude
and direction, may be represented in a three-dimensional space by directed line segmenis
that obey the parallelogram law of addition. Such directed line segments are the geometrical
representations of first-order tensors and are called vectors. Pictorially, a vector is simply
an arrow pointing in the appropriate direction and having a length proportional to the mag-
nitude of the vector. Equal vectors have the same direction and equal magnitudes. A unit
vector is a vector of unit length. The null or zero vector is one having zero length and an
unspecified direction. The negative of a vector is that vector having the same magnitude
but opposite direction.

Those physical quantities, such as mass and energy, which possess magnitude only are
represented by tensors of order zero which are called scalars.

In the symbolic, or Gibbs notation, vectors are designated by bhold-faced letters such as
a, b, ete. Scalars are denoted by italic letters such as a, b, A, ete. Unit vectors are further
distinguished by a caret placed over the bold-faced letter. In Fig. 1-1, arbitrary vectors a
and b are shown along with the unit vector @ and the pair of equal vectors ¢ and d.

Fig. 1-1

The magnitude of an arbitrary vector a is written simply as a, or for emphasis it may
be denoted by the vector symbol between vertical bars as {a|.

14 VECTOR ADDITION. MULTIPLICATION OF A VECTOR BY A SCALAR

Vector addition obeys the parallelogram law, which defines the vector sum of two vectors
as the diagonal of a parallelogram having the component vectors as adjacent sides. This
law for vector addition is equivalent to the triangle rule which defines the sum of two vectors
as the vector extending from the tail of the first to the head of the second when the summed
vectors are adjoined head to tail. The graphical construction for the addition of a and b
by the parallelogram law is shown in Fig. 1-2(a). Algebraically, the addition process is
expressed by the vector equation

ath=>b+a =c (1.1)

Vector subtraction is accompiished by addition of the negative vector as shown, for
example, in Fig. 1-2(b) where the triangle rule is used. Thus
a—b = -b+a=4d (1.2}

The operations of vector addition and subtraction are commutative and associative as
illustrated in Fig. 1-2(c), for which the appropriate equations are

(a+b)+g =a+(b+g) = h (1.89)

{a) (&)

Fig.1-2
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Multiplication of a vector by a scalar produces in general a new vector having the same
direction as the original but a different length. Exceptions are multiplication by zero to
produce the null vector, and multiplication by unity which does not change a vector., Multi-
plication of the vector b by the scalar m results in one of the three possible cases shown in
Fig. 1-3, depending upon the numerical value of m.

mb b b
mh
b
mh
m>1 0<m<1 m < G
Fig.1-3

Multiplication of a vector by a scalar is associative and distributive. Thus

m(nb) = (mn)b = n(mb) (1.4)
(m+n)b = (n+m)b = mb+nb (1.5)
m(a+h) = m(b+a) = ma+ mb (1.6)

In the important ease of a vector muitiplied by the reciprocal of its magnitude, the
result is a unit vector in the direction of the original vector. This relationship is expressed

by the eguation N A
b = b/b e (.7

1.5 DOT AND CROSS PRODUCTS OF VECTORS
The dot or scq,l,ar product of two vectors a and b i?‘.. the scalar

A=ab=ha= abcost (1.8)

in which ¢ is the smaller angle between the two vectors as shown in Fig. 1-4(e). The dot
product of a with a unit vector & gives the projection of a in the direction of @.

Fig.1-4

The eross or vector product of a into b ig the vector v given by
v = axbh = —bXa = (absing)e (1.9

in which 4 is the angle less than 180° between the vectors a and b, and @ is 2 unit vector
perpendicular to their plane such that a right-handed rotation about & through the angle
¢ carries a into b. The magnitude of v is equal to the area of the parallelogram having
a and b as adjacent sides, shown shaded in Fig. 1-4(b). The cross product is not commutative.

v e e e o D, . ) .S .
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, The scalar triple product is a dot product of two vectors, one of which is a eross product.
ar(bxe) = (axb)re = arbXe = A (1.10)

As indicated by (2.10) the dot and cross operation may be interchanged in this product.
Also, since the cross operation must be carried out first, the parentheses are unnecessary
and may be deleted as shown. This product is sometimes written [abe] and called the box
product. The magnitude A of the scalar triple product is equal to the volume of the
parallelepiped having a, b, ¢ as coterminous edges.

The wvector triple product is a cross product of two vectors, one of which is itself a
cross product. The following identity is frequently useful in expressing the product of a

crossed into b X e.
ax(bxe) = (arc)b— {a*ble = w {(1.11)

From (1.11), the product vector w is observed to lie in the plane of b and e.

1.6 DYADS AND DYADICS

The indeterminate vector product of a and b, defined by writing the vectors in juxtaposi-
tion as ab is called a dyad. The indeterminate product is not in general commutative, i.e.
ab »= ba. The first vector in a dyad is known as the enfecedent, the second is called the
consequent. A dyadic D corresponds to a tensor of order two and may always be represented

as a finite sum of dyads
D = aby + ashs + - -+ + avby (1.12)

which is, however, never unique. In symbolic notation, dyadics are denoted by bold-faced
sans-serif letters as above. ‘

If in each dyad of (1.12) the antecedents and consequents are interchanpged, the resulting
dyadie is called the conjugate dyadic of D and is written

D. = bya; + betz 4+ -+ + bran (1.13)

If each dyad of D in (1.12) is replaced by the dot product of the two vectors, the result is a
scalar known as the sealar of the dyadie D and is writien

Ds - ax'bl + aa‘bg + .- + aN'bN (11-‘5)

If each dyad of D in (2.12) is replaced by the cross product of the two vectors, the result is
called the vecior of the dyadic D and is written

D, = ayXbi+agXhs+ -+ +avXby (1.15)
Tt can be shown that D., D. and D, are independent of the representation (1.12).

The indeterminate vector product obeys the distributive laws

a(b+c) = ab+ ac (1.16)
{a+ble = ac- be _ (1.17)
(a+b)e+d) = ac+ad+ be+bd (1.18)
and if A and p are any scalarg,
(x+p)ab = Aab -+ pab (1.19)

{ra¥b = a{Ab) = Aab (1.20)
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If v is any vector, the dot products v+D and D-v are the vectors defined respectively by
v'D = (vea)bi+ (vragbe + -+ +(v-an)by = u (1.21)
D-v = ai(bi*v)+as(ba-v)+ - +anbyv) = w (z.22)

In (1.21) D is called the postfactor, and in (1.22) it is called the prefactor. Two dyadics D
and E are equal if and only if for every vector v, either
v'D = v:E or D-v=E-v (1.23)
The unit dyadic, or idemfactor I, is the dyadic which can be represented ag
I = 6131 + 62?32 + ea’éa (1.24)
where @, €, &; constitute any orthonormal basis for three-dimensional Euclidean space
{see Section 1.7). The dyadic 1 is characterized by the property

I'v=v:l=v (2.25)
for all vectors v.

The cross products vX D and D X v are the dyadics defined respectively by

vXD = (vXabh +{(vXagbst+ --- +(vXan)by = F {1.26)
DXv = ay(bi Xv) +ax(beXv)+ - +anfby Xv) = G (1.27)

The dot product of the dyads ab and ed is the dyad defined by
' abeed = (b-clad (1.28)

From (1.28), the dot product of any two dyadics D and E is the dyadic
D'E = (abi+ash:+ -+ +ayby) * (cidi +eada+ -+ 0 +endn)

= (bi*c))ard; + (bi-cr)ands + -+ - + (byex)andy = G {(1.29)
The dyadics D and E are said to be reciprocal of each other if
E‘D = D*E = | (1.30)

For reciprocal dyadics, the notation E= D-t and D=E"! is often used.

Double dot and cross products are also defined for the dyads ab and cd as follows,

ab . ed = {(a*c)(b-d) = 1, ascalar (1.81)
ab X cd = {axXc)b+d) = h, avector {(1.32)
ab g cd = (arc)(bxd) =g avector (1.93)
abXed = (axc)bxd) = uw, adyad (1.84)

From these definitions, double dot and cross products of dyadics may be readily developed.
Also, some authors use the double dot product defined by

ab'-ed = (bre){a-d) = A, ascalar (1.85)
A dyadice D is said to be self-conjugate, or symmetric, if
D = D. (1.36)
and anti-self-conjugate, or anti-symmetric, if
D= —D. (1.87)

Every dvadic may be expressed uniguely as the sum of a symmetric and anti-symmetric
dyadic. For the arbitrary dyadic D the decomposition is

b= iD+D)+iD—-D) = G+H (1.98)
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for which G: = 3D.+(Dc)e) = (D +D) = G (symmetric) (1.39)
and He = 3{D.— (D)) = 3D.—D) = —H (anti-symmetric) (1.4£0)
Uniqueness is established by assuming a second decomposition, D = G* 4+ H*. Then

G*+ H* = G6+H {1.41)
and the conjugate of this equation is

G*—H* = G—H (1.42)

Adding and subtracting (7.41) and (1.42) in turn yields respectively the desired equalities,
G* =6 and H¥ =H. )

1.7 COORDINATE SYSTEMS. BASE VECTORS. UNIT VECTOR TRIADS

A vector may be defined with respect to a particular coordinate system by specifying
the components of the vector in that system. The choice of coordinate system is arbitrary,
but in certain situations a particular choice may be advantageous. The reference system
of coordinate axes provides units for measuring vector magnitudes and assigns directions
in space by which the orientation of vectors may be determined.

The well-known rectangular Cartesian coordi-
nate system is often represented by the mutually
perpendicular axes, Oxyz shown in Fig. 1-5. Any
vector v in this system may be expressed as a
linear combination of three arbitrary, nonzero,
noncoplanar vectors of the system, which are
called base vectors, For base vectors a, b, e and
suitably chosen scalar coefficients A, p, v the vector
v is given by

v = Aa-+pb - ove (1.43) _
y

Base vectors are by hypothesis linearly independ-
ent, i.e. the equation
a+upb+we =0 (1.44)

is satisfied only if A= pu=v=0. A set of base
vectors in a given coordinate gvstem is said to
constitute a basis for that system. Fig. 1-3

The most frequent choice of base vectors for the rectangular Cartesian system is the

set of unit vectors ?, 3, k along the coordinate axes as shown in Fig. 1-5. These base vectors
constitute a right-handed wunit vector triad, for which

Ixfoh Sxk=i Rxi=i ool odei 1)
and ;~A:§3:fc'§xl
i 5=5k=£Kki=0 (1.46)

Such a set of base vectors is often called an orthonormal basis.
In terms of the unit triad ’i\, 3, f:, the vector v shown in Fig. 1.6 below may be expressed by
v = v+ vy'j\ + vk (1.47)

in which the Cartesian components
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~

UYr = v*i = UCOSe

“

¥y = v+l = veosf
)

v: = vk = vecogy

are the projections of v onto the coordinate axes.
The unit vector in the direction of v is given ac-
cording to (1.7} by
au = V/’U
= (cosa)T + (cosp)] + (cosy)k  (1.48)

Since v is arbitrary, it follows that any unit vec- Y
tor will have the direction cosines of that vector
as its Cartesian components.
In Cartesian component form the dot product
of a and b is given by
Cab = @itaftak) 0.1+0,5+0k)
e = a:b:‘+ ayby“% a:b: (1-49) Fip. 1-6
For the same two vectors, the cross product a X b i3
axbh = (ayhe—a:by) T + (@eba—a:b)F + (ashy—aub)k (1.50)
This result is often presented in the determinant form
T 7 k
ax b - Ly ady 223 (1 -51)
b;r; by b:

in which the elements are treated as ordinary numbers. The triple scalar produét may also
be represented in component form by the determinant

ar dy d= Lk L 5 =
fabc] = |be By b (1.52)
Cz Cxy Cz

In Cartesian component form, the dyad ab is given by
Cab = (] +ad +ak)dd + Byj + bak)
= axbﬁ'f —i— a;bﬁg + a;bﬁf:
+ aybxgg + aybﬁ? 4 a,,b;)j\f:
+abk T+ ab kT + adkk (1.53)
Because of the nine terms involved, (1.53) is known as the nondon form of the dyad ab.
It is possible to put any dyadic into nonion form. The nonion form of the idemfactor in
terms of the unit triad ?, 'f, f is given by
| = 3i+37+kk (1.54)
In addition to the rectangular Cartesian coordinate system already discussed, curvi-
linear coordinate systems such as the cylindrical (R,6,2) and spherical {(r,0,$) systems
shown in Fig. 1-7 below are also widely used. Unit triads (€r, €, €:) and (&, 8, &s) of base
vectors illustrated in the figure are associated with these systems. However, the hase

vectors here do not all have fixed directions and are therefore, in general, functions of
position.
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x

() Cylindrical (b)Y Spherical
Fig. 1-7

1.8 LINEAR VECTOR FUNCTIONS. DYADICS AS LINEAR VECTOR OPERATORS

A vector a is said to be a funetion of a second vector b if a is determined whenever
b is given. This functional relationship is expressed by the equation

a = £b) (1.55)

The function f is said to be linear when the conditions
f(b+c) = f(b)+ f(c) (1.56)
f(Ab} = A(b) (1.57)

are satisfied for all vectors b and ¢, and for any sealar A,

Writing b in Cartesian component form, equation {1.55) becomes

a = £(b.i + b, + b:k) (1.58)
which, if f is linear, may be written
a = bf(1) + bf(3) + bai(k) (1.59)
In (1.59) let §)=u, £3)=v, #k)=w, so that now
a=uib+v(in+wkb = @li+vi+twk)b (1.60)
which is recognized as a dyadic-vector dot product and may be written
a=D-b (1.61)

where D = ui+ v§+ wk. This demonstrates that any linear vector function f may be
expressed as a dyadic-vector product. In (1.61) the dyadic D serves as a linear wvector
operator which operates on the argument vector b to produce the image vector a.

1.9 INDICIAL NOTATION. RANGE AND SUMMATION CONVENTIONS

The components of a tensor of any order, and indeed the tensor itself, may be represented
clearly and concisely by the use of the indicial notation. In this notation, letter indices,
either subscripts or superscripts, are appended to the generic or kernel letter representing
the tensor quantity of interest. Typical examples illustrating use of indices are the tensor

symbhols . i
ai, bj: Tij) Fi y Eijky qu



CHAP. 1] MATHEMATICAL FOUNDATIONS 9

In the “mixed” form, where both subseripts and superscripts appear, the dot ghows that §
ig the second index.

Under the rules of indicial notation, a letter index may occur either once or twice in a
given term. When an index occurs unrepeated in a term, that index is understood to take
on the values 1,2, ...,N where N is a specified integer that determines the range of the
index. Unrepeated indices are known as free indices. The tensorial rank of a given term
is equal fo the number of free indices appearing in that term. Also, correctly written
tensor equations have the same letters as free indices in every term.

When an index appears twice in a term, that index is understood to take on all the
values of its range, and the resulting terms summed. In this so-called summation conven-
fion, repeated indices are often referred to as dummy indices, since their replacement by
any other letter not appearing as a free index does not change the meaning of the term in
which they occur. In general, no index occurs more than twice in a properly written term.
If it is absolutely necessary to use some index more than twice to satisfactorily express a
certain quantity, the summation convention must be suspended.

The number and location of the free indices reveal directly the exact tensorial character
of the quantity expressed in the indicial notation. Tensors of first order are denoted by
kernel letters bearing one free index. Thus the arbitrary vector a is represented by a symbol
having a single subsecript or superseript, i.e. in one or the other of the two forms,

ay, al

The following terms, having only one free index, are also recognized as first-order tensor
guantities:
aiib;, Flur, R'.’qp, iUk

Second-order tensors are denoted by symbols having two free indices. Thus the arbitrary
dyadic D will appear in one of the three possible forms

N of i
D’j, Dy or Dl.,', Dy

In the “mixed” form, the dot shows that j is the second index. Second-order tensor
quantities may also appear in various forms ag, for example,

Aiiip, BY 4, St

By a logical continuation of the above scheme, third-order tensors are expressed by symbols
with three free indices. Also, a symbol such as A which has no indices attached, represents
a scalar, or tensor of zero order.

In ordinary physical space a basis is composed of three, noncoplanar vectors, and so
any vector in this space is completely specified by its three components. Therefore the
range on the index of a; which represents a vector in physical three-space, is 1,2,3.
Accordingly the symbol a: is understood to represent the three components as, ¢z, @s. Also,
@: is sometimes interpreted to represent the ith component of the vector or indeed to rep-
resent the vector itself. For a range of three on both indices, the symbol A; represents
nine components {of the second-order tensor (dyadic) A). The tensor A4; is often presented
explicitly by giving the nine components in a square array enclosed by large parentheses as

Ay Ar As
Ay = Az Awn Ax (1.62)
" Ay An An
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In the same way, the components of a first-order tensor (vector) in three-space may be
displayed explicitly by a row or column arrangement of the form

as

153
a; = (ax.aa.ad) or G = (ag> {1.63)

In general, for a range of N, an nth order tensor will have N* components.

The usefulness of the indicial notation in presenting systems of equations in compact
form is illustrated by the following two typical examples. For a range of three on both
i and 7 the indicial equation
Xy = Cij&j {1-5-’:‘)

represents in expanded form the three equations

X = en2p -+ C1e22 + €132z
s = CmZr b Cozle -F C2a%s {(1.65)
Xy = CmZ + C32%2 + Cpala

For a range of two on i and 7, the indicial equation
A = BipCJ’qu (1-66)
represents, in expanded form, the four equations
A4y = BuCuDy + BuCiDe + B12C11Das + Bi2CrzDoo
Ay = BiuCuDu + BuCuDis + BioCaDar + BraCnDa
A = BaCuDii 4+ BuCuDyz + BaeCnDa + BoaCizDan
Aoy = BoCoiDpy + BaCoDia + BaaCaiDar + BaeConDae

For a range of three on both 7 and j, (1.66) would represent nine equations, each having
nine terms on the right-hand side.

(1.67)

110 SUMMATION CONVENTION USED WITH SYMBOLIC NOTATION

The summation convention is very often em-
ployed in connection with the representation of
vectors and tensors by indexed base wvectors
written in the symbolic notation. Thus if the
rectangular Cartesian axes and unit base vectors
of Fig. 1-5 are relabeled as shown by Fig. 1-§,
the arbitrary vector v may be written

Vv = 181 + 28 -+ Vis (1.68)
in which vy, vs, vs ave the rectangular Cartesian
components of v. Applying the summation con-

vention to (1.68), the equation may be written in
the abbreviated form

Vv o= 'Usei (1.59)
where i is a summed index. The notation here is
essentially symbolic, but with the added feature
of the swmmation convention. In such a “com-
bination” style of notation, tensor character is
not given by the free indices rule as it is in frue
indicial notation. Fig. 1-8

J g

s




CHAP. 1} MATHEMATICAL FOUNDATIONS 11

Second-order tensors may also be represented by summation on indexed base vectors.
Accordingly the dyad ab given in nonion form by (1.58) may be written

T e aly == (a;’é;)(b,-@;) — aibjé“.é“j (1.70)

It is essential that the sequence of the base vectors be preserved in this expression. In
similar fashion, the nonion form of the arbitrary dyadiec D may be expressed in compact

notation by A
D = Dee; {1.71)

111 COORDINATE TRANSFORMATIONS. GENERAL TENSORS

Let 2! represent the arbitrary system of coordinates 21,22 2* in a three-dimensional
Euclidean space, and let 4 represent any other coordinate system #% 6% 63 in the same
gpace. Here the numerical superscripts are labels and not exponents. Powers of z may
be expressed by use of parentheses as in {x)? or (x)°. The letter superseripts are indices
as already noted. The coordinate transformation equations

g = 6z, 22, 2% (1.72)

assign to any point {x!, 2% «°) in the o' system a new set of coordinates (6%, 6% %) in the ¢
system, The functions ¢ relating the two sets of variables (coordinates) are assumed to
be single-valued, continuous, differentiable functions. The determinant

o agt a0t
dxl gzt gud

J = g%; % gg:a (1.78)
dxt  dx*  a?
or, in compact form, agi
7= |&] (2.74)

is called the Jacobiun of the transformation. If the Jacobian does not vanish, {1.72)
possesses a unique inverse set of the form

o= ai(g?, 62 6% (1.75)

The coordinate systems represented by af and ¢ in (1.72) and (1.75) are completely general
and may be any curvilinear or Cartesian systems.

From (1.72), the differential vector d# is given by

. a4i
i — 1
a9 7 Fye da (1.76)
This equation is a prototype of the equation which defines the class of tensors known as
contravariant vectors. In general, a set of quantities b' associated with a point P are said
to be the components of a contravariant tensor of order one if they transform, under a
coordinate transformation, according to the equation
o gt
Hn = X hi
b 55 b (1.77)
where the partial derivatives are evaluated at P. In (1.77), &' are the components of the
tensor in the @/ coordinate system, while &% are the components in the. §f system. In general
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tensor theory, contravariant tensors are recognized by the use of superscripts as indices.
It is for this reason that the coordinates are labeled z* here rather than x;, but it must be
noted that it is only the differentials daf, and not the coordinates themselves, which have
tensor character.

By a logical extension of the tensor concept expressed in (1.77), the definition of con-
travariant tensors of order two requires the temsor components to obey the transformation

law o
ae‘ Eg_i Brs

i =
B dx" axs

(1.78)

Contravariant tensors of third, fourth and higher orders are defined in a similar manner.

The word contravarient is used above to distinguish that class of tensors from the
class known as covariant tensors. In general tensor theory, covariant tensors are recognized
by the use of subscripts as indices. The prototype of the covariant vector js the partial
derivative of a scalar function of the coordinates. Thusif ¢ = ¢(a!, a® %) is such a function,

b _ 0w

a0t - axf LY {1 '79)

In general, a set of guantities b; are said to be the componenis of a covariant tensor of
order one if they transform according to the equation

s o’

o= = 1.8

b 7 U (1.80)
In (1.80), ¥, are the covariant components in the & system, b; the components in the &
system. Second-order covariant tensors obey the transformation law

oxT ox®

B.,J = 35; a—ggBrs (1'81)

Covariant tensors of higher order and mixed tensors, such as

287 gxm gt

Ty = Eﬁ%wT’ii"" : (1.82)

are defined in the obvious way.

112 THE METRIC TENSOR. CARTESIAN TENSORS

Let af represent a system of rectangular Cartesian coordinates in a Euclidean three-
space, and let 6 represent any system of rectangular or curvilinear coordinates (e.g. cylindri-
cal or spherical coordinates) in the same space. The vector x having Cartesian components
#¢ is called the position vector of the arbitrary point P(a?, w2, a%) referred to the rectangular
Cartesian axes. The square of the differential element of distance between neighboring
points P(x) and Q(x +dx) is given by

dsp = doidat (1.83)

From the coordinate transformation ‘
xt = zi{01, 0% 6% (1.84)

relating the systems, the distance differential is

i
det = gg’;dan (1.85)
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and therefore (1.83) becomes
367 ap" _
where the second-order tensor gp, = (0x/36°)(0/36%) is called the melric tensor, or funda-

mental tensor of the space. If 6 represents a rectangular Cartesian system, say the =z
system, then

(ds): dorder =  gpgdor do" (1.86)

axt gat
Opa = I Jpra = Bpq (1~87)

where 8,4 is the Kronecker delta (see Section 1.13) defined by 8o =0 if psq and 8p=1
if p=aq.

Any system of coordinates for which the squared differential element of distance takes
the form of {1.83) is called a system of homogeneous coordinates. Coordinate transforma-
tions between systems of homogeneous coordinates are orthogonal transformations, and
when attention is restricted to such transformations, the tensors so defined are called
Cartesian tensors. In particular, this is the case for transformation laws between systems
of rectangular Cartesian coordinates with a common origin. For Cartesian tensors there
is no distinction between contravariant and covariant components and therefore it is cus-
tomary to use subscripts exclusively in expressions representing Cartesian tensors. As
will be shown next, in the transformation laws defining Cartesian tensors, the partial
derivatives appearing in general tensor definitions, such as (1.80) and (1.81), are replaced
by conatants.

113. TRANSFORMATION LAWS FOR CARTESIAN TENSORS.
THE KRONECKER DELTA. ORTHOGONALITY CONDITIONS

Let the axes Oxixaws and Ox{xixi represent
two rectangular Cartesian coordinate systems
with a eommon origin at an arbitrary point 0
as shown in Fig. 1-9. The primed system may be
imagined to be obtained from the unprimed by
a rotation of the axes about the origin, or by a
reflection of axes in one of the coordinate planes,
or by a combination of these. If the symbeol o
denotes the cosine of the angle between the ith
primed and jth unprimed coordinate axes, ie,
@; = cos (xf,2;), the relative orientation of the
individual axes of each system with respect to the
other is conveniently given by the table

Ty X xy
+
Ty g @y g
x5 @2 @z ag
+
x a; tao -39 .
3 a1 32 34 Fig. 1-8

or alternatively by the transformation tensor
au 182, a3 ‘ - ..,1,'_ Ll PN
A = (s:  Qan  Goa |
a3 dgr  Qdas
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From this definition of a;, the unit vector €, along the z) axis is given according to (1.48)
and the summation convention by

,é; = @6 + @262 + Qa8 = @15 {1 ’88)
. . . . . » * . ~
An obvious generalization of this equation gives the arbitrary unit base vector e; as
’é; = @€ (1.89)

In component form, the arbitrary vector v shown in Fig. 1-9 may be expressed in the
unprimed system by the equation
and in the primed sysiem by

£t

v = Vig (1.91)
Replacing €, in (1.91) by its equivalent form (1.89) yields the result
v = 068 (1.92)

Comparing (1.92) with (1.90) reveals that the vector components in the primed and unprimed
systems are related by the equations

v = @i (1.93)

The expression (1.93) is the transformation law for first-order Cartesian tensors, and as
such is seen to be a special case of the general form of first-order tensor transformations,
expressed by (1.80) and (1.77). By interchanging the roles of the primed and unprimed
base vectors in the above development, the inverse of (1.93) is found to be

Vi = Qv ’ {1.94)

It is important to note that in (1.93) the free index on a;; appears as the second index. In
(1.94), however, the free index appears as the first index.

By an appropriate choice of dummy indices, (1.93) and (1.94) may be comibined to pro-
duce the equation
Py = Qi@ (1.95)

Since the vector v is arbitrary, (1.95) must reduce to the identity v; =7, Therefore the
coefficient a;an, whose value depends upon the subseripts 7 and k, must equal 1 or 0
according to whether the numerical values of j and Lk are the same or different. The
Kronecker delta, defined by
1 for i=7
8y = { (1.96)

0 for i+#j]

may be used to represent quantities such as ayax. Thus with the help of the Kronecker delta
the conditions on the coefficient in (1.95) may be written

aijlic = S (1.97)

In expanded form, (1.97) consists of nine equations which are known as the orthogonality
or orthonormality conditions on the direction cosines a; Finally, (1.98) and (1.94) may also

be combined to produce v = aiaxwr from which the orthogonality conditions appear in the
alternative form
ailx; = Bk {1.98)

A linear transformation such as (1.98) or (1.94), whose coefficients satisfy (1.97) or (1.98),
is said to be an orthogonal transformation. Coordinate axes rotations and reflections of
the axes in a coordinate plane both lead to orthogonal transformations.
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The Kronecker delta is sometimes called the substifufion operafor, since, for example,

Sib; = 8uby + 8upby 4 8ibs = b: (1.99)
and, likewise,
§;F% = 8uFfw + 8aFo + 83 = Fy (1.100)
1t is clear from this property that the Kronecker delta is the indicial counterpart to the
symbolic idemfactor 1, which is given by (1.54).

According to the transformation law (1.94), the dyad ww,; has components in the primed
coordinate system given by
W] = (Gplp) (V) = QipliqlpVq (2.101)

In an obvious generalization of (1.101), any second-order Cartesian tensor T'; obeys the

transformation law ,
Ty = QipiaTpa (1.102)

With the help of the orthogonality conditions it is a simple caleulation to invert (1.102),
thereby giving the transformation rule from primed components to unprimed components:
Ty = @piasThe (1.103)

The transformation laws for first and second-order Cartesian tensors generalize for an
Nth order Cartesian tensor o
Tik... = Gipljlm . . . Toom. .. (1.104)

1.14 ADDITION OF CARTESIAN TENSORS. MULTIPLICATION BY A SCALAR

Cartesian tensors of the same order may be added (or subtracted) component by com-
ponent in accordance with the rule

Age... =By, = T . (1.105)
The sum is a tensor of the same order as those added. Note that like indices appear in the
same sequence in each term,

Multiplication of every component of a tensor by a given scalar produces a new tensor of
the same order. For the scalar multiplier A, typical examples written in both indicial

and symbolic notation are
by = Az or b = Aa (1.106)

By = My or B = MA (1.107)

115 TENSOR MULTIPLICATION

The outer product of two tensors of arbitrary order is the fensor whose components
are formed by multiplying each component of one of the tensors by every component of the
other. This process produces a tensor having an order which is the sum of the orders of
the factor tensors. Typical examples of outer products are

(a) a;b; = Ty (€) DisTim = Pijim
(b) veFp = @ (d) €wVm = Oijm

As indicated by the above examples, outer products are formed by simply setting down the
factor tensors in juxtaposition. (Note that a dyad is formed from two vectors by this very
procedure.)
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Contraction of a tensor with respect to two free indices is the operation of assigning
to both indices the same letter subscript, thereby changing these indices to dummy indices.
Contraction produces a tensor having an order two less than the original. Typical examples
of contraction are the following.

{z) Contractions of Ty and w:;
Ts = Tu+Ten+Tn
Uy = Wy + UgPe + Usly

(b) Contractions of Eyax

Eia; = b
Eijai = Cj
Euar = dx

(¢) Contractions of EyFin
EiFim = Gm EiFuw = Py
Ei;‘F}ci - H;’I\: Ei;ij = Qim
EuFim = Kinm EyFy = Bu
An inner product of two tensors is the result of a contraction, involving one index from
each tensor, performed on the outer product of the two tensors. Several inner products
important to continuum mechanics are listed here for reference, in both the indicial and
symbolic notations.

Outer Product Inner Product
Indicial Notation Symbolic Notation
1. ﬂibj G;bi a*b
2, mF afw = fx arE =1
aEBy =M Era=nh
8. EByFin EyFim = Gim E'F =6
4, EyErm EyEim = Bin E‘E = (5)2

Multiple contractions of fourth-order and higher tensors are sometimes useful. Two
guch examples are

1. EyFxnm contracted to Ey;iFy;, or E:F
2. EiEumEyq contracted to EyEmEme oOr (E)®

116 VECTOR CROSS PRODUCT. PERMUTATION SYMBOL. DUAL VECTORS

In order to express the cross product a X b in the indicial notation, the third-order tensor
e known as the permutation symbol or alternating tensor, must be introduced. This
useful tensor is defined by

1 if the values of 4,7,k are an even permutation of 1,2,3 (i.e. if
they appear in segquence as in the arrangement 12312).

_ —1 if the values of 4,7,k are an odd permutation of 1,2,3 (i.e. if
ik T they appear in sequence as in the arrangement 32132).

0 if the values of 4,7,/ are not a permutation of 1,2,3 (ie. if
L two or more of the indices have the same value}).
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From this definition, the cross product axXb =e¢ is written in indicial notation by

fsjkajbk - G (1.108)
Using this relationship, the box product axb+c= )\ may be written
A= oegaibics (1.109)

Since the same box product is given in the form of a determinant by (1.52), it is not sur-
prising that the permutation symbol is frequently used to express the value of a 3X3
determinant.

It is worthwhile to note that ¢, obeys the tensor transformation law for third order
Cartesian tensors as long as the transformation is a proper one (deta; = 1) such as arises
from a rotation of axes. If the transformation is improper (deta; = —1), e.g. a reflection
in one of the coordinate planes whereby a right-handed coordinate system is transformed
into a left-handed one, a minus sign must be ingerted into the transformation law for ¢.
Such tensors ave called pseudo-fensors.

The dual vector of an arbitrary second-order Cartesian tensor Ty is defined by
™ = EijijJ.—, (1.110)

which is observed to be the indicial equivalent of T., the “vector of the dyadic T”, as defined
by (1.15).

1.17 MATRICES. MATRIX REPRESENTATION OF CARTESIAN TENSORS

A rectangular array of elements, enclosed by square brackets and subject to certain laws
of combination, is called a matriz. An M X N matrix is one having M (horizontal) rows
and N (vertical) columns of elements. In the symbol Ay, used to represent the typical
element of a matrix, the first subseript denotes the row, the second subseript the column
occupied by the element. The matrix itself is designated by enclosing the typical element
gymbol in square brackets, or alternatively, by the kernel letter of the matrix in seript.
For example, the M x N matrix o4, or [Ay] is the array given by

Ag A ... Aw
o = | An A et
Ay A Aan

A matrix for which M = N, is called a square matriz. A 1X N matrix, written [aw],
is called a row matriz. An M x 1 matrix, written [aw], is called a column matriz. A mairix
having only zeros as elements is called the zero matriz. A square matrix with zeros every-
where except on the main diagonal (from A. to Any) is called a diegonal matriz. If the
nonzero elements of a diagonal matrix are all unity, the matrix is called the unit or identity
matriz. The N x M matrix <47, formed by interchanging rows and columns of the M x N
matrix o4, is called the transpose matriz of 4.

Matrices having the same number of rows and columns may be added {or subtracted)
element by element. Multiplication of the matrix [Ay] by a scalar A results in the matrix
[AAij]. The product of two matrices, 4B, is defined only if the matrices are conformable,
i.e. if the prefactor matrix o4 has the same number of columns as the postfactor matrix
@ has rows. The product of an M x P matrix multiplied into a P X N matrix is an M XN
matrix. Matrix multiplication is usually denoted by simply setting down the matrix
symbols in juxtaposition as in

AB = ¢ or [Ag{Bi] = {Cul (1.112)
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Matrix multiplication is not, in general, commutative: 4B #= BeAd.

A square matrix o/ whose determinant lAj| is zero is called a singular matriz, The
cofactor of the element Ay; of the square matrix of, denoted here by Ay, is defined by

AT = (1M (1.113)

in which My is the minor of Ay; ie. the determinant of the square array remaining after the
row and column of Ay; are deleted. The adjoint matrix of o4 is obtained by replacing each
element by its cofactor and then interchanging rows and columns. If a square matrix
od = [Ay] is non-singular, it possesses a unique inverse matriz o4 ~* which is defined as

the adjoint matrix of o4 divided by the determinant of e4. Thus

[4%]
ATt = o 1.114
From the inverse matrix definition (1.114) it may be shown that

A-teA = eded™t = (1.115)

where .4 is the identity matriz, having ones on the prineipal diagonal and zeros elsewhere,
and 5o named because of the property

oA = edd = oA , (1.116)

Tt is clear, of course, that J is the matrix representation of §,, the Kronecker delta, and of |,
the unit dyadic. Any matrix o4 for which the condition 4T =41 is satisfied is called
an orthogonal matriz. Accordingly, if oA is orthogonal,

ATed = cAcAT = J (1.117)

As suggested by the fact that any dyadic may be expressed in the nonion form (1.53),
and, equivalently, since the components of a second-order tensor may be displayed in the
square array (1.62), it proves extremely useful to represent second-order tensors (dyadies)
by square, 3 X 3 matrices. A first-order tensor (vector} may be represented by either a
1 % 8 row matrix, or by a 3 X 1 column mafrix. Although every Cartesian tensor of order
two or less (dyadics, vectors, scalars) may be represented by a matrix, not every matrix

represents a tengor.

If both matrices in the product 4B = ( are 3 X 3 matrices representing second-order
tensors, the multiplication is equivalent to the inner product expressed in indicial notation by

AUB;;; = Cik (1.113)

where the range is three. Expansion of (1.118) duplicates the “row by column” multiplica-
tion of matrices wherein the elements of the ith row of the prefactor matrix are multiplied
in turn by the elements of the kth column of the postfactor matrix, and these products
summed to give the element in the ith row and kth column of the product matrix. Several
such products oceur repeatedly in continuum mechanics and are recorded here in the various
notations for reference and comparison.

(a) Vector dot product
a*b = bra = A [ay][bs} = [A]
b

aby = by = A la, az, as}| be | = [asbs + aobe + asba] {1.119)
by
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(b} Vector-dyadic dot product

aE=b aé = B
ally = b; [au}[Ey] = [bi]
En E» Eun [aiEn + Qoo + aalls;, (1.120)
[araz.as]| BEn Faz Eun| = @Fp+ 6:Fs+ aEy,
Fy Ep Ex a1F12 + @2Fu + asFs)
(¢} Dyadic-vector dot product
E‘a = ¢ da = ¢
Bia; = e [Esllan] = feu]
Eyw En Euo|a ‘ by + @l + a:F (1.121)
By Fw Egl|e| = @l + asllae + ashlag
Ey Ep FEu || a @B 4 aoliys + asEas

118 SYMMETRY OF DYADICS, MATRICES AND TENSORS

According to (1.86) {or (1.37)), a dyadic D is said to be symmetric {anti-symmetric) if it is
equal to (the negative of) its conjugate D.. Similarly the second-order tensor D is
symmetric if

Dy = Dy (1.122)
and is anti-symmetric, or skew-symmetrie, if
Dy = ~Dy (1.123)
Therefore the decomposition of Dj; analogous to (1.38) is
Dy = 3(Ds+ Dy) + 3(Dy— Dy) (1.124)
or, in an equivalent abbreviated form often employed,
Dy = Dap + Dup (1.125)

where parentheses around the indices denote the symmetric part of Dy, and square brackets
on the indices denote the anti-symmetric part.

Since the interchange of indices of a second-order tensor is equivalent to the interchange
of rows and columns in its matrix representation, a square matrix o4 is symmetric if it is
equal to its transpose c4T. Consequently a symmetrie 3 X 3 matrix has only six independent
components ag illustrated by

An A An
ed = 4T = A Asn Axy {1.126)
Ay A Am

An anti-symmetric matrix is one that equals the negative of its transpose. Consequently
a 3 x 3 anti-symmetric matrix B has zeros on the main diagonal, and therefore only three
independent components as illustrated by

0 B2 By
B = —BY = —B1e 0 Bos {1.127)
—Biz =By 0
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Symmetry properties may be extended to tensors of higher order than two. In general,
an arbitrary tensor is said to be symmetric with respect to a pair of indices if the value of
the typical component is unchanged by interchanging these two indices. A fensor is anti-
gymmetric in a pair of indices if an interchange of these indices leads to a change of sign
without a change of absolute value in the component. Examples of symmetry properties
in higher-order tensors are

(@) Rigom = Fujm (symmetric in & and 7)
(0} e = —&p (anti-symmetric in k and 1)
(€} Gijkm = Giinr (symmetric in £ and'7; % and m)

(@) Bip = Bing = Bui = Biin (symmetric in all indices)

119 PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF SYMMETRIC
SECOND-ORDER TENSORS

In the following analysis, only symmetric tensors with real components are considered.
This simplifies the mathematics somewhat, and since the important tensors of continuum
mechanics are usually symmetric there is little sacrifice in this restriction.

For every symmetric tensor Ty, defined at some point in space, there is associated with
each divection (specified by the unit normal #:) at that point, a vector given by the inner

preduct
v = Tij‘n_i (1.128)

Here Ty may be envisioned as a linear vector operator which produces the vector v: conjugate
to the direction n:. If the direction is one for which »: ig parallel to ny, the inner produet.
may be expressed as a scalar multiple of ni. For this case,

Tyny = A (1129)
and the direction m: is called a principal direction, or principal axvis of Ty With the help
of the identity = Sim; (1.129) can be put in the form

(T — Adu)n; = 0 (1.130)
which represents a system of three equations for the four unknowns, 1 and A, associated
with each principal direction. In expanded form, the system to be solved is

(T1:— Ay + Thame -+ Tisng = 0
Tortty + (Teo— Mtz -+ Tranta = 0 {1.181)
Tarnty + Taette + {Tag — A)na =2 0
Note first that for every A, the trivial solution #: =0 satisfies the equations. The purpose
here, however, is to obtain non-trivial solutions. Also, from the homogeneity of the system

(1.181) it follows that no loss of generality is incurred by restricting attention to solutions
for which m: =1, and this eondition is imposed from now on.

For (1.130) or, equivalently, (1.131) to have a non-trivial solution, the determinant of
coefficients must be zero, that is,
|T5—Aéy| = 0 (1.132)

Expansion of this determinant leads to a cubic polynomial in A, namely,

M-I+ A -1 =0 (1.133)
which iz known as the characteristic equation of Ty, and for which the scalar coefficients,
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Iy = Ts = tr Ty (trace of Ty) (1.134)
Iy = ${Tuly— Tyl (1.135)
Iy = |1y = det Ty {1.186)

are called the first, second and third invarionts, respectively, of Ti. The three roots of the
cubic (1.133), labeled Aoy, Az A, are called. the principal values of Ty, For a symmetric
tensor with real components, the principal values are real; and if these values are distinet,
the three prineipal directions are mutually orthogonal. When referred to principal axes,
both the tensor array and its matrix appear in diagonal form. Thus

Ay 0 0 Ao 0 0
T = 0 Aoy 0 or T = 0 ey 0 (1137)
0 0 Am 0 0 Ao

If Ay = Ay, the tensor has a diagonal form which is independent of the choice of A
and A« axes, once the principal axis associated with A has been established. If all
principal values are equal, any direction is a principal direction. If the principal values are
ordered, it is customary to write them as A, Aan, Aam and to display the ordering as in
Aay 2 Aap 2 Aam-

For principal axes labeled Oxtaia¥, the transformation from Oxiwsvs axes is given by
the elements of the table
Ty Xa g
:r:j‘ €y == ?i(ll} 257.] = 71;1) Uyg = 'Jlgj”
x3 gy = 0 g9a = nEP azy = n{P
w} ay = i gy = n{® ayy = ni{H

in which n{” are the direction cosines of the jth principal direction.

120 POWERS OF SECOND-ORDER TENSORS. HAMILTON-CAYLEY EQUATION

By direct matrix multiplication, the square of the tensor Ty is given as the inner
produet Ty T;; the cube as T Thm Tmj; ete. Therefore with Ty written in the diagonal form
(1.187), the nth power of the tensor is given by

)\?; ) ] 0 M 0 0
" = 0 Mo O or " = 0 A O (1.138)
0 0 Ao 0 0 N

A comparison of (1.138) and (1.137) indicates that Ty and all its integer powe.s have the
same principal axes.

Since each of the principal values satisfies (2.183), and because of the diagonal matrix
form of T* given by (1.138), the tensor itself will satisfy (1.133). Thus

T3 —_ IrTa -+ IITT - IIITLG = { (1139}

in which J is the identity matrix. This equation is called the Hamilton-Cayley equation.
Matrix multiplication of each term in (1.139) by T produces the equation,

T = LT — ILTE + ULT (1.140)
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Combining (1.140) and (1.139) by direct substitution,
T4 = (E—TIT? + (1T — LIk T + Ll (1.141)

Continuation of this procedure yields the positive powers of T as linear combinations of
72,7 and J.

121 TENSOR FIELDS. DERIVATIVES OF TENSORS

A temsor field assigns a tensor T(x,t) to every pair (x,t) where the position vecfor x
varies over a particular region of space and ¢ varies over a particular interval of time.
The tensor field is said to be continuous (or differentiable) if the components of T(x, t) are
continuous (or differentiable) funetions of x and t. If the components are functions of x
only, the tensor field is said to be steady.

With respect to a rectangular Cartesian coordinate system, for which the position vector
of an arbitrary point is < = 28 (1.142)

tensor fields of various orders are represented in indicial and symbolic notation as follows,
(@) scalar field: 6 = olant) or ¢ = o(xt) (1.148)
(b) vector field: o= wixt) or v = v(xi) (1.144)

(¢) second-order temsor field:
Ty = Tulx,t) or T =T ) (1.145)

Coordinate differentiation of tensor components with respect to 2 is expressed by the
differential operator 8/dx;, or briefly in indicial form by &, indicating an operator of tensor
rank one. In symbolic notation, the corresponding symbol is the well-known differential
vector operator V¥, pronounced del and written explicitly
Eia—am—i = & (1.1486)
Frequently, partial differentiation with respect fo the variable x: is represented by the
comma-subscript convention as illustrated by the following examples.

vV =

9 _ o

(CL} ax ¢, (d} Gy 02 = Pup
v aly _

(b) a1 = Vi (8) xr Tu'k
v _ 82Ty

() dx; Vi ) L BT BEm

From these examples it iz seen that the operator & produces 2 tensor of order one higher
if 7 remains a free index {(a) and (c) above), and a tensor of order one lower if ¢ becomes
a dummy index ((b) above) in the derivative.

Several important differential operators appear often in continuum mechanics and are
given here for reference.

gradg = Vo = %8; or 94 = b, (1.147)
dive = Vv or 9y, = v, (1.148)
curlv = ¥ Xv or g9,V = gV, (1.149)

Vi = V'V or Y6 = oy (1.150)
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122 LINE INTEGRALS. STOKES THEOREM
In a given region of space the vector Tunction of position, F = F(x), is defined at every
point of the piecewise smooth curve C shown in Fig. 1-10. If the differential tangent vector
to the curve at the arbitrary point P is dx, the integral
X
j;F-dx = F-dx (1.151)

Xa

taken along the curve from A to B is known ag the line infegral of F along €. In the indicial

{xdp
J;Fidﬂ:i = j(‘ Fidx, {1.152)

notation, (1.151) hecomes

ada

Fig. 1-18 Fig, 1-11

Stokes’ theorem sdys that the line integral of F taken around a closed reducible curve
C, as pictured in Fig. 1-11, may be expressed in terms of an integral over any two-sided
surface S which has C as its boundary. Explicitly,

ﬁF-dx = Ln-(vxF)dS (1.158)

in which n ig the unit normal on the positive side of 8, and 45 is the differential element of
surface as shown by the figure. In the indicial notation, (1.153) is written

£ Fidey, = .j; ﬂ‘i‘-iijk.de (1.154)

123 THE DIVERGENCE THEOREM OF GAUSS

The divergence theorem of Gauss relates a volume integral to a surface integral. In
its traditional form the theorem says that for the vector field v = v(x),

LlevdV = Ln-vdS ’ {(1.155)

where 1 is the outward unit normal to the bounding surface S, of the volume V in which
the vector field is defined. In the indicial notation, (1.155) is written

j; v dV = Lvm; ds (1.156)

The divergence theorem of Gauss asg expressed by (1.156) may be generalized to incor-
porate a tensor field of any order. Thus for the arbitrary tensor field Tiy... the theorem is

written
j:r Tip..pdV = j; Tijee. 1 dS (1.157)
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Momentum Transfer - Solid Mechanics (strain positive in extension)
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Chapter 2

Mathematical Concepts and Weighted
Residual Techniques

2.1 Introduction
The present chapter begins with a briel resumé of the mathematical
equations governing the motion of viscous incompressible fluids. Some closed
from solutions of these equations have been presented in many well known
texts and will not be discussed. However, the necessary steps in the
transformation of these equations into a form suitable for the application of
the F.E.M. is considered in some detail,
Quite frequently, when utilising a finite difference approach, the governing
- equations arc first written in terms of the basic variables — stream function
and vorticity. The pressure distribution is then evaluated subsequent to
solving for these variables. Whilst a similar approach is possible using the
F.E.M., the authors have, however, followed a policy of solving for the
primitive variables wp,p, which are the local point values of velocity in the x
cartesian coordinate, y cartesian coordinate directions and the pressure,
respectively. Once these primitive variables are evaluated then the distribution
of the stream function, vorticity, tractive force etc. can be readily evaluated.

2.2 Two dimensional form of the governing equations

The governing equations are those normally quoted in the literature!'and a
detailed derivation is omitied. However, there are some salient features of the
equations which bear repetition and thercfore a general outline is included.

2.2.1 Conservation of mass
Equating the quantity of mass entering and leaving an elemental volume,

the non-steady flow of a compressible fluid in two dimensions is governed by,
dp 0 7
‘a“?‘}‘a(pﬂ)"{“a}(p!))—ﬂ (2.1

where p is the mass densily and ¢ represents time.
For an incompressible fluid, p=constant, and (2.1} reduces to,

dn v

A SR 2
dx +c7y 22)

Since the primitive variables are employed the above equation should be
satisfied explicitly, pointwise, everywhere within a flow domain.

10

(Fuec oMPeUES B FeuD )

MATHEMATICAL CONCEPTS AND WEIGHTED RESIDUAL TECHNIQUES 1k

t
Iyx
B e
13><y‘t
- — by
Oy l Oy
y
¢ "'_E"“""-'“-D- Txy
X gy yx
st ]
Ox

Fig. 2.1  Stress notation and distribution on an clemental area

2.2.2 Conservation of momentum
The conservation of momenluin, again obtained by examining the faces on
an ¢lemental area of Nuid, can be writien'®,

f.)—lf~i~uau+ du F do, 0Ot,, 9
e ax ”ay" =t u(j:-t"}- dy 23
dv  dv  dv do, ot

e e e P = JF D W

5 Tl Uy F, ( 2 ) (2.4

where 6,6,,7,,.7,, are stress components, Fig. 2.1 and F_,F, are body forces in
the x,y directions respectively. For a Newtonian fluid these stresses can be
related to local pressure and rate of strain via Poisson’s Constitutive Law!?!

au  Ov ¢
= b A o L 2
%x P (é’x * 6))) + Hax @
Ju o dv
Gy=—p '*"{(5"\"**"53;)“ “}ﬂ} {b)
du dv
foMer-”J” ‘é}"{“ﬁ\f (C}
See (2.8) £ e
where u is the molecular viscosity and 1= —%u when the pressure is assumed

to be equal, but opposite in sign, lo the normal stresses, ie. the Stokes
postulation',

Utilising (2.5),{2.3) and (2.4} a form of the Navier Stokes equation assuming
constant viscosity is,



12 FINITE ELEMENT PROGRAMMING OF THE NAVIER STOKES EQUATIONS

(Ju_* 6u+ Gu_EF 15p+1vr'} du  dv o a*u (@)
&t T e T e Yy T e T

6u+ 6v+ 01)_1}: Jap+1,a du  fv by v (b)
TR N TP Iy TR T VR R v
. . I (2.6)
in which y=-
- . . du v
If the fluid s assumed incompressible, 5;4-5—}—] ={, then (2.6} reduces {o,
Bu+ (7rl+ du 1. 1dp 62£:+321t @)
PR R e Y "R VA ‘
and
6u+ E)u+vau_1' _15p+ 6ly+azv (b)
G AT T T pay T Bk ay?
.7

Two points are worthy of note at this juncture. The first is that il the
inconmpressibility condition is invoked the stress equations now become,

du
=—p+Tu—
0. = —p+2us (a)
dp :
o= = p+2ps- (b}
Jn‘
and
o du oo (©
Ix},—T,‘xM,U 5;;"1‘5;

(2.8)

which can be used to evaluate the local stress at boundarics or along a line
within the fuid. Although the program developed in later chapters is
specifically formulated to solve the steady state Navier-Stokes equations,
clearly equations of the form,

%, du 1 &
i i F——l p

ué;-iwvé;mp < ;é—{ {a)

(EULER)

au+ dv 1 1dp
x0T pdy
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when the fluid is assumed inviscid, and, on ignoring the convective terms,

1 1dp *u Pu

Oz-m e e e e ez
pr"‘ pt")x_l ‘(ax".*‘@yz {a)

(STOKES)

I {dp Pv e

0::.... [ A W 1 | W —
P py "(ﬂxz-kﬂyz (b)
(210

can also be analysed.
The general steady state equations, which are analysed in detail are,

u(}“-lrvgi‘—l . tap (2w 2
dx  dy p ° pox 1 5;?4_@ (@
tlﬁv+)6v_i lop  [o*v % (b)

ENRS NS Y A Fr =
(2.113

where both the convective terms and viscous forces are retained. In the
coordinale system normally adopted the ‘y’ direction corresponds to the
vertical. Usually, the body force F =0 and F = — pg per unil volume of lluid
where ¢ is the gravitational acceleration. For the examples cited in the text
both I, and F, are assumed to be zero, although provision is made {or their
inclusion in the computer program.

2.2.3  Vorticity-stream function form of the governing equations

As stated carlier a form of the governing equations which can be used when
an analysis is conducted by either the {inite difference or finite element method
is commonly called the vorticity-stream function formulation. The essential
steps in the derivation of these equations will now be outlined. Eliminating the
pressure from (2.1 1) by differentiating (2.11a} with respect to y and (2.11b)with
respect to X, adding and introducing the definition for vorticity,

du v
e e e — 2.12

(0}1 ‘_Bx) 212)
we obtain the generalised steady state momentum equation in terms of
vorlicity,

2 2
dew dw ({7 w ﬂw) 2.13)

!f'é‘;‘f‘l)‘r-};ﬂ'l‘ 5:\7’“?*"33:?



14 FINITE ELEMENT PROGRAMMING OF THE NAVIER STOKES EQUATIONS

Defining the velocities in terms of a stream function, i,

_
= a_y (3)
and
_ O
=5 {b)
(2.14)

such that the continuity equation is satisfied automatically and the vorticity
can be re-defined,

Py 97
aTI!l/ a_;'g: e (2.15)
such that (2.13) becomes,
o e _, W 0y

When analysing for the spatial distribution of stream lunction and vorticity
the following form of the equations are widely employed,

Vzl/l—"’w — £ 2.1
and re-writting (2.13),

_ 0y do 9y duw
SOy ox ax dy

Some carly solutions, utilising the finite element method, to these equations
were published by Baker™ and Cheng™. It must be noted, however, that this
choice of variables, as opposed to the primitive form, has the associaled
problem of defining vorticity boundary conditions.

Although the methods adopted for solving equations (2.17) and {2.18)is not
outlined in this text, it is useful to note that if the velocity distribution is known
then both values of stream function and vorticity can be evaluated quite
readily from {2.12) and (2.15).

Wi (2.18)

23 Axisymmetric flow

Flow of a fluid through pipes is a particularly common occurrence. This
quasi-three dimensional situation can be described by equations similar to
those already present for two dimensional flow, providing there is no rotation
about the axis of symmetry,

Adopting a right hand cylindrical coordinate system, Fig, 2.2, where x is
measured along the longitudinal axis of the duct, r measured radially and & the
azimuth angle on a plane normal to the longitudinal axis.

MATHEMATICAL CONCEPTS AND WEIGHTED RESIDUAL TECHNIQUES 15

Fig. 2.2 Cylindrical co-ordinate system -- axisymmetric flow

2.3.1 Conservation of mass

Assuming the flow to be unidirectional along the x axis such that all
variations with respect to @ are zero. The steady state equation for
axisymmetric incompressible flow is,

dv v On

e 2,19
Orwir_%-(')x 0 ( )

where v denotes the velocity in the x, axial, direction and v in the orthogonal
direction r. This, as in {2.2), involves only two primitive variables.

2.3.2  Conservation of momentam
Again assuming stcady state incompressible flow the equations depicting
conservation of momentum are!V,

du  du /o d
AT DO - ST —fr 2.20
p(llax -+ Uar> x -+ r(()x{’ Jx) + ar(’ Trx)) { )
(71.7 (?v 1 & a O',’,
p(”g; B !}na-’-')—rr‘%‘;(a(i Txr)‘f“(,:j;:(f O’r))'—"';'— (221)

The body forces in the x and r directions are now represented by F, and F,
respectively. As before the stresses can be written as,

= —pt2 l-aﬁ (a)
D= TP TGS Y
G, = -pt 2;1%:? b

I
O = —p+ (c)
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and
dv  du
T =T, ﬂ( =+ 61‘) {d)
(2.22)
Combining (2.21) and (2.22) the required form of the momentum equation is,
du  du 1 1dp P?u 10u P*u
p— T LE NS ANS_— I —— a
Yo T VE pr pox - (rltl toat e @)
and
dv dv 1 tdp v 1dy v &
ar S et AU ol Wi LA {b)
Yo TV pr" por v "(axz YT
{2.23)

which are, basically, quite sinilar to (2.11). It can be stated, therefore, that the
principies developed for solving {wo dimensional problems would be equally
applicable to axisymmetric flow and this facility is included in the programs
subsequently presented.

The remaining quantities usually required, the stream f[unction and
vorticity, can, once the velocity is kuown, be evaluated using the following
definitions,

10w
“=iar (a’
_1ay
e T (b)
(2.24)
and
L/o%y 1dd 9t du v
] e e e s P — W R e 2. 5
r'(axl vor o AN W M (2:25)

2.4 Method of weighted residuais

Having defined the governing equations the method chosen for solution
depends, targely, on the physical problem being analysed. If the flow domain
and boundary conditions are well posed then an analytical solution could well
be possible. For the majority of flow problems of practical interest, however,
the flow domain is geometrically complex and recourse has to be made to an
approximate method which may then be amenable to direct analysis. The
authors have chosen to limit discussions to one, the Method ol Weighted
Residuals, which has been used quite extensively in the field of fluid mechanics.

MATHEMATICAL CONCEPTS AND WEIGHTED RESIDUAL TECHNIQUES 17

Boundary

Fig. 23 Definition of flow domain and boundary Llype

Weighted residual methods are, in essence, numerical technigues which can
be used to solve a single or set of partial differential equations. Consider sucha
set, say representative of {2.2) and (2.11),

Flu)= ﬁ (2.26)

m a domain Q, Fig. 2.3, where v is the exact solution and may represent a single
variable or a column vector of variables. The two prevalent type boundary
conditions are,

essential (Dirichlet) Glu)=ugon [, {a)

where the value of the variable is prescribed, and

natural (Neumann) Sw}=gonl, £5)]
(2.27)

where at least the first order gradient in the variable is prescribed.

The relevance and full explanation of each type boundary condition will
become apparen! when considering a specific example. The first step in the
application of the weighted residual procedure is to assume that n can be
approximated over the whole domain by,

h

u= ) af; (2.28)
i=1
where « are functions described in terms of independent variables, such as
spatial coordinates {x,y), and f§ arc undetermined parameters.
Ulilising this approximation and incorporating {2.28) in (2.26) resulls in an
error or residual, g, such that
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g= (i)~ J5¢0 (2.29)

where & is exactly zero when fi=u ie. an exact solution is possible.
In order to make g identically zero a set of ‘arbitrary’ weighting f unctions, ¥,
are employed such that over the whole domain, €,

Jl"Va dQ=0 {2.30}
.0

If the number of unknown parameters is s and therc are s linearly independent
weighting lunctions and (2.30} can be re-written,

kas dQ=JWk( LE)-§) dQ=0 k=123..5 (2.31)
[¥]

The only limitation, at this stage, placed on W, is that this must be, positive,
single valued and finite.

There are a number of ways in which the above concepts can be utilised to
iransform the differential equations into a form where finite element tech-
niques can be adopted with cffect. These have been expounded in various
Lextst56 78 and the deliberate policy of confining for simpticity, the present
text to one method will again be invoked and only the Galerkin®® method will
be considered.

2.4.1 The Galerkin weighted residual method

Before embarking on the main objective of this section a further brief
introduction must be given to the commonly adopted concept of trial or shape
functions in a finite element context.

The technique of defining approximated values of the required variable viaa
discrete summation was introduced in (2.28). The approximate values were
defined in terms of some functions  and discrete values f. This applied over
the whole domain under consideration in which s refers to the total number of
discrete values. If we now refine this concept and subdivide the domain into
clements, Fig. 2.4, the variable value within that subregion can now be defined
in terms of discrete values on the boundary of or within that region,

= Z Ng, (2.32p

where N are a set of trial functions written in terms of local coordinates
associated with n discrete values within or on the boundary of an element.
Each element will, normally, possess a unigue set of equations and f is now
confined to each element. ‘
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Boundary

__—~Subdomain or element

n=8

X

Fig. 24 Definition of subdomain or element

The residual now becomes,

&= g(i(“’iﬁi))‘f’ (2.33)

i=1

such that {2.31) can be rewritien,

Jw,‘( & ( 5 NJL)— ﬁ) dQ=0 k=125 (2.34)
Q

i=1

In the Galerkin method the same approximating functions are used for the
weighting and trial functions, ie. W, =N, and the generalised equation is,

JM(«&” (i};‘w,ﬁf)— }) dQ =0 (2.35)

where orthogonalisation has been effected with the same functions.

Example: Flow between parallel plates

The example chosen is that of flow between infinite paralilel plates, Fig. 2.5.
which has well known exact analytical solutions. The flow is assumed to be
fully developed and subject to the following boundary conditions,

h h
X, e =0 X pu
u(\, 2) s 1:(\,2) 0

v=0 for ali x and —

(F2.1.1)
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u=0
\\\‘\\\\\\\\\x
h
21 W
Lc B
h
i
Vi Ay ayind //////////

u=0
Fiz. 2.5 Laminar flow between stationary parailel plates
The continuity equation,

du  dv

= 22.1.2
Ew + X (E2.1.7)

together with the steady stale momentum equation,
du  du fdp &u  *u
o= 1 e —5 E2.1.3
"ax F U@y pox + v(6x' + ay* ( )

are the governing equations for the laminar flow under consideration. For the
steady state fully developed conditions imposed then the convective terms arc
zero and (E2.1.3) can be wrillen,

O — o va—y £2.14
e (E2.1.4)

Integrating twice with respect to y and applying the boundary conditions
(E2.1.1), equation {E2.1.4) becomes,

__1op oo,
e fﬁé?(f_}) {E2.1.5)
and
hoap
P L QL <2
i, S dx {E2.1.6)

where u, is the centre-line velocity.
A trial function which leads to exact answers for the current example

2 o N == ]
p={1 ﬂ'{al} N2 (E2.1.7)

is,

where both o, and «; are, as yet, unknown constants.
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The Galerkin weighted residual leads to,

I
1 ap &*u
wl -2 - ‘
J ( p 5x+‘r}x3) dy=0 (E2.1.8)
-hi2

inserting, when

i=1, W, =1
=2, W,=y?

For the condition i=1, N, =1 gives

+hi2
l dp
__;7_.5;.*.2\;&2 d)r:(} {E2,1.9a)
-2
and when i=2, N,=)?
+ 2
1 ap 2
—E'E)";—i_zvaz }i (EJ?:O (Ez.i.gb)
-2

On integrating (E2.1.9a) or (E2.1.9b), this {rivial example resulis in,

L) 2vay =0
;5;+ VoL, =
and
2 2pvf)x—2,u§§ {E2.1.10)
such that
=gy -+ I

The other term in equation (E2.1.11) can be evaluated using the boundary
conditions,

umo’ J S i{{
’ 2
which gives,
2
. Lo
2udx 4

and (E2.1.11) becomes,

B
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W\ 1 ép
— 12—-.__ (RN 2
u (} 7 )2#6,\' (E2.1.12)

which, as expected, is the exact solution.

Repeating the same example but now choosing an arbitrary function which
simply satisfies the boundary conditions, e.g.

=g cos(?) (E2.1.13)
1

the equivalent equation to (2.31} s,
B2
1op =* ny ny
— e ol wie =0 E2.1.
J ( o oy cos( p cos i dy ( 14}
— b2

after integration and imposing the limits indicated,

4k Ip
which resuits in the velocity distribution
4h* 3p Ty
= . E2.1.16
{ max CDS( h ) { )

Introducing numerical values,

h==0.1 metres

dp -3 2
5= ~30x107° N/m

and
p=1073 Ns/m?

leads to the comparison shown in Table 2.1 between the exact and the
approximate solution.

It is evident from Table 2.1 that even with a very crude approximation quite
reasonable results can be obtained.

The above example was confined to the case where the operators are sell
adjoint and only essential boundary conditions imposed. Generally, both the
trial and weighting functions must be such that the {le—1Y" derivative is
continuous, where k is the order of differentiation of governing differential
equation. For the example problem chosen this can be demonstrated by
considering Fig. 2.6 where the original trial function resuits in an integrable
second order differential. It is immediately apparent that this is a minimum
requirement, Such a function is said to be C, continuous. Generally a P order
derivative would require C,,_ ; continuity for the resulting weighted residual to
be integrable.
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Table 2.1

Velocity mysec

Weighted
¥ Exact - residual
0.0 6.25x107? 6.45x% 1073
0.01 6.0 x107? 6.13x 1077
0.02 5.25x 1073 5.22x 1077
0.03 400 % 1971 379 %1070
0.04 2.25%x 1073 199 x 1073
0.05 0.0 0.0

u % au
By +
B »
Y Y
32y
Byz
/; Second derivatives sguare
ooy integrable

N
<\ 7

Fig. 2.6

The above requircment leads to the conclusion that obvious advantages
would be gained if the order of the governing equation were reduced. This
would result in a lower order requirement in both the trial and weighting
functions. This is exploited in the following section.

2.5 “Weak® formulation of the governing equations
Starting again with the Galerkin form of the weighted residual process
applied to the general operator,
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”{ Z(u)—HW, dx dy=0 (2.36)
o
or
”s W, dx dy=0 (2.37)
o

subject to the usual essential and natural boundary conditions.

The sequence required to reduce the order of a governing cquation can be
illustrated by considering the second order heat conduction equation for a
homogeneous conducting mediam,

;;(K%)ak%(K%%)-FQ:D {2.38)
subject to the foliowing boundary conditions
essential ¢ =@ on boundary ",
and
natural g=q on boundary ',

(2.39)

The weighted residual form of this equation is,

a . dp g de Cdy
({2 oo Jre) oxe a0
0

Integrating {2.40) by parts with respect to ¢ and W, results in,

aw, _de 8w, do Op
— i f . N dx —c
”(axKaxJ”ayKay QWn) ‘dHIW.KaH 0 (41
(4]

where I' represents the complete boundary. {2.41) can be re-written,

oW, o oW, dp ,

LY " SEUTTNERLY G 1 dx dy
”(ax Kae+ 5y Ky~ M) dx @
2

(2.42)

d
- ;,;,;K"l‘f, dr - P!f;K«-g dI'=0
on dn

ry T,
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In equation {2.42) the sccond integral is re-written as,

jW,q dI’
r

L

In the abovc equations

dp r?qp_1I~ e
dn " Fdx o Yay

where [,/ are the components of the unit ouiward normal vectors at the
boundary.

The boundary integral terms in (2.42) require some [urther explanation
before proceeding to demonstrate the application by example. Clearly, the
physical significance of § can be interpreted as an outward flux. On commeon
faces between two elements the nett {lux will, if the distribution of ¢ is correct,
be zero. Therefore, for elements within a domain under consideration the nett
effect of the third terms in equation (2.42) is zero and can, for all intents and
purposes, be ignored. On that part of the boundary where the values of o are
defined,

p=0
then the third term becomes redundant since the equation would be eliminated
from the solution technique. On these boundaries the flux can, however, be
evaluated from

dp
Jif!f,.Kb«; dr (2.43)

Fe
Therelore, without loss of generality, (2.42) can be re-writien,

oW, dp  OW, do ) "
Jj(@}mKa+WK“5}W—QIK> dx dy— j!iiq dI'=0 {2.44)

I

where the boundary integral is only retained on boundaries where a fiux type
boundary condition is imposed.

Example Flow between parallel plates — weak formation

The main objective of the present example is lo introduce the weak
formulation incorporating the ‘gradient’ type boundary condition. Again
consider the Couette type flow where cach wall is stationary, Fig. 2.5, utilising
the same trial functions,

=T1 7% Ny=1 £2.2.1
u {U]{%} NZ:},Z} (E22.1)
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with the boundary conditions,

essential TETR at y=0
rural ou du at ;_h
natura = = p=

Invoking the Galerkin weighted residual approach the relevant weak
formulation leads to

32

1ép BWB .
J (pﬁ W+ a)r 3 )dy J.vw:.q dl'=0 {E2.2.2)
Y T,

L3

which, when {E2.2.1) is used becomes,

iy

18 aw; f
% vy Moy ) dyp— | ving ar=0 (E2.2.3)
pox dy
0 F,
when
AW,
= }, —a"j';"' WO

and, for this condition the L.H.S. of equation (E2.2.3} gives,

Bz

)
j GapHo) dy— Jvr} dr=0 (E2.2.4)
4 r,
Integrating and applying the limits of integration,
h dp .
PR 1 Ee3 2
5p7x j\q dIr=0 (E2.2.5)
When r‘a
W,
=2 =72y
=2, 3 2y

j (%%yz + vdo, ) dymjvyzc} dI'=0 (E2.2.6)
a

r

L]

which, upon integration, results in

I3Bp

i
e | W y)
24 e +6I %y J\g dIr=0 (E2.2.7)
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Adding equations (E2.2.5) and (E2.2.7) leads to a general expression of the

hapH_i +, h? lﬂu
Bl T13)Te TN\ g

in which the last term refers to the boundary at 0,hi/2. Using the same variable
values as before i.e.

=0 {E2.2.8)

0.hi2

h=0.1 metres

ap

e =—50x10"* N/m?

and

u=10"* Ns/m?
with the additional boundary conditions,

u=625x 1072 m/sec at y=0
and

du

B—J—P —0.25 at y=h/2

Substituting these values into equation (E2.2.8) the value of @, is found to be

—2.5. Note that this could have been obtained from (E2.2.7) only.
Substituting into (E2.2.1) and using the velocity boundary condition at y

=0, o, =6.25 x 1073, The general equation for the velocity is, therefore,

u=625x10"3-25 y* (E2.2.9)

which, as expected, yields the exact answers.

The question still remains, however, regarding the compatability of results
when a lower order trial function is utilised in conjunction with the ‘weak’
formulation. This can be demonstrated by assuming an equation of the form,

w=[1 y}" {:} (E2.2.10)

which would be too low an order when the weak formulation is not utilised.
Using the weak formulation this gives rise to the equation,

hi2

1dp héu
j (Eg;}% 1’052) dy— a 33y
4]

={ (E2.2.11)

0,02
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Table 2.2 Comparison of cxact velocity profile and weak formulation with minimum
order of trial function

Velocity m/sec

Weak weighted

¥ Exact residual
0.0 6.25% 1073 625x% 1073
0.0! 60 x107* 500x% 10°°
0.02 525x 1072 3.75% 10772
0.03 400xt07° 25 x107?
0.04 225% 1077 125%x107°
0.05 0.0 0.0
or
h dp Ju
— — Yo =3 <32,
R + val, Iﬂy - {E2.2.12)
Substituting values we have,
o, =—0.125
and
x,=625x% 107"
The resulting equation for the velocity distribution, now linear, is
u=6.25%10"%—-0.125y (E2.2.13)

A comparison with the exact velocity distribution is shown in Table 2.2,
which illustrates the considerable errors which have been incurred when a
linear profile is assumed.

The concept of ‘weak’ formulation can be extended to include higher order
equations, for instance the biharmonic equation'”), where the natural boun-
dary conditions assume considerable importance. Further reading on this
topic is left, however, to the interested reader. The stage has now been reached
where the weighted residual technique and the F.E.M. can be combined
leading to a general integrable form of equation where both trial and shape
functions are defined explicitly.

References

1. SCHLICHTING, H. “Boundary Layer Theory”, McGraw Hill, New York, 1960.

2. GOLDSTEIN, 8. (Ed.) “Modern Developmenis in Fluid Dynamics”, Onxlord Press,
1938,

3. BAKER, A, J. “A Finitc Element Solution Algorithm for Viscous Incompressible
Fiuid Dynamics”, Int, Journ. Num. Meth. in Eng., Vol. 6, 1973.

4. CHENG, R. T. “Numerical Solution of the Navier-Stokes Equations by the Finite
Eiement Method”, Physics of Fluids, 15, 1972,

MATHEMATICAL CONCEPTS AND WEIGHTED RESIDUAL TECHNIQUES )

. HintoN, E. and OweN, D. R. 1. “Finite Element Programming”, Academic Press,

1977.

. Hinton, E. and OweN, . R, J “An Introduction to Finite Element

Computations”, Pineridge Press, 1980,

. HinToN, E. and OweN, D, R. 1. "A Simple Guide to Finite Elements”, Pineridge

Press, 1980.

. TAYLOR, C. and MorGan, K, {Eds.) “*Recent Advances in Numerical Methods in

Fluids”, Pineridge Press, 1980,

. CrANDALL, 8. H. “Engincering Analysis”, McGraw Hill, 1966.



G_t = _Ckk

EQuUIL1BRWUM  BRUATIOWY T
~ ‘C'ji
] /, o = Tyy
G‘.J ‘ \@5 Tx
cuwfc
9 Fl/*‘m ( (#Aﬂ.
Atnc/ﬁma—fﬁacﬁﬁ»\
Fovir bakmnce y o0k 2% 4 Ty . T . PG, -
% 24 2t ot

Caw:tfw wd  constrvader J_F rmovmartonn

, '3 vﬂv\, + 0 Ve + ’a/ovbv,‘
» (% e 2
ot )y 4
——
P 3)"1/1)5
= B-CV‘V + D’Jx + Dts») - '930 +
oxr 9 9: ?;- /03‘/'




Hooke 's Lawy
V%
dvy

Ve

dy .

J d
I____,f TGCS

oy Aj

[ 6%
X
C

- v(o’3+o"~t>l
- v( oy +6%) ]
6 - V(d‘a*ﬁ)}

9_?;9




_Creati mverse relostns:  E=f(5,p) —w afCepy
_ o o = é@'y*dfafo‘a
 Defuie, volume stz & = gloy - Viged] A
) . . £ =;é-£,,5'3 =v(seo)] (& '—‘;é [',36;'\_:,,27\)(36;“)]
a2 fLo - V(s +ay)] g=2lon-2vel]
_ e N I _ . _ty= 36 [~ vl
E
KMS E'V E
3(1-2v)

- Renta Horke's Laws =E‘E -V {5y + )]

| é[ﬁ*vﬂ -Vdy “V(% +33)] ,
- éT—(*") 6 = v(sy t 6y +03) ) ?E'[' Q+vdey — .\.7630?'5)] -
. o Shos hivtc T

Rl..d.ww\ab WA g o{i Tyt | -

ExE + V306, = Sy

= € U+v) Q+W)

2(‘*\’) 2 &€ _ _Z_ 3v & e L= .0’34

2(+v) = (+v) 3G-2v)
. 24 & + 14 Ve, = Ox
(-2v)




Solid Mechanics (from J C Sheng, J Liu, WC Zhu, D Elsworth, in submittal)
GOVERNING EQUATIONS

Behavior is defined in terms of mechanical equilibrium, with components included to

represent the heat and fluid transport in a porous medium.

1 Mechanical Equilibrium
For an elastic medium the constitutive relation (Hooke’s Law) is defined in terms of the

total stress o, (positive for tension), strain ¢, pore fluid pressure change p (negative

for suction) and temperature change 7 as

2Gv ,
o, =2Gg, +m5kk§[j —apo,; —K'a,;To,, (1)

in which G is the shear modulus, v is the drained Poisson’s ratio, J; is the Kronecker

delta defined as 1 for i=j and 0 for i = j, K' (=2G(1+v)/3(1-2v)) is the drained bulk
modulus of the medium, «, is coefficient of volumetric expansion of the bulk medium

under constant pore pressure and stress ("C"), the parameter « (<1) is Biots
coefficient which depends on the compressibility of the constituents and can be defined

as

a=1-K __ 3V 2)

K. Ba-2)(1+v,)’
where K is the effective bulk modulus of the solid constituent, and the effective stress

is defined as o, = o, +apd,.

Using compact notation, the equations of equilibrium and the strain-displacement

relations can be expressed as

c;;, +F, =0 (3)
and

! 4
& :E(ui,j_‘_uj,[) ( )

respectively. Where F, and u, (i =x,y,z) are the components of the net body force and

displacement in the i-direction. From eqns (1) and (4), a modified Navier equation may



be derived via eqn (3), in terms of displacement under a combination of changes of

applied stresses, pore fluid pressures, and temperature as

u,, —ap,—K'a,T,+F =0. (5)

2 Flow Equation

For a porous solid filled with an interstitial and freely diffusing pore fluid, where solid and
fluid are assumed in thermal equilibrium, the rate of change of volume V' caused by
changes of temperature, pore fluid pressure, and strains can be expressed as (Zhou et
al., 1998)

1oV o¢ oT
o Vg 4, + (- Pa 1S~

vV or o o \B K. Jor 3K UV

where ¢ is time (s), ¢, is the volume stain (=&, +¢, +¢_.), ¢, is the water flux/unit area

(Lﬂja_m;, 5 )

(m/s), ¢ is the porosity in a general continuum, ¢, is the coefficient of volumetric
thermal expansion of the liquid (‘C"), «, is the coefficient of volumetric thermal
expansion of the solid matrix ("C™"), and p, is the bulk modulus of the pore fluid (Pa).

Rearrangement of eqn (6) results in the fluid mass conservation equation

Vg, =—a‘€; +[¢a,+(1—¢>as]6—T—(i+ﬂja—p+La 5 @)

0 oo \p K, )or 3K, TV

By neglecting effects of thermal-osmosis, the constitutive relation for fluid diffusion can
be expressed by Darcy’s law, as,

q, =—KkV(p+p,gz) (8)
where z is the vertical coordinate, x is the coefficient of permeability [m*/(N-s)] with
x =k/u, , where g, is the dynamic fluid viscosity (N's'm™), k is the intrinsic permeability
in a general continuum (m?), p, is the liquid density (kg/m®), and g is gravitational

acceleration (m/s?). Substitution of eqns (8) and (1) into eqn (7) results in

o€, oT 0
A g g =V kP V2] ©
where
K’ 3(v, —v)
¢ =l-—=

K. B(l+v,)1-2v)’



¢, =pa;+ (=P, ———, (10)

£+1—¢_ o1-2v, )(v,—-Vv)
B, K., 2GB*(1-2v)(1+v,)*’

3 Energy Conservation Equation

By neglecting thermal-filtration effects, the constitutive relation for heat diffusion is given
by Fourier’s law as

q, =-4,VT (11)
where ¢, is the heat flux transmitted by conduction in the fluid-solid mixture, with

Ay =(1=P)A, +dA, . (12)
Here, A, and A, are the thermal conductivities of the solid (rock) and liquid [J/(s-m-°C)]

components. Due to the assumption of thermal equilibrium between the fluid and solid
phases, the heat energy balance equation over an REV can be expressed in terms of a
single equation which neglects the terms representing the interconvertibility of thermal
and mechanical energy (Zhou et al., 1998; Noorishad and Tsang, 1996; Kurashige,
1989)

oT ,  0s,
(pC)ME_(To"'T)alﬁzv%_(T0+T)Kar o =-V-q, -V-(p,Hgq,) (13)

where 7, is the absolute reference temperature in the stress-free state (K), p, is the

reference mass density, H represents the specific enthalpy of the pore fluid, (oC),, is
the specific heat capacity of the fluid-filed medium, defined as
(PC)y =0(p,C)+(1-9)p,C,), Wwhere p_ is the mass density of the rock matrix (kg/m?),
and C, and C, are the fluid and solid specific heat constants at constant volume (J-kg’

tec.

The first term on the left-hand side of eqn (13) represents the rate of internal heat
energy change per unit volume due to an increase in temperature. The second term
represents a heat sink due to thermal dilatation of the fluid. The last term represents a
heat sink due to thermal expansion of the medium. For a small variation of temperature

(the temperature changes (7' ) are small compared to the absolute ambient temperature),

3



T, +T = T,, this term is identical to that given by Biot (1956). The second and third terms

on the left-hand side of eqgn (13) represent the thermoporoelastic coupling in the heat
energy balance equation (Zhou et al., 1998). The last term on the right-hand side of egn
(13) represents the convective heat flux (the transportation of enthalpy by fluid flow

through pores).

We assume that heat exchange between the solid matrix and the pore fluid is rapid in
comparison with the global heat and fluid diffusion processes. Thus, the local heat

equilibrium is established (Kurashige, 1989) as,
H =(pC)y T/(¢p,) - (14)
Substitution of eqns (11) and (14) into egn (13) results in

(pC),, ‘Z—f F (T, + T, BV - (55p + p,gV2)

(15)

—(T,+T)K'a, %_&
ot é

The last term on the left-hand side of eqn (15) represents the convective heat flux.

k(Vp+ p,gVz)-VT =4,V -q,

Equations (5), (9) and (15) represent a set of fully coupled non-linear equations
governing the thermo-poroelastic response of a saturated medium. The equations
account for thermodynamically coupled heat and mass transfer, mechanical and thermal

compressibility of the constituents, and importantly in this work, convective heat flow.

4 Initial and Boundary Conditions

The triply coupled THM physics of the system is defined through equations (5), (9) and
(15). For completeness, standard boundary conditions and initial conditions are defined
as follows.

4.1 Boundary conditions

Stress-displacement conditions for the mechanical analysis are defined as
u(x,?) = u(x,z), t e [0,0), (16)



o(x,t)-n(x) = F(x,t), t e [0,). (17)
Fluid flow is defined in terms of boundary conditions representing:
The Dirichlet condition: p(x,7) = p(x,t), t € [0,0). (18)
The Neumann condition: x-(Vp—p,8)-n(x) = Q0,(x,t), t € [0,). (19)
And likewise for heat transport:
The Dirichlet condition: T(x,7) = T(x,t), t € [0,). (20)
The Neumann condition: 4, VT -n(x) = Q,(x,t), t € [0,). (21)

where n is the outward unit normal vector on the domain boundary.

4.2 Initial conditions

Initial conditions for the mechanical, flow and thermal analyses are defined as

u(x,0) =0onV, (22)
o(x,00 =0on V, (23)
p(x,0) =0on V', (24)
T(x,00 =0on V. (25)

The dependent variables, u, p, and T, represent incremental deviations from the

strain-free state assumed by the above choice of initial conditions. The quantity V

represents the volume under consideration.
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Abstract

The evolution of matrix structural analysis (MSA) from 1930 through 1970 is outlined. Highlighted are major
contributions by Collar and Duncan, Argyris, and Turner, which shaped this evolution. To enliven the narrative the
outline is configured as a three-act play. Act I describes the pre-WWII formative period. Act II spans a period of
confusion during which matrix methods assumed bewildering complexity in response to conflicting demands and re-
strictions. Act III outlines the cleanup and consolidation driven by the appearance of the direct stiffness method,
through which MSA completed morphing into the present implementation of the finite element method (FEM). No
attempt is made at chronicling the more complex history of FEM itself. © 2001 Elsevier Science Ltd. All rights
reserved.

Keywords: Matrix structural analysis; Finite elements; History; Displacement method; Force method; Direct stiffness method; Duality

1. Introduction

Who first wrote down a stiffness or flexibility matrix?

The question was posed in a 1995 paper [1]. The
educated guess was ‘“‘somebody working in the aircraft
industry of Britain or Germany, in the late 1920s or
early 1930s”. Since then the writer has examined reports
and publications of that time. These trace the origins of
matrix structural analysis (MSA) to the aeroelasticity
group of the National Physics Laboratory (NPL) at
Teddington, a town that has now become a suburb of
greater London.

The present paper is an expansion of the historical
vignettes in Section 4 of [1]. It outlines the major steps in
the evolution of MSA by highlighting the fundamental
contributions of four individuals: Collar, Duncan, Ar-
gyris and Turner. These contributions are lumped into
three milestones:

" Tel.: +1-303-492-6547; fax: +1-303-492-4990.
E-mail address: carlos@titan.colorado.edu (C.A. Felippa).

Creation: Beginning in 1930 Collar and Duncan
formulated discrete aeroelasticity in matrix form. The
first two journal papers on the topic appeared in 1934—
1935 [2,3] and the first book, coauthored with Frazer,
in 1938 [4]. The representation and terminology for
discrete dynamical systems is essentially that used to-
day.

Unification: In a series of journal articles appearing in
1954 and 1955 [5] Argyris presented a formal unification
of force and displacement methods (FDM) using dual
energy theorems. Although practical applications of the
duality proved ephemeral, this work systematized the
concept of assembly of structural system equations from
elemental components.

FEMinization: In 1959 Turner proposed [6] the direct
stiffness method (DSM) as an efficient and general
computer implementation of the then embryonic, and as
yet unnamed, finite element method (FEM). This tech-
nique, fully explained in a follow-up article [7], naturally
encompassed structural and continuum models, as well
as nonlinear, stability and dynamic simulations. By 1970
DSM had brought about the demise of the classical

0045-7949/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0045-7949(01)00025-6
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force method (CFM), and become the dominant im-
plementation in production-level FEM programs.
These milestones help dividing MSA history into
three periods. To enliven and focus the exposition these
will be organized as three acts of a play, properly sup-
plemented with a “matrix overture” prologue, two in-
terludes and a closing epilogue. Here is the program:

Prologue — Victorian artifacts: 1858-1930.
Act I — gestation and birth: 1930-1938.
Interlude I — WWII blackout: 1938-1947.
Act II — the matrix forest: 1947-1956.
Interlude II — questions: 1956-1959.

Act IIT — answers: 1959-1970.

Epilogue — revisiting the past: 1970-date.

Act I, as well as most of the prologue, takes place in
the UK. The following events feature a more interna-
tional cast.

2. Background and terminology

Before departing for the theater, this Section offers
some general background and explains historical ter-
minology. Readers familiar with the subject should skip
to Section 3.

[1DEALIZATION]  [DISCRETIZATION] [soLuTioN

Physical Math ical Discrete Discrete
system model model solution

| Solution error I

Discretization + solution error

Modeling + discretization + solution error

| VERIFICATION & VALIDATION |

Fig. 1. Flowchart of model-based simulation (MBS) by com-
puter.

The overall schematics of model-based simulation
(MBS) by computer is flowcharted in Fig. 1. For me-
chanical systems such as structures the FEM is the most
widely used discretization and solution technique. His-
torically the ancestor of FEM is MSA, as illustrated in
Fig. 2. The morphing of the MSA from the pre-com-
puter era — as described for example in the first MSA
book [4] — into the first programmable computers took
place, in wobbly gyrations, during the transition period
herein called Act II. Following a confusing interlude, the
young FEM begin to settle, during the early 1960s, into
the configuration shown on the right of Fig. 2. Its basic
components have not changed since 1970.

MSA and FEM stand on three legs: mathemati-
cal models, matrix formulation of the discrete equa-
tions, and computing tools to do the numerical work. Of
the three legs the latter is the one that has undergone the
most dramatic changes. The “human computers” of the
1930s and 1940s morphed by stages into programmable
computers of analog and digital type. The matrix for-
mulation moved like a pendulum. It begins as a simple
displacement method in Act I, reaches bewildering
complexity in Act II and goes back to conceptual sim-
plicity in Act III.

Unidimensional structural models have changed lit-
tle: a 1930 beam is still the same beam. The most no-
ticeable advance is that pre-1955 MSA, following
classical Lagrangian mechanics, tended to use spatially
discrete energy forms from the start. The use of space-
continuum forms as basis for multidimensional element
derivation was pioneered by Argyris [5], successfully
applied to triangular geometries by Turner et al. [8], and
finalized by Melosh [9] and Irons [10,11] with the precise
statement of compatibility and completeness require-
ments for FEM.

Matrix formulations for MSA and FEM have been
traditionally classified by the choice of primary un-
knowns. These are those solved for by the human or
digital computer to determine the system state. In the

Continuum
Mathematical
Models

Formulation

Fig. 2. Morphing of the pre-computer MSA (before 1950) into the present FEM. On the left “human computer’” means computations
under direct human control, possibly with the help of analog devices (slide rule) or digital devices (desk calculator). The FEM con-

figuration shown on the right settled by the mid 1960s.
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displacement method (DM) these are physical or gen-
eralized displacements. In the CFM these are amplitudes
of redundant force (or stress) patterns. (The qualifier
“classical” is important because there are other versions
of the force method (FM) which select for example stress
function values or Lagrange multipliers as unknowns.)
There are additional methods that involve combinations
of displacements, forces and/or deformations as primary
unknowns, but these have no practical importance in the
pre-1970 period covered here.

Appropriate mathematical names for the DM are
range-space method or primal method. This means that
the primary unknowns are the same type as the primary
variables of the governing functional. Appropriate
names for the CFM are null-space method, adjoint
method, or dual method. This means that the primary
unknowns are of the same type of the adjoint variables
of the governing functional, which in structural me-
chanics are forces. These names are not used in the
historical outline, but are useful in placing more recent
developments, as well as nonstructural FEM applica-
tions, within a general framework.

The terms stiffness method and flexibility method
are more diffuse names for the displacement and force
methods, respectively. Generally speaking these apply
when stiffness and flexibility matrices, respectively, are
important part of the modeling and solution process.

3. Prolog — Victorian artifacts: 1858-1930

Matrices — or “determinants” as they were initially
called — were invented in 1858 by Cayley at Cambridge,
although Gibbs (the co-inventor, along with Heaviside,
of vector calculus) claimed priority for the German
mathematician Grassmann. Matrix algebra and matrix
calculus were developed primarily in the UK and Ger-
many. Its original use was to provide a compact lan-
guage to support investigations in mathematical topics
such as the theory of invariants and the solution of al-
gebraic and differential equations. For a history of these
early developments the monograph by Muir [12] is un-
surpassed. Several comprehensive treatises in matrix
algebra appeared in the late 1920s and early 1930s [13—
15].

Compared to vector and tensor calculus, matrices
had relatively few applications in science and technol-
ogy before 1930. Heisenberg’s 1925 matrix version of
quantum mechanics was a notable exception, although
technically it involved infinite matrices. The situation
began to change with the advent of electronic desk cal-
culators, because matrix notation provided a convenient
way to organize complex calculation sequences. Aero-
elasticity was a natural application because the stability
analysis is naturally posed in terms of determinants of
matrices that depend on a speed parameter.

The nonmatrix formulation of discrete structural
mechanics can be traced back to the 1860s. By the early
1900s the essential developments were complete. A
readable historical account is given by Timoshenko [16].
Interestingly enough, the term “matrix” never appears
in this book.

4. Act I — gestation and birth: 1930-1938

In the decade of World War I aircraft technology
begin moving toward monoplanes. Biplanes disap-
peared by 1930. This evolution meant lower drag and
faster speeds but also increased disposition to flutter.
In the 1920s aeroelastic research began in an interna-
tional scale. Pertinent developments at the NPL are
well chronicled in a 1978 historical review article by
Collar [17], from which the following summary is ex-
tracted.

4.1. The source papers

The aeroelastic work at the Aerodynamics Division
of NPL was initiated in 1925 by R.A. Frazer. He was
joined in the following year by W.J. Duncan. Two years
later, in August 1928, they published a monograph on
flutter [18], which came to be known as “The Flutter
Bible” because of its completeness. It laid out the prin-
ciples on which flutter investigations have been based
since. In January 1930 A.R. Collar joined Frazer and
Duncan to provide more help with theoretical investi-
gations. Aeroelastic equations were tedious and error
prone to work out in long hand. Here are Collar’s own
words [17, p. 17] on the motivation for introducing
matrices:

“Frazer had studied matrices as a branch of ap-
plied mathematics under Grace at Cambridge;
and he recognized that the statement of, for exam-
ple, a ternary flutter problem in terms of matrices
was neat and compendious. He was, however,
more concerned with formal manipulation and
transformation to other coordinates than with nu-
merical results. On the other hand, Duncan and I
were in search of numerical results for the vibration
characteristics of airscrew blades; and we recog-
nized that we could only advance by breaking the
blade into, say, 10 segments and treating it as hav-
ing 10 degrees of freedom. This approach also was
more conveniently formulated in matrix terms, and
readily expressed numerically. Then we found that
if we put an approximate mode into one side of the
equation, we calculated a better approximation on
the other; and the matrix iteration procedure was
born. We published our method in two papers in
Phil. Mag. [2,3]; the first, dealing with conservative
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systems, in 1934 and the second, treating damped
systems, in 1935. By the time this had appeared,
Duncan had gone to his Chair at Hull”.

The aforementioned papers appear to be the earliest
journal publications of MSA. These are amazing docu-
ments: clean and to the point. They do not feel outdated.
Familiar names appear: mass, flexibility, stiffness, and
dynamical matrices. The matrix symbols used are [m],
[f], [¢] and [D] = [¢] '[m] = [f][m], respectively, instead
of the M, F, K and D in common use today. A general
inertia matrix is called [a]. As befit the focus on dy-
namics, the DM is used. Point-mass displacement de-
grees of freedom are collected in a vector {x} and
corresponding forces in vector {P}. These are called [g]
and [Q], respectively, when translated to generalized
coordinates.

The notation was changed in the book [4] discussed
below. In particular matrices are identified in Ref. [4] by
capital letters without surrounding brackets, in more
agreement with the modern style; for example mass,
damping and stiffness are usually denoted by A, B and
C, respectively.

4.2. The matrix structural analysis source book

Several papers on matrices followed, but apparently
the traditional publication vehicles were not viewed as
suitable for description of the new methods. At that
stage Collar notes [17, p. 18] that

“Southwell (Sir Richard Southwell, the “father” of
relaxation methods) suggested that the authors of
the various papers should be asked to incorporate
them into a book, and this was agreed. The result
was the appearance in November 1938 of “Elemen-
tary Matrices” published by Cambridge University
Press [4]; it was the first book to treat matrices as a
branch of applied mathematics. It has been re-
printed many times, and translated into several lan-
guages, and even now after nearly 40 years [this
was written in 1975], stills sells in hundreds of cop-
ies a year — mostly paperback. The interesting thing
is that the authors did not regard it as particularly
good; it was the book we were instructed to write,
rather than the one we would have liked to write”.

The writer has copies of the 1938 and 1963 printings.
No changes other than minor fixes are apparent. Unlike
the source papers [2,3] the book feels dated. The first
245 pages are spent on linear algebra and ODE-solution
methods that are now standard part of engineering and
science curricula. The numerical methods, oriented to
desk calculators, are obsolete. That leaves the modeling
and application examples, which are not coherently in-

terweaved. No wonder that the authors were not happy
about the book. They had followed Southwell’s
“merging” suggestion too literally. Despite these flaws
its direct and indirect influence during the next two
decades was significant. Being first excuses imperfec-
tions.

The book focuses on dynamics of a complete air-
plane and integrated components such as wings, rud-
ders or ailerons. The concept of structural element is
primitive: take a shaft or a cantilever and divide it
into segments. The assembled mass, stiffness or flexi-
bility is given directly. The source of damping is
usually aerodynamic. There is no static stress analysis;
pre-WWII aircraft were overdesigned for strength
and typically failed by aerodynamic or propulsion ef-
fects.

Readers are reminded that in aeroelastic analysis
stiffness matrices are generally unsymmetric, being the
sum of a symmetric elastic stiffness and an unsymmetric
aerodynamic stiffness. This clean decomposition does
not hold for flexibility matrices because the inverse of a
sum is not the sum of inverses. The treatment of [4] in-
cludes the now called load-dependent stiffness terms,
which represent another first.

On reading the survey articles by Collar [17,19] one
cannot help being impressed by the lack of pretension.
With Duncan he had created a tool for future genera-
tions of engineers to expand and improve upon. Yet he
appears almost apologetic: “I will complete the matrix
story as briefly as possible” [17 p. 17]. The NPL team
members shared a common interest: to troubleshoot
problems by understanding the physics, and viewed
numerical methods simply as helpers.

5. Interlude I — WWII blackout: 1938-1947

Interlude I is a “silent period” taken to extend from
the book [4] to the first journal publication on the matrix
FM for aircraft [20]. Aeroelastic research continued.
New demands posed by high strength materials, higher
speeds, combat maneuvers, and structural damage sur-
vival increased interest in stress analysis. For the beam-
like skeletal configurations of the time, the traditional
flexibility-based methods such as CFM were appropri-
ate. Flexibilities were often measured experimentally by
static load tests, and fitted into the calculations. Pun-
ched-card computers and relay calculators were in-
creasingly used, and analog devices relied upon to solve
ODE:s in guidance and ballistics. Precise accounts of
MSA work in aerospace are difficult to trace because of
publication restrictions. The blackout was followed by a
2-3 year hiatus until those restrictions were gradually
lifted, R&D groups restaffed, and journal pipelines re-
filled.
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6. Act II — the matrix forest: 1947-1956

As Act II starts MSA work is still mainly confined to
the aerospace community. But the focus has shifted
from dynamics to statics, and especially stress, buckling,
fracture and fatigue analysis. Turbines, supersonic flight
and rocket propulsion brought forth thermomechanical
effects. The Comet disasters forced attention on stress
concentration and crack propagation effects due to cy-
clic cabin pressurization. Failsafe design gained impor-
tance. In response to these multiple demands aircraft
companies staffed specialized groups: stress, aerody-
namics, aeroelasticity, propulsion, avionics, and so on.
A multilevel management structure with well defined
territories emerged.

The transition illustrated in Fig. 2 starts, driven by
two of the legs supporting MSA: new computing re-
sources and new mathematical models. The matrix for-
mulation merely reacts.

6.1. Computers become machines

The first electronic commercial computer: Univac I,
manufactured by a division of Remington-Rand, ap-
peared during summer 1951. The six initial machines
were delivered to US government agencies [21]. That
model was joined in 1952 by the Univac 1103, a scien-
tific-computation oriented machine built by ERA, a
R-R acquisition. This was the first computer with a
drum memory. T.J. Watson Sr., founder of IBM, had
been once quoted as saying that six electronic computers
would satisfy the needs of the planet. Turning around
from that prediction, IBM launched the competing 701
model in 1953.

Big aircraft companies began purchasing or leasing
these expensive wonders by 1954. But this did not mean
immediate access for everybody. The behemoths had to
be programmed in machine or assembly code by spe-
cialists, who soon formed computer centers allocating
and prioritizing cycles. By 1956 structural engineers were
still likely to be using their slides rules, Marchants and
punched card equipment. Only after the 1957 appear-
ance of the first high level language (Fortran I, offered
on the IBM 704) were engineers and scientists able (and
allowed) to write their own programs.

6.2. The matrix CFM takes center stage

In static analysis the nonmatrix version of the CFM
had enjoyed a distinguished reputation since the source
contributions by Maxwell, Mohr and Castigliano. The
method provides directly the internal forces, which are
of paramount interest in stress-driven design. It offers
considerable scope of ingenuity to experienced structural
engineers through clever selection of redundant force

systems. It was routinely taught to aerospace, civil and
mechanical engineering students.

Success in hand-computation dynamics depends on
“a few good modes”. Likewise, the success of CFM
depends crucially on the selection of good redundant
force patterns. The structures of pre-1950 aircraft were a
fairly regular lattice of ribs, spars and panels, forming
beam-like configurations. If the panels are ignored, the
selection of appropriate redundants was well under-
stood. Panels were modeled conservatively as inplane
shear-force carriers, circumventing the difficulties of
two-dimensional elasticity. With some adjustments and
experimental validations, sweptback wings of high as-
pect ratio were eventually fitted into these models.

A matrix framework was found convenient to orga-
nize the calculations. The first journal article on the
matrix CFM, which focused on sweptback wing analy-
sis, is by Levy [20], followed by publications of Rand
[22], Langefors [23], Wehle and Lansing [24] and Denke
[25]. The development culminates in the article series of
Argyris [5] discussed in Section 6.5.

6.3. The delta wing challenge

The DM continued to be used for vibration and
aeroelastic analysis, although as noted above this was
often done by groups separated from stress and buckling
analysis. A new modeling challenge entered in the early
1950s: delta wing structures. This rekindled interest in
stiffness methods.

The traditional approach to obtain flexibility and
stiffness matrices of unidimensional structural members
such as bars and shafts is illustrated in Fig. 3. The
governing differential equations are integrated, analyti-
cally or numerically, from one end to the other. The
end quantities, grouping forces and displacements, are
thereby connected by a transition matrix. Using simple
algebraic manipulations three more matrices shown
in Fig. 3 can be obtained: deformational flexibility, de-
formational stiffness and free—free stiffness. This well
known technique has the virtue of reducing the number
of unknowns since the integration process can absorb
structural details that are handled in the present FEM
with multiple elements.

Notably absent from the scheme of Fig. 3 is the free—
free flexibility. This was not believed to exist since it is
the inverse of the free—free stiffness, which is singular.
A general closed-form expression for this matrix as a
Moore-Penrose generalized stiffness inverse was not
found until recently [26,27].

Modeling delta wing configurations required two-
dimensional panel elements of arbitrary geometry, of
which the triangular shape, illustrated in Fig. 4, is the
simplest and most versatile. Efforts to follow the ODE-
integration approach lead to failure. (One particularly
bizarre proposal, for solving exactly the wrong problem,
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Fig. 3. Transition, flexibility and stiffness matrices for unidimensional linear structural elements, such as the plane beam depicted here,
can be obtained by integrating the governing differential equations, analytically or numerically, over the member to relate end forces
and displacements. Clever things were done with this “method of lines”” approach, such as including intermediate supports or elastic

foundations.

1 Uyl

Fig. 4. Modeling delta wing configurations required panel elements of arbitrary geometry such as the triangles depicted here. The
traditional ODE-based approach of Fig. 3 was tried by some researchers who (seriously) proposed finding the corner displacements in
(a) produced by the concentrated corner forces in (b) on a supported triangle from the elasticity equations solved by numerical in-
tegration! Bad news: those displacements are infinite. Interior fields assumptions were inevitable, but problems persisted. A linear
inplane displacement field is naturally specified by corner displacements, whereas a constant membrane force field is naturally defined
by edge tractions (c). Those quantities “live”” on different places. The puzzle was first solved in Ref. [8] by lumping edge tractions to

node forces on the way to the free—free stiffness matrix.

is mentioned for fun in the label of Fig. 4.) This moti-
vated efforts to construct the stiffness matrix of the panel
directly. The first attempt in this direction is by Levy
[28]; this was only partly successful but was able to il-
luminate the advantages of the stiffness approach.

The article series by Argyris [5] contains the deriva-
tion of the 8 x 8 free—free stiffness of a flat rectangular
panel using bilinear displacement interpolation in Car-
tesian coordinates. But that geometry was obviously
inadequate to model delta wings. The landmark contri-
bution of Turner, Clough, Martin and Topp [8] finally
succeeded in directly deriving the stiffness of a triangular
panel. Clough [29] observes that this paper represents

the delayed publication of 1952-1953 work at Boeing. It
is recognized as one of the two sources of present FEM
implementations, the second being the DSM discussed
later. Because of the larger number of unknowns com-
pared to CFM, competitive use of the DM in stress
analysis had necessarily to wait until computers become
sufficiently powerful to handle hundreds of simultaneous
equations.

6.4. Reduction fosters complexity

For efficient digital computation on present com-
puters, data organization (in terms of fast access as well
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as exploitation of sparseness, vectorization and paral-
lelism) is of primary concern whereas raw problem size,
up to certain computer-dependent bounds, is secondary.
But for hand calculations minimal problem size is a key
aspect. Most humans cannot comfortably solve by hand
linear systems of more than 5 or 6 unknowns by direct
elimination methods, and 5-10 times that through
problem-oriented “relaxation” methods. The first-gen-
eration digital computers improved speed and reliability,
but were memory strapped. For example the Univac |
had 1000 45-bit words and the IBM 701, 2048 36-bit
words. Clearly solving a full system of 100 equations was
still a major challenge.

It should come as no surprise that problem reduction
techniques were paramount throughout this period, and
exerted noticeable influence until the early 1970s. In
static analysis reduction was achieved by elaborated
functional groupings of static and kinematic variables.
Most schemes of the time can be understood in terms of
the following classification:

primary {
Generalised forces

secondary {

primary {
Generalised displacemetns

secondary {

Here applied forces are those acting with nonzero val-
ues, that is, the ones visibly drawn as arrows by an en-
gineer or instructor. In reduction-oriented thinking zero
forces on unloaded degrees of freedom are classified as
condensable because they can be removed through static
condensation techniques. Similarly, nonzero applied
displacements were clearly differentiated from zero dis-
placements arising from support conditions because the
latter can be thrown out while the former must be re-
tained. Redundant displacements, which are the coun-
terpart of redundant forces, have been given many
names, among them ‘“kinematically indeterminate dis-
placements™ and ‘“‘kinematic deficiencies’.

Matrix formulation evolved so that the unknowns
were the force redundants y in the CFM and the dis-
placement redundants z in the DM. Partitioning matri-
ces in accordance to (1) fostered exuberant growth
culminating in the matrix forest that characterizes works
of this period.

To a present day FEM programmer familiar with the
DSM, the complexity of the matrix forest would strike
as madness. The DSM master equations can be assem-
bled without functional labels. Boundary conditions are
applied on the fly by the solver. But the computing

limitations of the time must be kept in mind to see the
method in the madness.

6.5. Two paths through the forest

A series of articles published by J.H. Argyris in four
issues of Aircraft Engrg. during 1954 and 1955 collectively
represents the second major milestone in MSA. In 1960
the articles were collected in a book, entitled “Energy
Theorems and Structural Analysis” [5]. Part I, sub-enti-
tled General Theory, reprints the four articles, whereas
Part II, which covers additional material on thermal
analysis and torsion, is co-authored by Argyris and Kel-
sey. Both authors are listed as affiliated with the Aero-
space Department of the Imperial College at London.

The dual objectives of the work, stated in the preface,
are “‘to generalize, extend and unify the fundamental
energy principles of elastic structures” and “to describe
in detail practical methods of analysis of complex
structures — in particular for aeronautical applications”.

applied forces f,

redundant forces y
condensable forces f, =0
support reactions f

applied displacements u,
redundant displacements z
condensable displacements u,
support conditions u, = 0

The first objective succeeds well, and represents a key
contribution toward the development of continuum-
based models. Part I carefully merges classical contri-
butions in energy and work methods with matrix
methods of discrete structural systems. The coverage is
methodical, with numerous illustrative examples. The
exposition of the FM for wing structures reaches a level
of detail unequaled for the time.

The DM is then introduced by duality — called
“analogy” in this work:

“The analogy between the developments for the
flexibilities and stiffnessess ... shows clearly that
parallel to the analysis of structures with forces
as unknowns there must be a corresponding theory
with deformations as unknowns”.

This section credits Ostenfeld [30] with being the first
to draw attention to the parallel development. The du-
ality is exhibited in a striking form in Table II, in which
both methods are presented side by side with simply an
exchange of symbols and appropriate rewording. The
steps are based on the following decomposition of in-
ternal deformation states g and force patterns p:
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p= BOfa + Blya g= Aoua + AlZ> (2)

where the notation of [1] is used. Here B; and A; denote
system equilibrium and compatibility matrices, respec-
tively. The vector symbols on the right reflect a partic-
ular choice of the force—displacement decomposition (1),
with kinematic deficiencies taken to be the condensable
displacements: z = u..

This unification exerted significant influence over the
next decade, particularly on the European community.
An excellent textbook exposition is that of Pestel and
Leckie [31]. This book covers both paths, following
Argyris’ framework, in Chapters 9 and 10, using 83
pages and about 200 equations. These chapters are
highly recommended to understand the organization of
numeric and symbolic hand computations in vogue at
that time, but it is out of print. Still in print (by Dover) is
the book by Przemieniecki [32], which describes the DM
and CFM paths in two Chapters: 6 and 8. The DM
coverage is strongly influenced, however, by the DSM;
thus duality is only superficially used.

6.6. Dubious duality

One key application of the duality in Ref. [5] was to
introduce the DM by analogy to the then better known
CFM. Although done with good intentions this ap-
proach did not anticipate the forthcoming development
of continuum-based finite elements through stiffness
methods. These are naturally derived directly from the
total potential energy principle via shape functions, a
technique not fully developed until the mid-1960s.

The side by side presentation of Table II of Ref. [5]
tried to show that CFM and DM were going through
exactly the same sequence of steps. Some engineers,
eventually able to write Fortran programs, concluded
that the methods had similar capabilities and selecting
one or the other was a matter of taste. (Most structures
groups, upholding tradition, opted for the CFM.) But
the few engineers who tried implementing both noticed a
big difference. And that was before the DSM, which has
no dual counterpart under the decomposition (2), ap-
peared.

The paradox is explained in Section 4 of Ref. [1]. It is
also noted there that Eqgs. (2) is not a particularly useful
state decomposition. A better choice is studied in Sec-
tion 2 of that paper; that one permits all known methods
of classical MSA, including the DSM, to be derived for
skeletal structures as well as for a subset of continuum
models.

7. Interlude II — questions: 1956-1959

Interlude I was a silent period dominated by the war
blackout. Interlude IT is more vocal: a time of questions.

An array of methods, models, tools and applications is
now on the table, and growing. Solid-state computers,
Fortran, ICBMs, the first satellites. So many options.
Stiffness or flexibility? Forces or displacements? Do
transition matrix methods have a future? Is the CFM—
DM duality a precursor to general-purpose programs
that will simulate everything? Will engineers be allowed
to write those programs?

As convenient milestone this outline takes 1959, the
year of the first DSM paper, as the beginning of Act I11.
Arguments and counter-arguments raised by the fore-
going questions will linger, however, for two more
decades into diminishing circles of the aerospace com-
munity.

8. Act III — answers: 1959-1970

The curtain of Act 111 lifts in Aachen, Germany. On 6
November 1959, M.J. Turner, head of the Structural
Dynamics Unit at Boeing and an expert in aeroelasticity,
presented the first paper on the DSM to an AGARD
Structures and Materials Panel meeting [6]. (AGARD is
NATO’s Advisory Group for Aeronautical Research
and Development, which had sponsored workshops and
lectureships since 1952. Bound proceedings or reports
are called AGARDographs.)

8.1. A path outside the forest

No written record of Ref. [6] seem to exist. None-
theless it must have produced a strong impression since
published contributions to the next (1962) panel meeting
kept referring to it. By 1960 the method had been ap-
plied to nonlinear problems [33] using incremental
techniques. In July 1962 Turner et al. presented an ex-
panded version of the 1959 paper, which appeared in an
AGARDograph volume published by Pergamon in 1964
[7]. Characteristic of Turner’s style, the introduction
goes directly to the point:

“In a paper presented at the 1959 meeting of the
AGARD Structures and Materials Panel in Aa-
chen, the essential features of a system for numer-
ical analysis of structures, termed the DSM, were
described. The characteristic feature of this partic-
ular version of the DM is the assembly procedure,
whereby the stiffness matrix for a composite struc-
ture is generated by direct addition of matrices as-
sociated with the elements of the structure”.

The DSM is explained in six text lines and three equa-
tions:

“For an individual element e the generalized nodal
force increments {AX*} required to maintain a set
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of nodal displacement increments {Au} are given
by a matrix equation

{AX“} = K {Au} 3)

in which K¢ denotes the stiffness matrix of the indi-
vidual element. Resultant nodal force increments
acting on the complete structure are

{AX} =3 {AX‘} = K{Au} )

wherein K, the stiffness of the complete structure, is
given by the summation

K=> K (5)

which provides the basis for the matrix assembly
procedure noted earlier”.

Knowledgeable readers will note a notational glitch.
For Eq. (5) to be correct matrix equations, K¢ must be
an element stiffness fully expanded to global (in that
paper: “basic reference’’) coordinates, a step that is
computationally unnecessary. A more suggestive nota-
tion used in present DSM expositions is K =
ST(L)TKeL¢, in which L¢ are Boolean localization ma-
trices. Note also the use of A in front of ¥ and X and
their identification as “increments”. This simplifies the
extension to nonlinear analysis, as outlined in the next
paragraph:

“For the solution of linear problems involving
small deflections of a structure at constant uniform
temperature which is initially stress-free in the ab-
sence of external loads, the matrices K¢ are defined
in terms of initial geometry and elastic properties
of the materials comprising the elements; they re-
main unchanged throughout the analysis. Problems
involving nonuniform heating of redundant struc-
tures and/or large deflections are solved in a se-
quence of linearized steps. Stiffness matrices are
revised at the beginning of each step to account
for charges in internal loads, temperatures and geo-
metric configurations”.

Next are given some computer implementation de-
tails, including the first ever mention of user-defined
elements:

“Stiffness matrices are generally derived in local

reference systems associated with the elements (as

prescribed by a set of subroutines) and then trans-
formed to the basic reference system. It is essential
that the basic program be able to accommodate ar-
bitrary additions to the collection of subroutines
as new elements are encountered. Associated with
these are a set of subroutines for generation of
stress matrices S relating matrices of stress compo-

nents ¢° in the local reference system of nodal dis-
placements:

{o°} = 5°{u} (6)

The vector {ii} denotes the resultant displacements
relative to a local reference system which is at-
tached to the element. ... Provision should also be
made for the introduction of numerical stiffness
matrices directly into the program. This permits
the utilization and evaluation of new element rep-
resentations which have not yet been programmed.
It also provides a convenient mechanism for intro-
ducing local structural modifications into the analy-

(ST}

S1S.

The assembly rule in Eqgs. (3)—(5) is insensitive to
element type. It work the same way for a 2-node bar, or
a 64-node hexahedron. To do dynamics and vibration
one adds mass and damping terms. To do buckling one
adds a geometric stiffness and solves the stability
eigenproblem, a technique first explained in [33]. To do
nonlinear analysis one modifies the stiffness in each
incremental step. To apply multipoint constraints the
paper [7] advocates a master-slave reduction method.

Some computational aspects are missing from this
paper, notably the treatment of simple displacement
boundary conditions, and the use of sparse matrix as-
sembly and solution techniques. The latter were first
addressed in Wilson’s thesis work [34,35].

8.2. The fire spreads

DSM is a paragon of elegance and simplicity. The
writer is able to teach the essentials of the method in
three lectures to graduate and undergraduate students
alike. Through this path the old MSA and the young
FEM achieved smooth confluence. The matrix formu-
lation returned to the crispness of the source papers
[2,3]. A widely referenced correlation study by Gallagher
[36] helped dissemination. Computers of the early 1960s
were finally able to solve hundreds of equations. In an
ideal world, structural engineers should have quickly
razed the forest and embraced DSM.

It did not happen that way. The world of aerospace
structures split. DSM advanced first by word of mouth.
Among the aerospace companies, only Boeing and Bell
(influenced by Turner and Gallagher, respectively) had
made major investments in DSM by 1965. Among aca-
demic institutions the Civil Engineering Department at
Berkeley become a DSM evangelist through Clough,
who made his students — including the writer — use DSM
in their thesis work. These codes were freely dissemi-
nated into the non-aerospace world since 1963. Martin
introduced the DSM at Washington, and Zienkiewicz,
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influenced by Clough, at Swansea. The first textbook on
FEM [37], which appeared in 1967, makes no mention of
force methods. By then the application to nonstructural
field problems (thermal, fluids, electromagnetics,. . .) had
begun, and again the DSM scaled well into the brave
new world.

8.3. The final test

Legacy CFM codes continued, however, to be used at
many aerospace companies. The split reminds one of
Einstein’s answer when he was asked about the reaction
of the old-guard school to the new physics: “we did not
convince them; we outlived them”. Structural engineers
hired in the 1940s and 1950s were often in managerial
positions in the 1960s. They were set in their ways. How
can duality fail? All that is needed are algorithms for
having the computer select good redundants automati-
cally. Substantial effort was spent in those “‘structural
cutters” during the 1960s [32,38].

That tenacity was eventually put to a severe test. The
1965 NASA request-for-proposal to build the NA-
STRAN finite element system called for the simulta-
neous development of Displacement and Force versions
[39]. Each version was supposed to have identical
modeling and solution capabilities, including dynamics
and buckling. Two separate contracts, to MacNeal—
Schwindler and Martin—-Marietta, were awarded ac-
cordingly. Eventually the development of the Force
version was cancelled in 1969. The following year may
be taken as closing the transition depicted in Fig. 2, and
as marking the end of the FM as a serious contender for
general-purpose FEM programs.

9. Epilogue — revisiting the past: 1970—date

Has MSA, now under the wider umbrella of FEM,
attained a final form? This seems the case for general-
purpose FEM programs, which by now are truly “1960
heritage” codes.

Resurrection of the CFM for special uses, such as
optimization, was the subject of a speculative technical
note by the writer [40]. This was motivated by concerted
efforts of numerical analysts to develop sparse null-space
methods [41-45]. That research appears to have been
abandoned by 1990. Section 2 of [26] elaborates on why,
barring unexpected breakthroughs, a resurrection of
CFM is unlikely.

A more modest revival involves the use of non-CFM
flexibility methods for multilevel analysis. The structure
is partitioned into substructures and then into subdo-
mains, each of which is processed by DSM; but the
subdomains are connected by Lagrange multipliers that
physically represent node forces. A key driving appli-
cation is massively parallel processing in which subdo-

mains are mapped on distributed-memory processors
and the force-based interface subproblem solved itera-
tively by finite element tearing and interconnecting
(FETI) methods [46]. Another set of applications in-
clude inverse problems such as system identification and
damage detection. Pertinent references and a historical
sketch may be found in a recent article [47].

The true duality for structural mechanics is now
known to involve displacements and stress functions,
rather than displacements and forces. This was discov-
ered by Fraeijs de Veubeke in the 1970s [48]. Although
extendible beyond structures, the potential of this idea
remains largely unexplored.

10. Concluding remarks

The patient reader who has reached this final section
may have noticed that this is a critical overview of MSA
history, rather than a recital of events. It reflects per-
sonal interpretations and opinions. There is no attempt
at completeness. Only what are regarded as major
milestones are covered in some detail. Furthermore
there is only spotty coverage of the history of FEM itself
as well as its computer implementation; this is the topic
of an article under preparation for Applied Mechanics
Reviews.

In particular, contributions from the 1938-1947
“Interlude” period will be examined in more detail in
that review, including some largely forgotten publica-
tions pointed out by readers of a draft of this article. To
date the best summary of the early history of FEM from
circa 1800 B.C. (Egyptian contributions to geometry)
through 1970, is given in Chapter 1 of the textbook by
Martin and Carey [49].

This article can be hopefully instructive in two re-
spects. First, matrix methods now in disfavor may come
back in response to new circumstances. An example is
the resurgence of flexibility methods in massively par-
allel processing. A general awareness of the older liter-
ature helps. Second, the sweeping victory of DSM over
the befuddling complexity of the “matrix forest” period
illustrates the virtue of Occam’s proscription against
multiplying entities: when in doubt chose simplicity.
This dictum is relevant to the present confused state of
computational mechanics.
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CHAPTER TWO

APPROXIMATION TECHNIQUES

2.1 Methods of Weighted Residual

Methods of weighted residual are useful to obtain approximate solutions to a
differential governing equation. In order to explain the methods, we consider the
following sample problem:

{j;‘;—uz—mz, f<ae<l (2.1.1)
w(0) =0, and u(1}) =0

The first step in the methods of weighted residual is to assume a trial function which
contains unknown coefficients to be determined later. For example, a trial function,
# = az(l — z), is selected as an approximate solution to BEq. (2.1.1). Here, ~ denotes
an approximate solution which is usually different frorn the exact solution. The trial
function is chosen here such that it satisfies the boundary conditions (i.e., #(0) = 0
and #(1) = 0), and it has one unknown coefficient a to be determined.

In general, accuracy of an approximated solution is dependent upon proper
selection of the trial function. However, a simple form of trial function is selected for
the present example to show the basic procedure of the methods of weighted residual.
Once a trial function is selected, residual is computed by substituting the trial function
into the differential equation. That is, the residual R becomes

R:%——ﬁ-{aﬂ::—za—»am(l—-z)—{-w (2.1.2)
Because @ is different from the exact solution, the residual does not vanish for all
values of z within the domain. The next step is to determine the unknown constant a
such that the chosen test function best approximates the exact solution. To this end,
a test (or weighting) function w is selected and the weighted average of the residual
over the problem domain is set to zero. That is,

1 1 2~
I:/ wRda::-:/ w(é—z—ﬁ+z)dz
o 0 dz
1

= j w{—2a —az(l—-z)+ z}dz =0 (2.1.3)
9

31
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Table 2.1.1 Comparison of Solution to Eq. (2.1.1) 2t x=0.5

Exact Solution Collocation  Least Squares  Galerkin

0.0566 0.0556 0.0576 0.0568

The next step is to decide the test function. The resulant approximate solution
differs depending on the test function. The methods of weighted residual can be
classified based on how the test function is determined. Some of the methods of
weighted residual are explained below. Readers may refer to Refs [1-3] for other
methods.

1. Collocation Method. The Dirac delta function, 6(z — z;), is used as the test
fupction, where the sampling point z; must be within the domain, 0 < z; < L.
In other words,

w = §(x — i) (2.1.4)

Let x; = 0.5 and we substitute the test function into the weighted residual,
Eq. (2.1.3), to find @ = 0.2222. Then, the approximate solution becomes
it = 0.2222z(1 — z).

9. Least Squares Method. The test function is determined from the residual such
that ’

Applying Eq.(2.1.5) to Eq. (2.1.2) yields w = —~2—&(1—z). Substitution of the
test function into Eq. (2.1.3) results in a = 0.2305. Then & = 0.23082(1 — ).

3. Qalerkin’s Method. For Galerkin’s method, the test function comes from the
chosen trial function. That is,

dii
w= - {(2.1.6)
For the present trial function, w = z(1 — z). Applying this test function to
Eq. (2.1.3) gives a = 0.2272 so that & = 0.2272z(1 — z). Comparison of these
three approximate solutions to the exact solution at z = 0.5 is provided in Table
9.1.1. As seen in the comparison, all three methods result in reasonably accurate
approximate solutions to Eq. (2.1.1).

In order to improve the approximate solutions, we can add more terms io
the previously selected trial function. For example, another trial function is & =
a;z(l — z) + apz?(1 — z). 'This trial function has two unknown constants to be
determined. Computation of the residual using the present trial function yields

R=ay(—2—z+2%) +ay(2 -6z —2" +2°) +z (2.1.7)

We need the same number of test functions as that of unknown constants so that the
constants can be determined properly. Teble 2.1.2 summarizes how to determine test
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Table 2.1.2 Test Functions for Methods of Weighted Residual

Method Description

Collocation w; = 6{z — zi), i= 1,2,..,n

where z; is a point within the domain

Least Squares w; = OR/Ba;, i=1,2,..,m,
where R is the residual and

a; is an unknown coefficient in the trial function

Galerkin w; = OifBa;, i=1,2,...n

where # is the selected trial function

functions for a chosen trial function which has n unknowns coefficients. Application
of Table 2.1.2 to the present trial function results in the following test functions for
each method.

Collocation Method : wy = 6(z — 1), w2 = §{z — za) (2.1.8)
Least Squares Method : wy =—2—-2+ 22, wp=2-6z—z 4 ® (2.1.9)
Galerkin’s Method : wy = z(l—z), Wy = 231 —z) (2.1.10)

For the collocation method, ) an &3 must be selected such that the resultant weighted
residual, ie. Eq. (2.1.3), can produce two independent equations to determine
unknowns a; and a; uniquely. The least squares method produces a symmetric mabrix
regardless of a chosen trial function. Example 2.1.1 shows symmetry of the matrix
resulting from the least squares method. Galerkin’s method does not result in a
symmetric matrix when it is applied to Eq. (2.1.1). However, Galerkin’s method may
produce a symmetric matrix under certain conditions as explained in the next section.

& FExample 2.1.1 A differential equation is written as
Luy=f (2.1.11)
where [ is a linear differential operator. A trial solution is chosen such that
n
i=) aigi (2.1.12)
i=1l

in which g; is a known function in terms of the spatial coordinate system and it
is assumed to satisfy boundary conditions. Substitution of Eq. {(2.1.12) into Eq.
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(2.1.11) and collection of terms with the same coefficient a; yield the residual as
seen below;

n
R=3 ahi+p (2.1.13)

1231

Here, h; and p are functions in terms of the spatial coordinate system. Test
functions for the least squares method are

wy=hi, i=1,2,...,m (2.1.14)

The weighted average of the residual over the domain yields the matrix equation

n
I=]ijdQ=ZAijai“bj=D; i=12...,n (2.1.15)
¢}

i=]

where

Agj = ]ﬂh,-h,-dﬂ (2.1.16)

Equation (2.1.16) shows that A;; = Aj; {symmetzy). I

2.2 Weak Formulation

We consider the previous sample problem, Eq. (2.1.1), again. The formulation
described in the preceeding section is called the sirong formulation of the weighted

residual method. The strong formulation requires evaluation of f01 w(d?i/0z%)dz,
which includes the highest order of derivative term in the differential equation. The
integral must have a non-zero finite value to yield a meaningful approximate solution
to the differential equation. This means a trial function should be differentiable twice
and its second derivative should not vanish.

S0 as to reduce the requirement for a trial function in terms of order of
differentiability, integration by parts is applied to the strong formulation. Then Eq.

(2.1.3) becomes
1 25
I:] w(é——g —ﬁ+z)dz
v} dz?

e dwdi dil’
= _ - - —_— faed 2.2.
'/0 ( T da wu—i—mw)d:ﬂ—]— [wdr:la 0 (2.2.1)

As seen in Eq. (2.2.1), the trial function needs the first order differentiation instead
of the second order differentiation. As a result, the requirement for the trial function
is reduced for Eq. (2.2.1). This formulation is called the weak formulation.

Weak formulation has an advantage for Galerkin’s method where test functions
are obtained directly from the selected trial function. if a governing differential equa-
tion is the self-adjoint operator, Galerkin’s method along with the weak formulaiion
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Ty & T
| hi ihm

Figure 2.3.1 Piecewise Linear Functions

Figure 2.3.2 Piecewise Linear Trial Fanction

results in a symmetric matrix in terms of unknown coefficients of the trial function.
Using a trial function 2@ = az(l — z) for the weak formulation, Eq. (2.2.1) resuits
in the same solution as obtained from the sirong formulation as expected. However,
when a piecewise function is selected as a trial function, we see the advantage of the
weak formulation over the sirong farmulation.

2.3 Piecewise Continuous Trial Function

Regardless of the weak or strong formulation, the accuracy of an approximate
solution so much depends on the chosen trial function. However, assuming a proper
trial function for the unknown exact solution is not an easy task. This is especially
true when the unknown exact solution is expected to have a large variation over
the problem domain, the domain has a complex shape in two-dimensional or three-
dimensional problems, and/or the problem has complicated boundary conditions. In
order to overcome these problems, a trial function can be described using piecewise
continuouns funciions.

Consider piecewise linear functions in an one-dimensional domain as defined
below:

(zig1 — @) hipy forziSzsein (2.3.1)
0 otherwise

(:L'—-I,’_l)/hg for g1 Sz
qb,(z) = {

The function defined in Eq. (2.3.1) 1s plotted in Fig. 2.3.1 and Example 2.3.1
illustrates the use of the function as a trial fupetion.
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& Example 2.3.1 Consider the same problem as given in Eq. (2.1.3). Itis
rewritten here

{%—u“——m, J<r<l
(0) =90, and u{l) =0

The weak formulation is also rewritten as below:

= [ ()

Yrodwdu dilt
= V/’G (-—E“m"a — Wit < $w>d$ + {wa] =0 {221)

a

(2.1.1)

A trial funetion is chosen such that i = a)¢1{2) + aa@2{z) in which a; and a»
are unknown constants to be deterrined, and ¢, and ¢ are defined as below:

3z, OS&:S%

$i(z) = z—h,égzgg (2.3.2)
g, ogmg%

golz) = { 3o~ 1, %Smsg {2.3.3)
3—3z, 5551

$1(z) and ¢a(z) are plotted in Fig. 2.3.2. Tor the present trial function,
the problem domain is divided into three subdomains and two piecewise linear
functions are used. Of course, more piecewise functions can be used along with
more subdomains to improve accuracy of the approximate solution. The trial
function can be rewritten as

01{3E), 0 S T S %
ii={ a1{2 ~3z)+ax(3z -1}, é <z<3 {2.3.4)
as(3 — 3z), <<l
Use of Galerkin’s method yields the following test functions
3z, < < %)
w; = <{ 2— 3z, % <r<j (2.3.5)
0, <zl
and
0, 05:5%
wy =<4 3z -1, é <z<% (2.3.8)
3—3z, 5<z<1
Averaged weighted residuals are
1 ~
dw; d
13:L ~ﬁ%gg—wﬁ+rmﬂsz (2.3.7)

I2 — f (_@g_‘tﬁ — w':‘b'. -+ zwz)d =0 (238)
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where [w2L]L is omitted because wy (G) =y (1)=wa{0)=w2(1)}=0. Substitution
of both trial and test functions into Eq. {2.8.7) and Eq. {2.3.8) respectively gives

I = /3 [-3(3a;) — 3z(3a1z} + z(3z)|dz+
0

2

/3 {3(—‘3111 +3a2) — (2 - 3x){(2ay ~ 3ayz 4+ dazz — az) (239)
L

1
+ (2 — 3z)ldx + ﬁ Odz

= — £.292¢; + 2.9444a; +0.1111 = H

i =
I :—-[ Oda:—i-f [~3(—3a; + 3aa)
1

0 3

— {3z — 1)(20; ~ 3a12 + 3027 — as) + z(3z — 1)]dz+ (2.3.10)

j; [3(—3as) — (3 — 3z)(3az — 3aqz) + z(3 — 3z))dz

3

=2 94dda, — 6.2222a7 +0.2222 = 0

Solutions for a; and @g ate dy = (1.0488 and @y = 0.0569 from Eq. (2.3.9)
and Eq. {2.3.10). That is, the approximate solution is % = 0.0448¢,(z) +
0.0569¢s(z). I the trial function Eq. (2.3.4) were used for the strong

formulation Eg. (2.1.3), it would not give a reasonable, approximate solution
Eh .
because %} vanishes completely over the domain. i

9.4 Galerkin’s Finite Element Formu_iation

As seen in the previous section, use of piecewise continuous functions for the trial
function has advantages. As we increase the number of subdomains for the piecewise
functions, we can represent a comptlex function by using sum of simple piecewise linear
functions. Later, the subdomains are called finite elements. From now on,” used to
denote a trial function is omitted unless there is any confusion.

“his section shows how to compute weighted residual in a systematic manner
using finite elements and piecewise continuous functions. In the previous section, the
piecewise continuous functions were defined in terms of the generalized coefficients
(ie. a3, as, ete.). For a systematic formulation, the piecewise continuous functions
are defined in terms of nodal variables.

Consider a subdomain or a finite element shown in Fig. 2.4.1. The element has
two nodes, one at each end. At each node, the corresponding coordinate value {z; or
zi41) and the nodal variable (u; or Uiy} are assigned. Let us assume the unknown
trial function to be

uw=7C1z+c (2.4.1}
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I
U Upag
Figure 2.4.1 Two-Node Linear Element
We want to express Eq. (2.4.1) in terms of nodal variables. In other words, ¢;

and ¢» need to be replaced by u; and u;41. To this end, we evaluate v at ¢ = z; and
T = 2:41. Then

u(zi) = cazi + 2 = Ui (2.4.2)
u(m;.;,]) = 1 %i41 + €2 = Uigl (2.4.3}

Solving Eq. (2.4.2) and Eq. {2.4.3) sirnultaneously for ¢, and ¢; gives

Yige] — Ui
o = 2 (2.4.4)
Tipl — T
Wi iat — Uig1 Ti
= LT L (2.4.5)
Tiyl =~ Ti

Substitution of Bq. {2.4.4) and Eq. (2.4.5) back into Eq. (2.4.1) and rearrangement
of the resultant expression result in

v = Hy(2)u + Ha(z)tig {2.4.6)
where
Hi(z) = E-;l—“—"i (2.4.7)
Hy(z) = - ;i‘"’* (2.4.8)
hi = zip1 — (2.4.9)

Equation (2.4.6) gives an expression for the variable u in terms of nodal variables,
and Eq. (2.4.7) and Eq. (2.4.8) are called linear shape functions. The shape functions
are plotted in Fig. 2.4.2. These functions have the following properties:

1. ‘The shape function assotiated with node i has a unit value at node ¢ and vanishes
at other nodes. That 1s,

Hi(ze) =1, Hi(ziz1) =0, Ho(z:) =0, Ha(zip1) =1 (2.4.10)
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Hfz) Hyfz)

Figure 2.4.2 Linear Shape Functions

elemy! elemi?  elemid
—rt
=0 xaz% 3:3:% 7,24
Uy ty U W

Figure 2.4.3 Finite Element Mesh With 3 Linear Elements

9. Sum of all shape functions is unity.

2
S Hi(z) =1 (2.4.11)

i=1

These are important properties for shape functions. The first property, Eq.
(2.4.10), states that the variable u must be equal to the corresponding nodal variable
at each node (ie. u(z;) = u; and u(zi41) = iy s enforced in Iq. (2.4.2) and Eq.
(2.4.3)). The second property, Eq. (24.11), tells that the variable u can represent

a uniform solution within the element. If the solution remains constant within the
dlement, @ = U; = uj41. Substitution of this condition into Eq. (2.4.6) gives

w = {H (z)+ Ho(e)jui = (2.4.12)
Equation {2.4.12) results in the second property of shape functions, Eq. (2.4.10).

&% Example 2.4.1 We solve the same problem as given in Example 2.3.1
using the linear finite elements. The weighted residual can be written as

L. [T dwdu !
I= Y E  putzwldr+ |dw] =0 2.4.13
?_‘;/ (dﬂ:dw * ) +{ L ( )
for 1 clements. I the problem domain is discretized into three equal size of
elements, i.e. n = 3, Fig. 24.3 shows the corresponding finite element mesh.
Consider the ith element (ie. i=1, 2, o7 3). The integral for this element is

Tits
/ (_.9!39!3 —wut mw) dz (2.4.14)

i
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The trial function u is expressed as
u= Hy(z)u; + Ho{zhui (246)

and test functions for Galerkin’s method are wy = Hy(z) and wy = Ha{z).
Putting these v and w into Eq. (2.4.13) gives

[ (Y (i fom)ee {5
. f * o { o } ds (2.4.15)

where H} denotes Ejﬁ—ﬂ and H; is given in Eq. (2.4.7) and Bq. {2.4.8).

Computation of these integrals finally yields

_{%#"é —ﬁ+%ﬂH u }+{%‘($f+1+23f)} (2.4.16)

1 I 1 hj i hi . 3
b v v +F Uit1 B(2ziga + i)

For each element, Eq. {2.4.16) can be written as

Element #1

[Gaut zeed] e {0 (2417
Element #2

[2%as 2 e { b+ {38;;;} (2.4.18)
Element #3

[Fui 2e] sl {0im) (2:419)

As shown in Eq. {2.4.13), we need to sum Egs {2.4.17) through (2.14.19). Each
clement has different nodes associated with it. As a result, we expand each
equation such that the equation has 2 matrix and a vector of size m which is
the total number of degrees of freedom in the system. For the present problem,
m = 4. The number of total degrees of freedom is the same as the total number
of nodes because each node has one degree of freedom for the present problem.
Rewriting Eq. (2.4.17) for the expanded matrix and vector gives

~3.111 29444 0 O Uy 0.0185
2044 3111 0 O o 0.0370
0 0o 0 olus(T) O (2.4.20)
Y 0 0 0 [#73 0
Similarly, Eq. (2.4.18) and Eq. {2.4.19) can be rewritten as
G 0 0 0 Uy +;
0 —3.111 26444 O Uz 0.0741
0 20444 —31111 0 Yus [T ) 00926 (2.4.21)
G 0 0 0 Ug 0
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00 0 0 U1 0
0 0 0 0 ua 0
0 0 —3.1111 29444 | Yu [ ) 0.1206 (24.22)
0 0 209444 31111 1Ly 0.1481
Adding directly Egs. (2.4.20) through {2.4.22) results in
—3.1111 2.9444 0 0 Uy
20444 --6.2222 2.9444 0 Ug
0 29444 -6.2222 2.9444 Us
0 0 2.0444 —3.31111 Ug
0.0185 — v/(0)
0.1111 .
0.2222 =1 (2.4.23)

0.1481 + /(1)

The Neuman boundary conditions are added to the right-hand side vector from
Eq. (2.4.13). For the present problem, the Dirichlet boundary conditions atre
provided at both ends (le. up == 0 and uy = 0). Therefore, the Neumann
boundary conditions (i.e. #'(0) and u'(1)) are not provided. Equation (2.4.23)
can be solved with the given boundary conditions, u; = 0 and uq = 0, to
find the rest of nodal variables and unknown Neumann boundary conditions.
In actual finite element programming, Eqgs (2.4.17) through (2.4.19) are directly
summed into Eq. (2.4.23) without using Eqgs (2.4.20) through {2.4.22). Equations
(2.4.20) through (2.4.22) are used here only to help the conceptual understanding
of the assembly process. Furthermoare, in computer programming, unknown
nodal values, called the primary variables, are solved first and then the unknown
boundary conditions are solved later. To this end, Eq. (2.4.23) is modified with
the known boundary coaditions.

9.0444 —6.2222 2.9444 0 up { _ —{.1111 (2.4.24)
0 2.9444 —6.2222 2.9444 ug —0.2222 o
0 0 G 1 Uy 0

The first and last eguations in Bq. (2.4.23) are replaced by the Dirichlet
boundary conditions. From Eq. {2.4.24), the solution gives u; = 0, us = 0.0448,
ugz = 0.0869, and ua = 0. These nodal solutions can be substituted into Eq.
{2.4.23) to find w'(0) and w/(1). Once the nodal variables are determined,
the solution within each element can be obtained from corresponding nodal
variables and shape functions. For example, the solution within the first element

(0 <z < byisu= Hi(z)u + Haz)us = 0.13442. 1
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2.5 Variational Method

The variational method is also commonly used to derive the finite element matrix
equation. We want to derive the functional for the sample problem

d?u
ST U= I, 0<axl 51
{Mmze,mdqumo (2.1.1)

The variational expression for Eq. (2.1.1) is

Y du du 1
8 = /ﬂ (—-@ +u— m)&udz + [a—x-éuln (2.5.1)

where & is the wveriational operator. The first term in the above equation is
the differential equation and the second term is the unknown Neumann boundary
condition (or natural boundary condition). Applying integration by parts to the first
term of Eq. (2.5.1) yields

1
5J = / (élf..c.i@_) + ufu — 26u> dz (2.5.2)
[} dﬂ: dz

Since the wvariational operator is commutative with both differential and integral
operators {i.e. dou) 6(3—‘;) and [éudz = & [ude), Eq. (2.5.2) can be written

dz
as
Loy /du? 1,
5.]—-5/0 {5(5) +§u —zu}da: (2.5.3)

The functional is obtained from Eq. (2.5.3) as

Loy fdu\? 1,
J——L {5(&;) +§u ~zu}dm (2.5.4)

Conversely, taking variation of Eq. (2.5.4) will result in the differential equation as
given in Eq. (2.1.1). Functional represents energy in many engineering applications.
For example, the total potential energy in solid mechanics is a functional. The solution
to the governing equation is obtained by minimizing the functional. The principle of
minimum {otal poleniial energy in solid mechanics is one example to determine the
stable equilibrium solution {4,5]. Energy principles are discussed in later chap-zrs.
For more detailed information for variational method, readers may refer to Refs [6-8].

2.6 Rayleigh-Ritz Method

The Rayleigh-Rilz method obtains an approximate solution to a differential
equation with given boundary conditions using the Tunctional of the equation. The
procedure of this technique can be summarized in two steps as given below:
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1. Assume an admissible solution which satisfies the Dirichlet boundary condition
(or essential boundary condition) and contains unknown coefficients.

9. Substitute the assumed solution into the functional and find the unknown
coefficients to minimize the functional.

& Example 2.6.1  In order to solve Eq. (2.1.1) using the Rayleigh-Rilz
method, we assume the following function as an approximate solation.

u = az(l - ) (2.6.1)

where @ is an unknown coefficient. This function satisfies the essential boundary
conditions. Substituting Eq. (2.6.1) into the functional, Eq. (2.5.4), yields

Lo [’ Qz—gmualxz-—xz
nga/a[(i—Qa:) 4ol - z)?)d jo (1—2)d (2.6.2)

Minimizing the functional with respect to the unknown coefficient a, ie. g—i.—:ﬂ,

yields a=0.2272. Therefore, the approximate solution is u = 0.2272z(1 — z)
which is the same as that obtained in Sec. 2.1 using Galerkin’s method. In order
to improve the approximate solution, we need to add more terms. Tor exampile,
we may assume

w=ayz(l — z) +axz’(l—2) {2.6.3)

where a; and az are two unknown coefficients. We substitute the expression
into the functional and take derivatives with respect to @ and @z in order to
minimize the functional.
aJ a7
=Y =0

—— =0 and

5o 5un (2.6.4)

This operation will give solutions for unknown coefficients a; and as. 1

2.7 Rayleigh-Ritz Finite Element Method

The Rayleigh-Rilz method can be applied to a problem domain using continuous
piecewise functions. As a result, the problem domain is divided into subdomains of
finite elemnents. For elements with two nodes apiece, the linear shape functions as
in Eqgs (2.4.7) and (2.4.8) cen be used for the Rayleigh-Ritz method. The following
example explains the finite element procedure using the Rayleigh-Ritz method.

& Example 2.7.1  We will solve Example 2.4.1 again using the Rayleigh-
Ritz method. The problem domain and its discretization are shown in Fig. 2.4.3.
The functional can be expressed for the discretized domain as

n Ti41 1 du 2 1 .
' ; -/x; {5 (HE) T T “‘}dz (2.7.1)
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wheren =3, 21 = 0, 22 = 1/3, 23 = 2/3 and z4 = 1 as shown in Fig. 2.4.3.

Using the linear shape functions, the solution u for the *h element is expressed

u= Hi(z) ui + Ha(z) wipr = [H}{'} (2.7.2)

where
[H] = [H, Ho (2.7.3)
{v'} = {w v}’ (2.7.4)

and H; and Ho are given in Egs (2.4.7) and (2.4.8). Substituting Eq. (2.7.2)
into the functional yields

[ (&) b [ o[ [

ST I - {u‘}TinTx}czm (27.5)
in which
{%g} - [% dﬁf] (2.7.6)

Evaluation of the integral in Eq. {2.7.5) gives

1 hy 1 4 ks
l{uz‘ u;+i}{ Tf;ﬁ iy f“+ 6]{ u }
2 “% te i

h.
U S )
"[ t ’+i}{%i{2$i~§-1+$i)} (2.7.7)

Here, the matrix expression in Eq. (2.7.7) came from the first and secord terms of
the right-hand side of Eq. (2.7.5) while the vector expression came from the last
term. Summing Eq. (2.7.7) over the total number of elements and substituting

proper values give the functional

3.1111  —2.0444 0 0 ay
;1 (s up s 128} —9.9444 62222 —2.9444 0 uy
Tttt Fr e 0 —9.0444 6.2222 -2.9444] Y ug
0 0 —~92.0444  3.1111 s
0.0185
0.1111
haal {ul Un Ug ‘Ll4} 02222 {278)
0.1481

The summation process for Eq. {2.7.8) is the same as explained in Example 2.4.1.
n order to find the solution, we need to minimize the functional with respect to
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the unknown nodal vector {u} = {u1 u2 ua u4}7. Invoking ET%T = { results

m

3.1111 —2.9444 O 0 u
_9.0444 62222 —2.9444 O s

0 —2.0444 62222 —2.0444] ) us
0 0 —29444 31111 1 Uuy
0.0185
0.1111 | _

~$ 09299 { =0 (2.7.9)
0.1481

Applying the boundary conditions ) = 0 and ug = 0 to Eq. (2.7.9) yields
Pg. (2.4.24) in Example 2.4.1. The soiutions for nodal variables atre u; = 0,
uy = 0.0448, uz = 0.0569, and uq = 0 again as before.




Some Simple Matrix Operations Using MatLab:

Define a matrix, A

> A = [12 3 ; 45 6]

Multiply by its transpose A"
>> B = A'*A
B =

17 22 217

22 29 36
27 36 45

Add 5 to the 2" row and 2" column of B(row,column)
>> B(2,2) = B(2,2) + 5
B =

17 22 27
22 34 36
27 36 45

Invert B as B!

>> inv (B)

ans =
1.3000 -0.1000 -0.7000
-0.1000 0.2000 -0.1000
-0.7000 -0.1000 0.5222
>> Binverse = inv (B)
Binverse =
1.3000 -0.1000 -0.7000
-0.1000 0.2000 -0.1000
-0.7000 -0.1000 0.5222

Evaluate matrix product BH'B'=1

>> Binverse' * B



ans =
1.0000 -0.0000 -0.0000

0.0000 1.0000 0.0000
-0.0000 -0.0000 1.0000

Extract the second column of B
>> C=B(1:3,2)
c =

22

34
36

Solve the equation A x = C by decomposition

>> x=B\C
% =
-0.0000
1.0000
-0.0000

Solve the equation A x = C by inversion

>> x=inv (B) *C

0.0000
1.0000
-0.0000



Use Elementary Functions to Solve Simple FE-Type Equations

function y = SpringElementStiffness (k)

%SpringElementStiffness This function returns the element stiffness
matrix for a spring with stiffness k.

The size of the element stiffness matrix

is 2 x 2.

o° 0o oe

=
Il
i
|
P
|
PO
o

function y = SpringAssemble (K, k,1,73)

%SpringAssemble This function assembles the element stiffness

% matrix k of the spring with nodes i and j into the
% global stiffness matrix K.

% This function returns the global stiffness matrix K
% after the element stiffness matrix k is assembled.
K(i,i) = K(i,1) + k(1,1);

K(i,3) = K(i,3) + k(1,2);

K(j,i) = K(j,1) + k(2,1);

K(j,3) = K(J,3) + k(2,2);

y = K7

function y = SpringElementForces (k,u)

%SpringElementForces This function returns the element nodal force
vector given the element stiffness matrix k
and the element nodal displacement vector u.

o

oe

y = k * u;
Solve:
4 1 -1 h =20
¢, =0p=10"|-1 (1+2) 2| &
4 -2 2|k =25

>> kl=SpringElementStiffness (le-06)
>> k2=SpringElementStiffness (2e-06)
>> K=zeros (3, 3)

>> K=SpringAssemble (K, k1l,1,2)

>> K=SpringAssemble (K, k2,2, 3)

>> g=zeros(3,1)

>> h=[20; 0; 25]

>> g = g - SpringElementForces (K, h)



>> K
>> h
>> h(2,1) = gq(2,1)/K(2,2)

>> g=K*h

Full Solution Including Output

>> kl=SpringElementStiffness (le-06)

kl =
1.0e-006 *
1.0000 -1.0000
-1.0000 1.0000

>> k2=SpringElementStiffness (2e-06)
k2 =
1.0e-005 *

0.2000 -0.2000
-0.2000 0.2000

>> K=zeros (3, 3)

K =
0 0 0
0 0 0
0 0 0

>> K=SpringAssemble (K, k1,1,2)

K =
1.0e-006 *
1.0000 -1.0000 0
-1.0000 1.0000 0
0 0 0

>> K=SpringAssemble (K, k2,2, 3)

K =
1.0e-005 *
0.1000 -0.1000 0
-0.1000 0.3000 -0.2000

0 -0.2000 0.2000



>> g=zeros(3,1)

q =

20
0
25

>> g = g - SpringElementForces (K, h)

q =
1.0e-004 *
~0.2000
0.7000
~0.5000
>> K
K =
1.0e-005 *
0.1000 -0.1000 0
~0.1000 0.3000 -0.2000
0 -0.2000 0.2000
>> h
h =
20
0
25

>> h(2,1) = gq(2,1)/K(2,2)

h =
20.0000
23.3333
25.0000

>> g=K*h

q =

1.0e-005 *



>>

-0.3333
0.0000
0.3333
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COMPUTATIONAL GEOMECHANICS (GeoEE 557)
Coupled Processes in Geologic Media

3. Hydraulic Behavior (H) Flow
3.1. Conservation of mass and Darcy’s law
3.2. Steady behavior
3.2.1. 1-dimensional elements
3.2.2. 2-dimensional behavior — 2-D triangular, and 2-D isoparametric elements
3.3. Transient behavior
3.3.1. Time stepping methods
3.4. Dual porosity flows
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Figure 2.3.1.2 Form of global shape functions.

Note for node 12 the shape or basis function has

a magnitude of unity at node 12 and zero at all
other nodes in the grid.
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Summary of Notation — Diffusion Equation for Darcy Flow

Tensor:
y
oz
ap B _ : _] s _ Bk 57
Aat+V( DVp)=0 with V= oy and VV—/x2+Ay2+ 5,2 (1)
%
Jz
Matrix:
7
oz
Ap—-V'DVp=0 with V= 3? , and V-V=V'V=V’ (2)
dy
2
Jz
Parameters:

A = [ (reservoir compressibility or storage); D = — (permeability /dynamic viscosity) 3)

= | >

Finite Element Statement

Galerkin — Pre-weight by b” and integrate over the volume of the domain:
[ 67145~ V"D Vp =0]dV (4)
#

Note that we can define pressures at a point, p, and pressure gradients, Vp or p, in terms of nodal

pressures, p , as,

p=bp (5)

p=Vp=Vbp=ap (6)

Substituting the nodal pressures of equation (5) and the gradient of pressure of equation (6) into equation
(4) yields

b'[Ab p—V'Dap=0]dV (7)
v
And noting the standard result for transposed matrices that b" V' =[V b]" = a" yields on substitution

into equation (7).

[l"Abp-b"V' Dap=0]av ®)
g
that results in
[lb"abp—a'Dap=0]av ©)
14 S a K B

Yields

H+Ep=q (10)
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TRIANGULAL ELEMENT

y_"'].?."_‘:
<= jeTzed Q) 1
4
oh
D = [“w “fa] Koy = Ky 02 ”]:—[“ﬁ k‘J]{ah/wE
Ky Ky 1Y Ky Kyy /%
3""/3&
Chovse. slw.fzz'@mha'«a: h= a + bax + ¢y (3)
h -
g.; = b
v . @
9



lnw'fi‘ﬁ ©) h gue fre  coeffiuts (b)ard ) GF- 27,«4-47.&@-)

gu.!da:
o- A“ Af& AI} kiz
b -26 Ay Aun A "‘Jf - €7,
c As Az Ass s :
IA = Ba ditrrminodt of T efunhin (287 A, +% Ay + §; Az )
A= area of Wﬂ’{‘-

Retwnirg 4o (2) ws (4 ad vsiy @), P

fak/bxz rbj - | Az A Az { f (Q)
).ah/é A—” A‘B?. A"SB -
J
K= § a™pa 4V Since O ad D are cagft ower
e elowmssdt, ﬂuza are. Mﬁaﬂ.
K=(Cadadv = aDa (dV = a’2a Athdn
<=4, % 2a 2 Da- )



STANDALD BPRJULd

hy = ! >(J~ jj b

k—/‘\,___gj
B
“) | OGaany ) (g megl) (oo - miga) iy
o) ==l (99w (9= 92) (e~ o
¢ (emm25) (3¢ - ) (-2 Il
Bl = 28 = i(:lﬂJ l - *h:.f ! 3.!} *i-z}af.‘ "J’J
Ll [ 9 ! 3

_ZA = (XJU”‘_X‘"DJ ) - xb(kjm—n\}> “i'j;('xm*xj)



II.5 Inversion (Adjoint Matrix)

It can be shown that
a {adj a) = iajl (J1.11)

where laj is the determinant of the matrix a and adj a, called the adjoins
matrix. is the transpose of the matrix of cofuctors of the determinant.
Comparing (I1.10) and (II.11) we see that

a1 = 2di3 (1.12)
jal

from which it is clear that the inverse does not exist when {a} is zero, in which
case a js said to be singular.
To illustrate the method we shall determine the inverse of the matrix
1 Xt »
H= 1|1 x4 ¥ (11.13)

! Xm Ym

If we delete the pth row and. gth column from the determinant of the
matrix we obtain the minor H ;‘7, e.g. deleting row 3 and column 1 we have

R¢j Ji

Hy = (I1.14)

X3 Fi

The cofactor Hpq is the product of the minor and (—1)#+¢. When the
cofactors are written as a matrix and then transposed we have the adjoint
TRALTX

[ |xy ¥3 Xy » xi wif]
Xm Ym - Xm ¥m x§ i)
adjH = | - oo ool Y ana
I Fm 1 Ym I ¥
1 X5 1 Xi i Xi
| 11 Xm i Xm 1 xj| |

Forexample H}, of (11.14) is transposed to row I column 3. Expanding the

determinants we have

{xym—x nYyi) —{(Xim = Xm}i) {x1yy—X3¥8)
adj H={ —~0m—01) Om=—21) —(y—31) (1.16}
(xm—x1) —(xm—xi) (g —x3)

The inverse is obtained by dividing adj H by the determinant of H.
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[2:5] Fluid Flow and Pressure Diffusion
Recap
Isoparametric Elements
Numerical integration

2D and 3D elements
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THE FINITE ELEMENT METHOD

TasLE 8.1 .
ABRSCESAE AND WEGHT COEFFICIENTS OF THE
GaussiaN QUADRATURE FORMULA

1 ]
fixydx = Y HAa).
-1 j=1
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[2:7] Fluid Flow and Pressure Diffusion
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QOO0

(@

SUBROUTINE ELMT04 (D,UL,XL,IX,TL,S,P,NDF,NDM,NST, ISW)

IMPLICIT REAL*8 (A-H,0-Z)

QOO0 0000000000000000a0

C
C.. THREE NODED CONSTANT GRADIENT FLOW ELEMENT
C
C USER INFORMATION
C
C INPUT
C
C VAR FORMAT DESCRIPTION
C __________________________________________________________
C
C D(1) F10.0 HYDRAULIC CONDUCTIVITY
C D(2) F10.0 SPECIFIC STORAGE
C
LOCAL NODAL NUMBERING MUST BE COUNTER-CLOCKWISE
VARIABLES
NEL - NUMBER OF NODES PER ELEMENT
NDF - NUMBER OF DEGREES OF FREEDOM PER NODE
NST - NUMBER OF DEGREES OF FREEDOM PER ELEMENT (NEN*NDEF')
ISwW - FUNCTION CALL NO.
1 = READ ELEMENT SPECIFIC INPUT DATA
2 = PERFORM MESH CHECK
3 = FORM ELEMENT STIFENESS MATRIX - TANG
4 = EVALUATE ELEMENT STRESSES - STRE
5 = FORM CONSISTENT/LUMPED MASS MATRIX - CMAS/LMAS
6 = FORM LOAD VECTOR - FORM
OR EVALUATE NODAL FORCES - REAC
ARRAYS - GIVEN
UL (1,J) SPECIFIED HEAD BOUNDARY CONDITION FOR
DEGREE OF FREEDOM J (J=1, 3)
XL(I,Jd) COORDINATE IN THE I DIRECTION AT NODE J

EG. XL(1,3) IS X COORDINATE OF NODE K

ARRAYS - EVALUATED

A( ) A MATRIX
Cc( ) D MATRIX
S(I,J) CONDUCTANCE MATRIX S = AT*D*A DV
FOR ROW (VERTICAL) I AND COLUMN (HORIZ.) J
P(I) MODIFIED LOAD VECTOR FOR LOCAL DOF I (IGNORE)

FOR LMAS CALCULATION THE VECTOR LOCATIONS P(1l), P(2), P(3)
ARE USED FOR THE STORAGE VECTOR



CHARACTER*4 O, HEAD
COMMON /CDATA/ O,HEAD (20), NUMNP, NUMEL, NUMMAT, NEN, NEQ, IPR
COMMON /ELDATA/ DM, N,MA,MCT, IEL,NEL
DIMENSION D(2),UL(1,1),XL(NDM,1),IX(1),TL(1),S(NST,1),P (1)
1 +A(2,3),C(2,2)

C.... GO TO CORRECT ARRAY PROCESSOR
GO TO(1,2,3,4,5,3),ISW

C.... INPUT MATERIAL PROPERTIES

1 READ (5,1000) D(1),D(2)

WRITE (6,2000) D(1),D(2)

RETURN

MESH CHECKING FACILITY

RETURN

CONDUCTANCE MATRIX COMPUTATION

CONTINUE

EVALUATE TERMS IN THE CONDUCTIVITY

TENSOR ...I.E. THE D( ) MATRIX IN CLASS

AND PLACE THEM IN THE C(2,2) ARRAY

EVALUATE COEFFICIENTS IN A( ) MATRIX

COMPLETE TRIPLE MATRIX PRODUCT AT*D*A
AND PLACE THE RESULT IN THE S(3,3) ARRAY

PERFORM VOLUME INTEGRATION (*AREA)
BY EVALUATING THE DETERMINANT OF THE
COORDINATE MATRIX

END OF YOUR MODIFICATIONS

QOO0 waanQO

MODIFY LOAD VECTOR FOR BOUNDARY CONDITIONS
DO 320 1I=1,3

DO 320 J=1,3

320 P(I) = P(I) - S(I,J)*UL(1,J)

RETURN

END OF CONDUCTANCE MATRIX DETERMINATION
RETURN

LUMPED MASS COMPUTATION

CONTINUE

EVALUATE DETERMINANT OF NODAL COORDINATE MATRIX
TO DEFINE AREA (VOLUME) OF ELEMENT.

APPLY PRODUCT OF VOLUME AND STORAGE EQUALLY

TO EACH OF THE NODES IN ARRAY P(3).

ONONONOHNONONONC NGO Ne!

RETURN

C.... FORMATS FOR INPUT AND OUTPUT

1000 FORMAT (2F10.0)

2000 FORMAT (/5X, 'THREE NODED CONSTANT STRAIN ELEMENT', //
1 10X, '"HYDRAULIC CONDUCTIVITY ', 6X,E14.7,/
2 10X, 'SPECIFIC STORAGE ', 6X,E14.7,/)



END



FEAP SIX TRIANGULAR ELEMENTS-FLOW-STEADY

8 6 1 2 1 3
COORD
1 2 0.0 0.0
7 0 3.0 0.0
2 2 0.0 1.0
8 0 3.0 1.0
ELEM
1 1 1 4 2
2 1 1 3 4
3 1 3 5 4
4 1 5 6 4
5 1 5 8 6
6 1 5 7 8
MATE
1 4 MATERIAL 1
1.0 1.0
BOUN
1 1
2 1
7 1
8 1
FORC
1 1.0
2 1.0
7 0.0
8 0.0
END
MACR
TANG
FORM
SOLV
DISP
END

STOP



FEAP SIX TRIANGULAR ELEMENTS-FLOW-TRANSIENT
8 6 1 2 1 3
COORD

w o w o
O O O o
R PR OO
O O O o

o N
ON O N

ELEM

oUW
R = S S
(G C IS, IO IS
q 0o U W
oy s N

MATE
1 4 MATERIAL 1
1.0 1.0

BOUN

FORC

=
=
o o

END

MACR

DT 0.1
TANG

FORM

LMAS

LOOP 10
TIME

IMPL

SOLV

DISP

NEXT

END

STOP
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[3:1] Mass Transport
Introduction
Advection-Diffusion Equation
Sc+[K,+K,]Jc=q+R
Galerkin method
1D Example — stability

Transient response



COMPUTATIONAL GEOMECHANICS (GeoEE 557)
Coupled Processes in Geologic Media

5. Mass (Chemical) Transport (C) Transport
5.1. Conservation of mass and Fick’s law
5.2. Steady behavior
5.3. Transient behavior
5.4. Considerations of local equilibrium
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TRANSPOLT EQUATIOWNS
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MATE(x Folrt ol ERUATION

[Kp+kiler + 5¢c = %

Ka= § a'po dedy

K L 2V
g = ( &b Ax = volume of elomst
s - (&b dray <f

SoLvE As Liaght SISTEM 6F ERUATIONS
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lm]plcc-;t: A =1
T=¢t+4¢t
— % *
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Summary of Notation — Advection-Diffusion Equation

Tensor:
5 Yba
oc (= — i —lo v/ 10 0’
Aat—i-v (-DVe)=R with V=194 and V-V éxz_'_ Ayg—&- 622
V2
Matrix:

A¢=V'DVe=R-y'Ve with V=19t v=1yt, and V-V=V'V=V’

%z Vs

Finite Element Statement

Galerkin — Pre-weight by b” and integrate over the volume of the domain:

fQT[A(: ~V'DVe—R+v'Ve=0]dV

1%

Note that we can define concentrations, ¢, and concentration gradients, c,, in termos of nodal

concentration, c, as,

Substituting the nodal concentrations of equation (4) and the gradient of concentration of equation (5)

into equation (3) yields

fQT[AQQ'*YTDQQ*RﬂLXTQQ:O]dV
v

“4)
)

(6)

And noting the standard result for transposed matrices that b" V' =[V b]" = a’ yields on substitution

in equation (6).

and noting that R=0 R

Yields

()

@®)

)
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[3:2] Mass Transport

Sé+[K,+K,e=q+R
Recap B

2D Elements - heuristic
Stability
Upwind-weighting
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STABILITY REQUIREHENTE — GALERKIAS
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UPWIND WEGHTED EQUATIONS
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[3:3] Mass Transport

Sé+[K,+K,e=q+R
Recap B

Reactive transport
Sorption
First-order reactions

Multiple reactions



Reaction Rates

a_t- + V . (Cl‘ll) — V . (DZ‘VCZ') = RZ

For the reaction:

A+ B Z C

Forward rate = Fk[A][B]
Reverse rate = k[C]

At equilibrium: Forward rate = Reverse rate

k[A][B] = k[C]

wngm

)

3)

4
)

For closed system and one mole each of [A] and of [B], with k& =1 and &k, = 10, then:

[A][B] _ (1—X)* 10

C] X 1

And (1 — X) =[A] = [B] = 0.916 and X=[C] = 0.0839.

Implementation:
R, = —Kk[A][B] + Kk)[C]
R, = —k[A][B] + K)[C]
R. = +k[A][B] — k[C]
Generalized:

N . N o
R =—k'T]lc,/ 1% +k'T Jlc,/ 1"
j=1 j=1

Heats of reaction:
H,=RAH,
And heat balance requires:

oT

pcﬁ—l-v-(Tu)—V-()\VT):Hi

(6)

(7)

(8)

©)

(10)
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FIRST OLPOR BEACTION — SINGLGE COMPORENIT

Dissolutiom [ Precipitutin of Quarty
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2.4. THE RATE LAW
We can show experimentally that for the general irreversible reaction

A+2B+... -P+2Q...

reactants products
we can write the rate law,

d[A]

T ~k[APR[B]°[PI°IQJF. . . {2-1)
where
dfA] _ . , .
T time rate of change in molar concentration of species A,
k = reaction rate constant, and
a, b. p.q. ... = constants

In this book, [ ] is used to signify concentration in moles/liter. We may
use concentration units other than moles/liter in the rate law but in doing
so we should use the same concentration unit for each species and realize
that both the numerical value and units of the reaction rate constant will
differ from those found when molecular concentrations are used.

Using our knowledge of the stoichiometry of the reaction, that is, the
relative number of moles of species reacting and the relative number of
moles of products being formed as the reaction proceeds, we can state
that

diA] _1dEl _—d[F]_-1dIQ] 22
dt 2dt ~° dt 2 dt 77 )
because 1 mole of A reacts for every 2 moles of B that react, and so forth,
and 1 mole of P is formed for every mole of A that reacts, and so forth. We
can determine the reaction order from the rate law. The overall reaction
order is

a+b+p+qg... (2-3)
while the order with respect to A is a, the order with respect to Bis b, and
so forth. If the reaction is irreversible, thenp, q. . . .. the exponents of the
product concentration, are usually zero. For example, if

d[A]
—= = —k[A}[BJ?
y [Al[B]

then we would say that the reaction was first order with respect to A,
second order with respect to B, and third order overall. It is important to
note that reaction order is generally not determined by the stoichiometry
of the overall reaction. Laboratory experimentation is necessary to de-
termine the order.

The following example illustrates several points that are important for
a good understanding of the rate law.



Integrated forms of the rate law are very useful for analyzing rate data
to determine reaction rate constants and reaction order. Let us first
consider the irreversible reaction

A — products

which has the rate law

diAl_ _rap
g = kIA]

To determine the behavior of [A] as a function of time, we must integrate
the rate expression with respect to time. We will do this for several values
of the reaction order, n. When n = 0, the reaction is zero order, and

d[A]
dt

Upon integrating, we obtain

= ~k[A]® = ~k (2-4)

[A] = [A], —kt (2-5)

where [A], = the concentration of A att = C, that is, the initial concentration
of A. The half-life, t,,, or time for 50 percent of the initial concentration
to react can be obtained from Eq. 2-5 by setting [A] = 0.5 [A], when t =
t1.. Then

When n = 1, the reaction is first order, both with respect to A and
overall, and we can write,

diA)
dt

Rearranging Eq. 2-6 and solving the integral,

= ~k[A] (2-6)

B [ kar
[A] .
we find 14t °
In[A] = In (A], — kt (2-7)
oY
[A] = [Alge™ (2-8)

Examination of Eq. 2-7 suggests that the rate constantk may be determined
experimentally from a plot of In [A] versus t, which has a slope of —k.
Also, from Eq. 2-8, when [A] = 0.5 [A],, we find the half.life to be

N 0.693
12 k
If the reaction is greater than first order, then we can write
dlA] = —k[A]" {2-9)
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REACTION ALGORITHMS FOR MULTICOMPONENT SYSTEMS

Mathematical descriptions of reaction systems

The multicomponent, muiti-species systems typical of those which occur in porous media
regquire some special treatment, both because they involve multiple unknowns and because they
are usually nonlinear. The mathematical description used, however, will depend on what form
the reactions in the system are assumed to take. It is instructive to derive a general approach to
handle multicomponent, multi-species reactive systems. Formuiations for arbitrarily complex
reaction systems characterized by both equilibrium and non-equilibrium reactions have been
presented by Lichtner (1985). Lichtner (this volume), Friedly and Rubin (1992), Sevougian
et al. (1993), and Chilakapati (1995). A clear discussion of one possible way of doing so is
given by Chilakapati (1995). His approach begins with the most general case, a set of ordinary
differential equations for each species in the system and reactions between the species described
by kinetic rate laws. A system containing Ny species and N, reactions can be expressed as

dC
I-—=v-R. 1
T H
The raised dot indicates matrix multiplication. I is the identity matrix of dimension N %
N.or C is the vector of solute concentrations of length Niat, v is a matrix of dimension Nyor X
N,,and R is a vector of length N;. For example. the matrix v and the vector R have the form

v vz oo VLN R
Pay Va2 T VN R
Yo K . r R = 2 ()
UNiwl  YNip2 07 UNig Ny RN’

The multiplication of the identity matrix by the derivatives of the individual species concen-
trations results in an ODE of similar form for each of the species in the system.

As an example, consider an agueous system consisting of Ca*2, H* OH, CO;Z. HCOy,
H,COs, and CaCOs(s) (calcite). We ignore H,O for the sake of conciseness. In additon,
we assume that the following reactions occur, without yet specifying whether they are to be
considered equilibrium or kineticaily-controlled reactions,

CaCO; = Ca*?* +CO7* Ry (3)
HCO; = COj% + H* R; @)
H,CO; = CO72 +2HY  Rs (5)
H* 4+ OH™ = H;0 Rs. (6)

In the above equations R; symbolizes the rate expression for reaction i. We also make no
assumptions at this stage about whether the set of reactions included are linearly independent
(although the reactions listed above are). We have shown the reactions to be reversible here (thus
the symbol ==) but the results below apply whether the reactions are irreversible or reversible
since at this stage, one can think of the reaction rates as simply time-dependent expressions of
the mole balances inherent in a balanced chemical reaction. The reversibility or lack thereof
only determines whether the sign of the reaction rate can change. The term reversible is
generally used by thermodynamicists to refer to equilibrium reactions (Lichtner, this volume),
although we prefer to use it to refer to reactions which are sufficiently close to equilibrium
that the backward reaction is important. It is quite possible in a steady-state fiow system, for
example. for backward reactions to be important and yet not to be at equilibrium (e.g. Nagy et



al., 1991; Nagy and Lasaga, 1992; Burch et al., 1993). According to this definition, the term
irreversible is used for those reactions which proceed in only one direction (i.e. those that can
be represented with a unidirectional arrow, —).

For our example aqueous system, the rates for the individual species can be writien

d[H2CO05] = —Rs (7)

- K3 . (8)

= -~ Ry ®
diOH™]
dr
d[H"]
d:
d{Ca*?]
dr
d[C03%)
dt

In matrix form the system of equations becomes

= — Ry (10)

= R:+2Ry— R4 (1)

= R) (12)

= Ry 4+ R+ Ks. {13

B,
T
)

1=

!
[}
¥

oy

—

(14)

COoOO00O —
cCoo0o—~O
OO0 —0O0
COO—OOO
COoOmOOoO o
OO oCOOO
_-OCODOo O
i
——oo!l oo
—o-—oo !l o

— 0N CoCOoOo
|
e
-

L dr .

As written in Equation (14), the stoichiometric reaction matrix, v. is referred to as being in
canonical form (Smith and Missen, 1982; Lichtner, 1985; Lichtner, this volume). The system
of equations is partitioned into the first four rows where the associated species (H,CO3. HCOy,
CaC0;(s), and OH™) are involved in only one reaction while in the remaining three rows the
species are involved in multiple reactions. The first four species are referred to as secondary or
non-component species, while the last three are the primary or component species (Lichtner,
this volume). These are also referred to as basis species because they form a basis which spans
the concentration space. In this example, we have written all of the carbonate reactions using
the species CO;2 precisely so as to restrict all of the other carbonate species to involvement
in a single reaction. This is an essential first step in obtaining either the canonical formulation
(Lichtner, 1985; Lichtner, this volume) or to writing the reactions in tableawux form (Morel and
Hering, 1993), both of which assume that one is dealing with a set of linearly independent
reactions, but it is not essential for what follows below. The procedure will also work if,
for example, the formation of H2CO3 involved HY and HCO; rather than 2 H™ and CO:{E,
although we will not obtain the conserved quantities (total H™. total CO;E. etc.) found in the
tableaux method without additional manipulations.

The system of ODEs could be solved directly in the form of Equation (14} if the reactions
are all described with kinetic rate laws. Alternatively. one can apply a Gauss-Jordan elimination



process to the matrix v and simultaneously to the identity matrix I until there are no pivots left
(Chilakapati, 1995). The resulting transformed set of ODEs is now

d
M. 2C 20 R (15)
dt

which partitions the system of equations into N, ODEs associated with reactions and N
conservation laws with zero right-hand sides (i.e. no associated reactions). The number of
conservation laws or mole balance equations is equal to

Ne = Ny = rank of v = Nigr — N. (16)

N,. therefore, refers to the number of linearly independent reactions between the species in
the system. For the sake of clarity, we make the first N, rows of the matrix M the ODEs with
associated reactions and the next N rows the conservation equations, so that the left hand of
Equation (15) takes the form

M - My NN 4Gy T
, . dr
My o My NN, dCp,
) ar (17
My, vn o Myow, _
; ' ch-+H
el 5L
 My,enes 0 MNaNNeNe | LT ar

In our example. the Gauss-Jordan elimination is carried out on the the matrix v on the right
hand side of Equation (14) and the same row transformations are applied to the identity matrix,
1, yielding

" d[H2C03]™
]
J{HCOT]
o
diciboq

t
dloH™] | _
di
d]H*l
ol
d[Ca"’zl
di

L - d{CO{'zl b .
L dt o

—
OO o

(18)

OO OO —
_— D e DD — O
s (D = O 0D
co!l —~ooco
OO— OO0 0
D 0O O WD
gl = 2 B vun B o Y i I
coococolo

|
coocol oo

OO0 O
SOC

The stoichiometric reaction matrix, v*, now consists of a nonsingular 4 by 4 matrix (N, by
N,) and three rows of zeros corresponding to the N, conservation equations. Writing out the
ODEs in Equation (18), we find

d[H2CO;]

2 = s (19
T e -h, (20)
él-(-:%?g}-]- = —Ry (21)

d[OH™] = R, 22

dt



“Fabie 1. Tableaux for carbonate system, neglecting
H-O as a species and component.

Components
H*  Ca*? CO0;°
Species H,CO; 2 1
HCO; | 1
CaCOs 1 1
OH~ -l
Ht 1
Cat? 1
CO7? 1
and
d
— ([H*] + 2[H,COs] + [HCO;] — [OH7]) = 0 (23)
di
d
= (ICa*?]+ [CaCO3]) =0 (24)
d - -
= (€03 + [H,C03) + [HCOT] + [CaC0s]) = 0. 25)

From the example, it is apparent that we have eliminated the reactions in the equations originally
corresponding 1o the species HY, Ca*?, and CC);2 by making use of the relations in the first
four equations. The last three equations are mole balances for toral H*, Ca*?, and CO;2

TOTH® = [H*] — [OH"] + [HCO7] + 2[H2CO03) (26)
TOTCa™ = [Cat?] 4 [CaCOs) VX))
TOTCO;? = [CO;?] + [H,COs] + [HCOZ ] + [CaCO;). (28)

Note that the canonical form of the stoichiometric reaction matrix is identical to the
tableaux form popularized by Morel and coworkers (Morel and Hering, 1993; Dzombak and
Morel, 1990). By transposing the last three rows of the matrix M in Equation {17), we can
write the matrix in tableaux form (Table 1).

The procedure has yielded expressions for the total concentrations of the N, primary or
component species. A more general form is given by

Ny
TOT,=C,+ Y vw,X (29)

1=]

where C, and X, refer to the concentration of the primary and secondary species respectively.
Note that the number of secondary species is equal to N;, the number of linearly independent
reactions in the system (i.e. the rank of the matrix v). Equation (27) and Equaton (28)
are recognizable as the total concentrations of calcium and carbonate respectively. The total
concentration of H* is written in exactly the same form as the other equations, although its
physical meaning is less clear because it may take on negative values due to the negative
stoichiometric coefficients in the expression. The mole balance equation for total HT is just
the proton condition equation referred to in many aquatic chemistry textbooks. Oxidation-
reduction reactions are also easily handled with this method. If the redox reactions are written
as whole cell reactions, there is no need in any application not involving an electrical current

(see Lichmer, this volume) to introduce the electron as an unknown. Writing the reactions as
whole cell reactions allows redox reactions to be treated exactly like any other reaction.
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SUBROUTINE ELMTO5 (D,UL,XL,IX,TL,S,P,NDF,NDM,NST, ISW)
IMPLICIT REAL*8 (A-H,0-2)

ONONOHONONONONONONONONS!

THREE NODED CONSTANT GRADIENT TRANSPORT ELEMENT
USER INFORMATION
INPUT
VAR FORMAT DESCRIPTION
D(1) F10.0 DIFFUSIVITY OR DISPERSION
D(2) F10.0 HYDRAULIC COND/POROSITY
LOCAL NODAL NUMBERING MUST BE COUNTER-CLOCKWISE
VARIABLES
NEL - NUMBER OF NODES PER ELEMENT
NDF - NUMBER OF DEGREES OF FREEDOM PER NODE
NST - NUMBER OF DEGREES OF FREEDOM PER ELEMENT (NEN*NDEF)
Isw - FUNCTION CALL NO.
1 = READ ELEMENT SPECIFIC INPUT DATA
2 = PERFORM MESH CHECK
3 = FORM ELEMENT STIFEFNESS MATRIX - TANG
4 = EVALUATE ELEMENT STRESSES - STRE
5 = FORM CONSISTENT/LUMPED MASS MATRIX - CMAS/LMAS
6 = FORM LOAD VECTOR - FORM
OR EVALUATE NODAL FORCES - REAC
ARRAYS - GIVEN
UL (1,J) SPECIFIED HEAD BOUNDARY CONDITION FOR
DEGREE OF FREEDOM J (J=1, 3)
XL(I,Jd) COORDINATE IN THE I DIRECTION AT NODE J
EG. XL(1,3) IS X COORDINATE OF NODE K
TL (J) TEMPERATURE OR HEAD AT NODE J

ARRAYS - EVALUATED

A( ) A MATRIX
c( ) D MATRIX
S(I,J) CONDUCTANCE MATRIX S = AT*D*A DV
+ BT*V*A DV
FOR ROW (VERTICAL) I AND COLUMN (HORIZ.) J
P(I) MODIFIED LOAD VECTOR FOR LOCAL DOF I (IGNORE)

FOR LMAS CALCULATION THE VECTOR LOCATIONS P(1l), P(2), P(3)
ARE USED FOR THE STORAGE VECTOR



C _______________________________________________________________
CHARACTER*4 O, HEAD
COMMON /CDATA/ O,HEAD (20), NUMNP, NUMEL, NUMMAT, NEN, NEQ, IPR
COMMON /ELDATA/ DM,N,MA,MCT, IEL,NEL
DIMENSION D(2),UL(1,1),XL(NDM,1),IX(1),TL(1),S(NST,1),P (1)
1 +A(2,3),C(2,2)

C.... GO TO CORRECT ARRAY PROCESSOR
GO TO(1,2,3,4,5,3),1IsSwW

C.... INPUT MATERIAL PROPERTIES

=

READ (5,1000) D(1),D(2)

WRITE (6,2000) D(1),D(2)

RETURN

MESH CHECKING FACILITY

RETURN

DIFFUSIVE-ADVECTIVE MATRIX COMPUTATION

DIFFUSIVE MATRIX COMPONENTS

EVALUATE COEFFICIENTS IN A( ) MATRIX
AND PLACE IN A(2,3) ARRAY
CONTINUE

EVALUATE VX AND VY FROM NODAL HEADS TL(I)

EVALUATE CONSTITUTIVE MATRIX. THIS IS THE
D( ) MATRIX IN YOUR NOTES AND THE C(2,2) ARRAY.

COMPLETE TRIPLE MATRIX PRODUCT AT*D*A AND STORE
THE PRODUCT IN THE S(3,3) ARRAY.

PERFORM VOLUME INTEGRATION (*AREA)
AND MULTIPLY TERMS OF THE S(3,3) MATRIX BY
AREA.

EVALUATE
ADVECTIVE MATRIX COMPONENTS
SUBSTITUTE TERMS FOR ADVECTIVE FLUX

CALCULATE ADVECTIVE VELOCITIES (VX AND VY) FROM
THE NODAL HEADS (STORED IN THE TL( ) ARRAY) AND
THE HYDRAULIC CONDUCTIVITY

EVALUATE ADDITIONAL TERMS OF THE S(3,3) ARRAY
DUE TO ADVECTION.

THIS IS THE END OF YOUR ADDITIONS. RELAX.

QOO0 00000000000000wa00000aNnO

MODIFY LOAD VECTOR FOR BOUNDARY CONDITIONS
DO 325 I=1,3

DO 325 J=1,3

325 P(I) = P(I) - S(I,J)*UL(1,J)

RETURN



g Q>0

510

500

2000

1000

NOT USED

RETURN

LUMPED AND CONSISTENT MASS COMPUTATION
B1ll = XL(1,2)*XL(2,3) - XL(1,3)*XL(2,2)
B21 = XL(2,2) - XL(2,3)

B31 = XL(1,3) - XL(1,2)

D2 = XL(1,1)*B21 + XL(2,1)*B31 + B1l1l
D2 = D2/2.

DO 500 1=1,3
DO 510 J=1,3
S(I,J) = D2/12.

S(I,I) = S(I,I) + D2/12.
P(I) = D2/3.
RETURN

FORMATS FOR INPUT AND OUTPUT
FORMAT (2F10.0)

FORMAT (/5X, 'THREE NODED TRANSPORT ELEMENT
1 10X, 'DIFFUSIVITY OR DISPERSION ',6X,E14.7,/
2 10X, '"HYDRAULIC COND/POROSITY ', 6X,E14.7,/)

END

"/
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................................................. ELMTO06

SUBROUTINE ELMTOG6 (D, UL, XL, IX,TL,S,P,NDF,NDM,NST, ISW)
IMPLICIT REAL*8 (A-H,0-Z2)

TWO DIMENSIONAL MASS TRANSPORT ELEMENT

WITH UPWIND WEIGHTING

CHARACTER*4 O, HEAD

COMMON /CDATA/ O,HEAD (20), NUMNP, NUMEL, NUMMAT, NEN, NEQ, IPR
COMMON /ELDATA/ DM, N,MA,MCT, IEL,NEL

DIMENSION D(10),UL(1,1),XL(NDM,1),IX(4),TL(4),S(NST,1),P(8)
1 ,SS(4,4),SC(4,4),PS(4)

SET INITIAL PARAMETERS

PI = 3.141592654

XBAR = DABS (0.25* (XL (1,1)+XL(1,2)+XL(1,3)+xXL(1,4)))

RAD = XBAR*2.*PI

IF NOT AXISYMMETRIC

RAD = 1.0

CHECK DIMENSION OF INTERNAL ARRAYS

GO TO CORRECT ARRAY PROCESSOR
GO TO(1,2,3,2,5,3),ISW

INPUT MATERIAL PROPERTIES
READ (5,1000) D(1),D(2)

WRITE (6,2000) D(1),D(2)

RETURN
RETURN

FORM CONDUCTANCE MATRICES
CONTINUE

EVALUATE VELOCITIES VX AND VY FROM NODAL HEADS TL (I)
X1l = XL(1,2) - XL(1,1)

X12 = XL(2,2) - XL(2,1)

DL = DSORT (X11*X11+X12*X12)
X21 = XL(1,3) - XL(1,2)

X22 = XL(2,3) - XL(2,2)

DB = DSORT (X21*X21+X22*X22)
DH11 = TL(2) - TL(1)

DH12 = TL(3) - TL(4)

DH21 = TL(3) - TL(2)

DH22 = TL(4) - TL(1)

V1l =-D(2)*DH11/DL

V12 =-D(2)*DH12/DL

V21 =-D(2)*DH21/DB

V22 =-D(2)*DH22/DB

VX = (V11+V12)/2.

vY = (V21+V22)/2.

C**************

2222

WRITE (6,2222) VX,VY
FORMAT ( 'VX,VY ',2E16.6 ,/ )

C****************8

C....

ZERO MATRIX



DO 300 I=1,4
DO 300 J=1,4
300 S(I,J) = 0.0

C.... SET OPTIMUM (CRITICAL) PECLET NUMBER
COEF = 1./D(1)
PEC11 = COEF*DL*DABS (V11
PEC12 = COEF*DL*DABS (V12

PEC21

( )
( )
COEF*DB*DABS (V21)
PEC22 = COEF*DB*DABS ( )

V22

IF(PEC11.LE.2.) GO TO 301
All = DABS(1.-2./PEC11)*V11/DABS (V11)
GO TO 302

301 All = 0.0

302 IF(PECl2.LE.2.) GO TO 303
Al2 = DABS(1.-2./PEC12)*V12/DABS (V12)
GO TO 304

303 Al2 = 0.0

304 IF(PEC21.LE.2.) GO TO 305
A21 = DABS(1.-2./PEC21)*V21/DABS (V21)
GO TO 306

305 A21 = 0.0

306 IF(PEC22.LE.2.) GO TO 307
A22 = DABS(1.-2./PEC22) *V22/DABS (V22)
GO TO 308

307 A22 = 0.0

308 CONTINUE

C******************

WRITE (6,444) PECl1,PEC22,PEC12,PEC21

444 FORMAT ( '11,22,12,21 ',4E12.2 )
C*******************
C.... EVALUATE SYSTEM MATRICES
C.... FORM DIFFUSION MATRIX

CALL MAT4 (SS,DL,DB,0.,0.,0.,0.,D(1),0.,1)
DO 310 I=1,4
DO 310 J=1,4
310 S(I,J) = S(I,J) + SS(I,J)
C.... FORM ADVECTIVE MATRIX
CALL MAT4 (SS,DL,DB,All,A12,A21,A22,VX,VY,2)
DO 311 I=1,4
DO 311 J=1,4
311 S(I,J) = S(I,J) + SS(I,J)
C.... FOR RADIAL FLOW
DO 330 I=1,4
DO 330 J=1,4
330 S(I,J) = S(I,J)*RAD
C.... REARRANGE FOR BOUNDARY CONDITIONS
DO 400 I=1,4
DO 400 J=1,4

400 P(I) = P(I) - S(I,J)*UL(1,J)
RETURN
C.... EVALUATE CONSISTENT MASS APPROXIMATIONS
5 X11 = XL(1,2) - XL(1,1)

X12 = XL(2,2) - XL(2,1)
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DL = DSQRT (X11*X11+X12*X12)
X21 = XL(1,3) - XL(1,2)
X22 = XL(2,3) - XL(2,2)
DB = DSQRT (X21*X21+X22*X22)

CALL MAT4 (Ss,DL,DB,0.,0.,0.,0.,0.,0.,3)
FOR RADIAL FLOW
DO 510 I=1,4
DO 510 J=1,4
510 SS(I,Jd) = SS(I,J)*RAD
LUMP CONSISTENT MATRICES
DO 556 I=1,4
SUM1 = 0.0
DO 555 J=1,4
SUM1 = SUM1 + SS(I,J)

555 SS(I,J) = 0.0
SS(I,I) = SUM1

556 P(I) = SUM1
RETURN

.... FORMAT STATEMENTS
1000 FORMAT ( 2F10.0 )

2000 FORMAT ( 'HYDRAULIC DISPERSIVITY/DIFFUSION ',E18.5,/

} "HYDRAULIC CONDUCTIVITY/POROSITY ',E18.5,/ )
END

SUBROUTINE MAT4 (SS,DL,DB,ALPHAl,ALPHA2,BETALl,BETA2,D1,D2, ISW)
IMPLICIT REAL*8 (A-H,0-2)

TO EVALUATE CLOSED FORM COEFFICIENT MATRICES FOR
AN UPWIND WEIGHTED FOUR-NODED RECTANGULAR ELEMENT
SWITCH PARAMETERS

ISW = 1  FORM DIFFUSION MATRIX
ISW = 2  FORM ADVECTION MATRIX
ISW = 3  FORM CONSISTENT MASS
DIMENSION SS(4,4),SC(4,4)
DATA SC/4.,2.,1.,2.,2.,4.,2.,1.,
1.,2.,4.,2.,2.,1.,2.,4./

. ’
GO TO CORRECT PROCESSOR
GO TO(1,2,3),ISW

.... FORM DIFFUSION MATRIX

1 DB2 = DB*DB
DL2 = DL*DL

El = D1/ (6.*DB*DL)

Al = (DL2-2.*DB2)*El
A2 = - (DB2+DL2) *E1l

A3 = (DB2-2.*DL2)*El
SS(1,1) = -2.*A2
SS(1,2) = Al

SS(1,3) = A2

SS(1,4) = A3

SS(2,2) = -2.*A2
SS(2,3) = A3

SS(2,4) = A2



100

21

22

23

24

25

26

27

28

S5(3,3) = -2.*A2
SS(3,4) = Al
SS(4,4) = -2.*A2

DO 100 J=1,4

DO 100 I=J,4
SS(I,J) = SS(J,1I)
RETURN

FORM ADVECTION MATRIX

CONTINUE
Cl = -D2/DB
C2 = -D1/DL
DO 200 I=1,4
GO TO(21,22,23,24),1I

PARAMETERS FOR FIRST ROW

AA = 3.*ALPHAl*(-DL/12.)
BB = 3.*BETA2 * (-DB/12.)
GO TO 25

PARAMETERS FOR SECOND ROW
AA = -3.*ALPHAl* (-DL/12.)
BB = 3.*BETAl *(-DB/12.)
GO TO 25

PARAMETERS FOR THIRD ROW
AA = -3.*ALPHA2* (-DL/12.)
BB = -3.*BETAl * (-DB/12.)
GO TO 25

PARAMETERS FOR FOURTH ROW
AA = 3.*ALPHA2* (-DL/12.)
BB = -3.*BETA2 * (-DB/12.)
CONTINUE

EVALUATE OVERALL PARAMETERS

Al = DL/3. + AA

A2 = DL/6. + AA
A3 = DB/2. + 2.*BB
Bl = DB/3. + BB
B2 = DB/6. + BB
B3 = DL/2. + 2.*AA

FORM MATRIX BY ROW
GO TO(26,27,28,29),1I
FIRST ROW

SS(1,1) = CL1*A1*A3
SS(1,2) = CL1*A2*A3
SS(1,3) = -C1l*A2*A3
SS(1,4) = -C1*A1*A3
GO TO 200

SECOND ROW

S(2,1) = CI1*A2*A3
SS(2,2) = Cl*A1*A3
SS(2,3) = -CL*A1*A3
SS(2,4) = -CLl*A2*A3
GO TO 200

THIRD ROW

SS(3,1) = CL1l*A2*A3
SS(3,2) = CL*A1*A3
SS(3,3) = -C1*A1*A3
SS(3,4) = -CLl*A2*A3
GO TO 200

FOURTH ROW

C2*B1*B3
C2*B1*B3
C2*B2*B3
C2*B2*B3

C2*B1*B3
C2*B1*B3
C2*B2*B3
C2*B2*B3

C2*B2*B3
C2*B2*B3
C2*B1*B3
C2*B1*B3



29 SS(4,1) = CLl*Al1*A3 + C2*B2*B3
SS(4,2) = CLl*A2*A3 - C2*B2*B3
SS(4,3) = -CLl*A2*A3 - C2*B1*B3
SS(4,4) = -CL*A1*A3 + C2*B1*B3

200 CONTINUE
RETURN
FORM CONSISTENT MASS MATRIX

3 COEF = DL*DB/36.
DO 300 I=1,4
DO 300 J=1,4
300 SS(I,J) = COEF*SC(I,J)
RETURN
END



FEAP SIX TRIANGULAR ELEMENTS-TRANSPORT-STEADY

8 6 1 2 1 3
COORD
1 2 0.0 0.0
7 0 3.0 0.0
2 2 0.0 1.0
8 0 3.0 1.0
ELEM
1 1 1 4 2
2 1 1 3 4
3 1 3 5 4
4 1 5 6 4
5 1 5 8 6
6 1 5 7 8
MATE
1 5 MATERIAL 1
1.0 1.0
TEMP
1 0.0
2 0.0
3 0.1
4 0.1
5 0.2
6 0.2
7 0.3
8 0.3
BOUN
1 1
2 1
7 1
8 1
FORC
1 1.0
2 1.0
7 0.0
8 0.0
END
MACR
UTAN
FORM
SOLV
DISP
END

STOP
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DT 0.1
UTAN

FORM
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LOOP 10
TIME
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NEXT

END

STOP
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22. Flow of Viscous Fluids:
Some Special Problems of
Convective Transport

22.1 Infroduction

Throughout this book we have endeavoured to present the reader with a
systematic approach to a variety of problems of the physical world which.
once posed in mathematical terms, could be discretized and hence solved
numerically. Problems of solid mechanics have, however, been pre-
dominant and to redress the balance this chapter is devoted to fluid
mechanics.

Although we could start by writing the appropriate governing dif-
ferential equations—and then solve these by applying the general principles
of Chapter 3—we prefer to approach the mechanics of viscous fiuid flow
via their analogy to sofid mechanics, and the first sections of this chapter
are devoted to such an approach. This will permit the reader to utilize
directly, or with minor modification, some of the programs developed for
solids to solve certain fluid problems,

The major difference from the formulations already encountered lies
in the convective terms which enter the eguations of fluid mechanics
problems. These lead to non-symmetric matrices if the conventional,
Galerkin, approach is used in their discretization. Further, instability of
computation can occur and this necessitates special discretization pro-
cedures so far not encountered in this text. We shall outline these in
section 22.8.

Space Himitations will not allow an exhaustive treatment to be presented
here. In particular high-speed compressible (trams- or super-sonic) flow
will not be considered. For supplementation the reader is referred to a
series of conference proceedings and texts.!~® However, it is hoped that
the contents of this chapter, together with those of Chapters 17, 20, and
23 in which some special fluid flow cases are treated, will give the reader a
reasonably full picture of the possibilities open in this field. Some prior
knowledge of fuid mechanics is naturaily assumed-—and for more detailed

607



608 THE FINITE ELEMENT METHOD

treatment of the essentials the reader shouid consult some of the well.
known texts,”-#

22,2 Basic Concepts of Viscous, Slightly Compressible Flow

22.2.1 Equilibrium. 1f an isolated volume of fluid is considered at some
instance of time (Fig. 22.1) then, just as in a solid, in its interior the siresses
¢ must be in equilibrium with the body forces b which include the
appropriate acceleration forces. Further, on its external surfaces the
stresses ¢ must be in balance with the applied traction t. Thus, both the
internal equilibrium equations and those on the boundary are identical
to those pertaining to the solid. Using the nomenclature of Chapter 3,
Eq. 3.40, and of Chapter 12, Eq. 12.14, we can write

L'e+b=0 inQ (22.1a)
and
Go =t onT, (22.1b)

where 2 is the problem domain and F, its boundary on which tractions are
prescribed.

. e T (= 0) . e D (= 10)
’2 & g ) % >

Z 2 s Z

Z 20, {u= D)— Z

¥ 113
o [4,
i

A s A T
Ti(u=0)

S

e

NN

o

Fig. 22.1 A two-dimensional fluid flow domain

Thus the virtual work relationships used in Chapter 2 and discussed
in Chapter 3 can once again be invoked. It is convenient now to apply
virtual velocities &u in place of virtual displacements and we can write in
place of Eqs. 22.1 the equivalent statement

f de'a dQ—f Su'h dQ~f Su'tdlr = ¢ (22.7)
£ 0 T

t

where I', stands for the part of the boundary on which tractions are
specified and du # 0 there.
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In the above,
d¢ =Léu and &= Lu (22.3)

defines the virtual strain rate by an identical expression to that used
previously to define virtual strains {viz. Eq. 6.9. Chapter 6 for such a
definition in three dimensions).

In fluid mechanics, due to the continually changing displacements, it is
natural that we concentrate our attention on velocities and these at a
fixed point of space will be denoted by u—an identical symbol to that
previously used for displacements. The body forces b per unit volume can
be written, as in solid mechanics (vide Chapter 20), invoking d'Alembert’s
principle, as

b = b,—pc (22.4)

where ¢ is the acceleration vector acting on each particle and p is the
density. As we have defined velocity u at a point in space rather than with
relerence to a particle, the simple differentiation of the latter with respect
to time does not suffice to define the acceleration. This is now given by the
total (or particle) derivative of u, e.g. for the ¥ component

Du  du duéx Oudy Oudz

e Tl o o St S A R
VTR P NIF P i PRI M

As dx/0t = u, etc., we can write the total acceleration vector as

tc. {22.5a)

-

¢ = f(;‘ftf+(v-u1‘)?u (22.5b)

where V' = {@/6x, 8/6y. ¢/0=1 and (V-u") = J(u) is a Jacobian matrix.

Now even if the flow is steady, i.e., du/df == 0, acceleration exists and
here lies the principal difference from the solid mechanics formulation.
Further, the expression for acceleration is non-linear in w and the problem
is immediately of a non-linear nature.

22.2.2 Constitutive relarions. In a fluid, by definition, no deviatoric
stresses can be supported unless motion occurs. We can thus state quite
generally that the deviatoric stresses are a function of the strain rates &.

If we define the pressure p as

p= —0,= {0, +06,+0)/3 {22.6)

we can write a very general linear relationship between the deviatoric
stress ¢’ and strain rate as

=Y
1l

"=g+mp =D (22.7)
with

m" = [1.1,1.0.0,0]
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For an isotropic incompressible fluid. by analogy with selid mechanic
one constant y, known as viscosity, defines completely the D' matrix.

2

o]
=

D =y - 2

[
e

Clearly u plays here an identical role to that of the shear modulus G |
elasticity (vide Chapter 11, Eq. (11.22)).

The constitutive relationship (22.7) is thus of an identical form to th:
pertaining to incompressible solid mechanics with the strain rates no
playing the role of strains, and additional constraint is thus necessar
before the solution can be attempted.

22.2.3 Continuity eguation. If an infinitesimal volume of space is cor
sidered then, gquite generally, we can state that the nett rate of ma:
inflow is equal to the rate of mass accumulation. Thus. if g is the densil
we can write

i 1 1 i i
g;(pu)-{—é;(pv)—i-é%(pw}—% = V?(pu)w%g == () (22¢

Quite generally the pressure p and the density p are related by a suitab’
state relation

p o= p(p. {(22.1(

If, however, the density changes are small, the continuity relationshi
can be simplified to

Vin= =0 (22.11

stating simply that the rate of volumetric straining is identically zero. Th
is analogous to the constraint used in incompressible solid mechanic
(Chapters 11 and 12) and we shall in the main be concerned only wit
problems where this incompressibility is enforced.

exists between the elasticity and viscous fluid mechanical problems.

Indeed, if we disregard the difference which occurs in the acceleratio
forces and consider a purely incompressible flow the analogy is exac
Thus all the methodelogy developed for the solution of incompressible elasti
sofids is immediately available for the solution of viscous incompressibi
Mow under steady-state conditions, omitting acceleration terms.
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Following identification of terms is necessary

Elasticity e Viscous flow

displacement u et velocity u
strain e ) strain rate &
stress g e stress G
shear modulus & " viscosity M

The flow in which acceleration eifects are negligible is generally known
as creeping—and clearly for its solution any of the techniques already
described for the solution of incompressible elasticity are immediately
available.

Amongst these we have already encountered {and obviously more
alternatives are possible):

1. The use of u and p as variables—with p entering the variational
form as a Lagrangian multiplier {(Chapter 12, p. 323),

The use of u as the only variable with the incompressibility con-
straint entering by use of a penaity function {Chapter 11, p. 286).

3. The use of equihbrating formulations (Chapter 12, p. 306).

4, The use of stream functions (Chapter 12, p. 324),

2

If acceleration effects are not negligible—their msertion into the
discretization process (if this is achieved by Galerkin procedures) is
simple and follows the lines used in structural dynamic effects in Chapter
20. However. the use of variational principles even in steady-state cases is
no longer possible as true variational principles no longer exist.” In
the next section we shall perform the discretization of the various types
explicitly.

When formulating elasticity problems in Chapter 2 and elsewhere. we
started from the virtual work principle as a basis and did not state the
full governing equations explicitly. Such equations could be readily
derived for elasticity if displacement formulation were to be used by
eliminating the stresses and strains from the equilibrium equations and
bear the name of Navier. Indeed these equations could (less conveniently)
have been used for obtaining the first finite element discretization.

In fluid mechanics the conventional starting point of discretization is
often based on similar equations.'®?! Although we shall not pursue
this line, which obviously leads to the same results as those obtainable by
direct use of virtual work."'? it is of interest to state explicitly the governing
equations, which are known as those of Navier-Stokes.

Thus, if we eliminate ¢ from Eq. {22.1a) using relationships {22.3-3) and
(22.7) we obtain a general Navier-Stokes equation

p[?} (V7 )Tu} = ~L'mp+L'D'Lu+b,. (22.12)
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With the form of D' given by Eq. (22.8) and L as defined previously,
the above can be simplified to a more standard form. Thus in x direction

3u+ ﬁz.r+ (m Ju 0p+ g/ du (’: v
Uz hs e | = —2 e | — [ pe 4 p—
Pla ix dz ox Tax \'a m' gﬂy aFe
¢ { du éw
dz\"éz ax

with similar equations in the y and : directions. For solution this equation
has to be combined with that of continuity (Eq. (22.9)).

Alternative formulations can be devised, however, in which the stresses
o may be used as explicit variables,

22.3 Discretization of Viscouns Flow Equations
Obviously with the analogy stated in the previous section. the dis-
cretization details could be omitted as these follow precisely the lines
used in eguivalent solid mechanics sections. For completion, however, we
still give here brief details of the three useful forms.
22.3.1 Velocity and pressure as variables. In this we shall discretize the
velocity and pressure in terms of independent parameters
u = Na"; p = NPfa? (22.14)
Using the virtual work statement of Eq. (22.2). with
Su=N"5a" and e = (LN")da"=Bda"  (22.15)

we can wrile

éa"T[j Bfo dej N“Th dQ—-J N"dei"] =0 22.16)
1] Q 1

Neting that this is true for all variations da* we have, on inserting
Egs. (22.3~5) and (22.7)

Ka" -+ "K”a“+K”a”+M%§I—+ f* =0 (22.17)

with coefficients given by
K, = j BID'B; dQ (22.18a)

O
K, = J P(NDT(V.(Na*)")'N; dQ {22.18b}

o

it

Kr = _J BimN’ dQ (22.18c)
D



FLOW OF VISCOUS FLUIDS 613

F4
I

J (NI)TpIN aQ {22.18d)
o

f= ~j (N“'h, dQ—j (Nt dT. (22.18¢)
0 I,

We note immediately that, with the exception of the second matrix, as
expected. the standard forms of elastic analysis are rediscovered with
appropriate stiffness, mass, and force matrices.

To obtain the second equation necessary in view of the constraint
equations we shall use the Galerkin process and simply pre-multiply the
continuity equation {(22.11) by (8p)" and integrate for the case ol complete
incompressibility.

Thus we have

{-53,1)1-J (NYT, dQ = 0 (22.19)
0

or. noting that this is true for all da” and writing
¢, = m'Lu = m'LN"a* = m"Ba" (22.20)

this results in an equation
(KMa* =0 (22.21)

with K” taking on the form already given in Eq. (22.18¢).
Equation systems {22.17) and (22.21) can be written as

K+K, K] {a¥) [M 0O 4 [ ff
+ Sl r=0 @
k' 0 ) Lo o] |a LO

and can be used for the solution of transient viscous flow problems.
The reader will note that

(¢} the equations are non-symmetric and non-linear if the velocities are
large enough for K to be significant:

() when the problem is one of steady state and K is neglected, the
Lagrangian form of incompressible elasticity equations of Chapter
12, p. 323, has been re-derived (now without use of a variational
statement).

The formulation just presented is one of the most popular in the
context of Auid mechanics and has been used frequently.!!'* 2% All the
remarks made previously about over-constraint are once again applicable
and practitioners find that, generally, a lower order of interpolation of
p compared with that of u is desirable only to avoid over-constraints.
Arguments of ‘consistency’ have, however, been nsed in the above
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context but we believe that these are not the correct reasons for improved
performance with such mixed interpolations.?% 2!

22.3.2 Stream function formulation. 1t is possible to define the velocity
field u by means of an auxiliary set of functions so that the continuity
(incompressibility) condition is automatically satisfied,

Although vector stream functions can be obtained in three dimensions
these have not proved successful and the approach is restricted generally
to two dimensions. Writing thus

u=0Ly: L"= {—m ,ij_} (22.23)

the velocity field automatically satisfies Eq. (22.11) written in two space
dimensions.
I now we discretize the stream functions by writing

= Na (22.24)
we note that the virtual work equation. (22.2), can be written again as
aaTU B'o dg_j (ER)" a2 J (i&)“'idr:i —0 (225
0 o T
with

B = LLN. (22.26)

On insertion of Eqgs. (22.5) and (22.7) we shall find that the coefficients
of p disappear and a setl of equations of the standard form

. 4
(K +Rya+M a?+l‘ =0 (22.27)

can be written with

K; = J B'D'B d0 m,,.mf (LR)TPLR, d0
Q 41

K. = J (L) p(V(LNa)" Y LR 40 (22.28)
2

f, = _f (LN)b, dQ-f (LNt dT.
n I

‘Two points are worth noting beyond the existence of the non-linear and
non-symmetric matrix K as in the previous formulation. These are, first.
that the shape function N now needs to possess C, continuaity as second
order derivatives exist in 8 and, second. that the formulation is {almost)
identical to that of plate bending problems. Indeed, solutions with this
procedure have invariably utilized this analogy using many of the elements
formerly noted in Chapter 10,1822
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22.3.3 “Penalry’ fimetion formularion. This has been introduced as an
effective procedure for incompressible elasticity in Chapter 11 and, hence,
in the present context the method should be applicable. We shall, however,
approach it without stating a variational principle.

To eliminate the variable p let us write in the constitutive relation {22.7)

p = s, (22.27)

where 2 is a large number. As £,— 0 by the constraint equation, Eq.
{22.11), p will thus be a finite quantity.

With this substitution the need for discretizing p is eliminated, and for a
discretized velocity u = Na we have

¢, = m'LNa. (22.30)

Pursuing the discretization of Egs. (22.16) and (22.17) we arrive now at
Ka+Ka+§a+M§a+f2 0 (22.31)
where all, but one, of the matrices are defined in Eq. (22.18) and

K;= f {(m'B))" «(m'B;) dQ. (23.32)
0

Again z can be recognized as analogous to the bulk modulus of elasticity,
and indeed the standard form of nearly incompressible efasticity used in
Chapter 11 is obtained for slow flow.

The procedure was first formulated in Reference 19 and used sub-
sequently for creeping low with *reduced” integration elements. The first
effective use of solutions {or the full equations of viscous flow was made by
Hughes er a/.*® using a bi-linear quadrilateral with a single point integra-
tion for the volumetric strain rate terms.

22.4 Some Applications of Viscous Flow Forms and Solution Technigues
22.4.1 Sready-state creeping Newronian flow. By *Newtonian® we mean
that the problem is Hinear with a constant viscosity. With all acceleration
terms rejected the formulation gives linear equations and little has to be
said about this solution.
Entry flow. In this first example®? of Fig. 22.2 a solution of entry flow
in an axi-symmetric case is obtained

{a) by a stream function form in which the Hermitian rectangles of
Chapter 10 are used:

(#) by a standard elasticity program with isoparametric, 8-node
elements utilizing 2 x 2 Gauss point, "reduced’ integration (near-
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incompressibility is here achieved by setting the equivalent of
Poisson’s ratio as 0-49995): and

{¢) by velocity-pressure formulation using a parabolic interpolation
for velocities and linear for presstres.2*

All solutions give almost identical resulis at a comparable cost and
compare well with a finite difference solution of the same problem
carried ou! with a very fine subdivision.$

Although there is no apparent difference in the solution technique the
last two procedures are easily generalized to three dirmensions.

Solution for such three-dimensional flows have been presented in
references 19 and 26.

Flow past an obstacle. This example, illustrated in Fig. 22.3 in which
solution by both stream function and by penalty-velocity forms were
obtained, brings out a further point of difficulty encountered with the
former type of discretization. As the distribution of flow is not known
initially, the value of the stream function on the obstacle is not known
@ priori—except that it is constant.

An additional requirement has now to be introduced.>’ This states that
the rate of work done by boundary tractions on the stationary obiect
must be zero, i.e., that

J Su't dI' = f (Lo edlr =0 (22.33)
r P

where I" is the surface of the obstacle.

Imposition of this condition on the stream function parameters can
be made if two independent solutions are carried out—a procedure which
is clearly inconvenient and computationally expensive.

22.4.2 Sready-stase, creeping non-Newtonian flow. Visco-plastic metal
Hfow. In many fluids for which slow rates of flow are of interest the
viscosity is a function of the strain rate . Such fluids comprise many oils,
chemicals, and indeed metals,

If the constitutive relation of Eqgs. (22.7) and (22.8) is examined we
find that it is convenient, in isotropic materials, to write it in terms of
second stress and strain rate invariants, ¥ and § (for definitions sec
Chapter 18).

The relation can be written simply as
F = ji (22.34)

which, for a Newtonian fluid, is of a form shown in Fig. 22.4. For non-
Newtonian fluids the stress strain-rate invariant relationship may take
various forms-—a typical one being written as

G = pin. (22.35)
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Clearly this can be represented as a behaviour of the standard form with
= pEnt, (22.36)

A very characteristic form of behaviour is known as that of Bingham

fluid in which a yield stress is exhibited.
This can be written as a particular case of viscoplasticity, giving (see

i = wWF—d,). (22.37)

|
| Newtonian fuid |
; ne<l E
i PR
f S, [deal plasticity
vian"{1/y)
! v
li S
p—
¢ / i -
//
Effective stress / P
/ -
/ ///n =R
/ -~ a,
/ Ve :
/ //
e
7
Vi
V744
/ /
W

1o

Effective strain rate

Fig. 22.4  Newtonian and non-Newtonian cffective stress-strain relations

Again we can interpret this in terms of variable viscosity of expression
(22.34), with

o+, (22.38)

=
&

reducing for an ideally plastic behaviour to

{22.39)

m..l'_.ﬂ‘as

=

In Chapter 18 we have discussed the elasto-plastic and elasto-visco-
plastic behaviour of many materials. If the deformations are such that
elastic strains can be neglected, all such solids behave in effect as non-
Newtonian Auids and solutions for their behaviour are easily attainable.
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The creeping flow formulations of all types discussed in previous
sections have resuited in a general form

Ka+f=20 (22.40)

Now K = K(a) and is a symmetric matrix dependent on the viscosity and

hence on the velocity parameters which define the effective strain rate &,
Various non-linear solution techniques can be adopted for this problem

but the simplest in which the matrix K is recalculated iteratively with

am+1 — _Krn-}f (22‘4!)

gives very rapid convergence. even if guite severe non-linearity of
the type given by Eq. (22.31) is encountered, providing the forcing
function is one of specified boundary velocities.

Many solutions of non-Newtonian flow are available in the litera-
ture*® ** but the plastic flow situations are of greatest interest, !9-24:27.30

In Fig. 22.5 we show, for instance, a problem of steady-state extrusion
solved*® as a case of non-Newtonian flow. Comparison with solutions
available for the same problems by classical slip line solution confirm
the accuracy attainable in modelling such a flow,

22,43 Steady-stare viscous flow with inclusion of convective acceleration
terms. We have already remarked that, in the case of steady-state viscous
flow in which the convective acceleration terms are retained, ali formu-
lations give non-linear equation systems (even if viscosity is Newtonian)
of the form

(K+K(a)a+f =0 {32.42)

in which K(a) is a non-symmetric matrix dependent on the solution
parameters (velocities).

Influid mechanicsitis usual to characterize the flow by a non-dimensional
parameter known as the Reynolds number R, and defined as

_pld
==

where U/ and d are a characteristic velocity and dimension., respectively.
The creeping form which we have previously discussed is thus the Himiting
case of R,— 0. Now we shall consider increasing the Reynolds number.

The solution technigues for the non-linear equation system depends
evidently on the value of R .

For small values of R, a modified Newton-Raphson technigue is
eflective, using only the constant and symmetric matrix in solution.

At higher Reynolds numbers a full Newton-Raphson iteration is
necessary and this involves a repeated solution of a non-symmetric equa-

R {22.43)

n
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K-Yield in pure shear

621

Extrusion pressure -

PizK

Slip line

Penaity function
Streass Funetion
Elasto-plastic
solution

0-90
0:94
0492

-93

]
H
[
TW
1
sz ”
= = i‘ Velocity veclors
: S s = Slin line
\\ oo+ Computed
N
* {e— Siip line h
B < N field \ \
N ™ '\\ \\
: 2w * ~
Y et o
. mmmy
B an
== i a ——
Y
S {
e e — T P — — e H
= e === \
o — ——-_-—, i \

Fig. 22,5 Plane strain exirusion: ideal plasticity:

function solution

ticns system. Other techniques, such as pert
also been used with success.*?
When the Reynolds number becomes ve

frictionless walls; penalty

urbation methods, etc.. have

ry large, and the convective

terms predominate, convergence generally ceases, This occurs due to two
causes: first, at some value of R, the flow becomes physically highly

unstable and turbulence sets in: second, an i
the special character of the approximation

the standard Galerkin form is used. This

discussed in depth Iater.

nstability may be induced by
to the convective term when
numerical instability will be
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Purely as an example of such higher R, computation. we show in Fig,
22.6 some solutions obtained using the velocity—pressure techniques for a
flow around a two-dimensional obstacle.*?

e 540 : 10:0

-t

Bou

e

— ‘1(1.

Mesh

/M”M
NI@

]
h

"

1

R, = 100

)

Fig. 22.6 Flow round a cylinder

22.5 Turbulent Flow

As the value of R, increases, the turbulence which starts with large
isolated eddies increases untii it becomes widely distributed through the
fluid. If average relocities are considered then the effect of the turbulence
is analogous to that of viscosity and the flow can be represented by the
standard viscous equations with the viscosity coefficient now replaced by
an eddy viscosity, ji. which is dependent on the whole velocity field and
its gradients. Indeed this behaviour may well be anisotropic, i.e.. specified
by several such coefficients. In principle, thus, turbulent flow approached
in this way presents no more difficulties than those associated with non-
Newtonian situations. In practice, unfortunately, no general explicit
expressions for determining the eddy viscosity coefficients exist and. at
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best, very rough solutions are attainable. We shall, however, make use of
such turbulence concepts in some aspect of shallow water flow.

22.6 Transient, Time-dependent Flow and Free Surface Problems

In principle the transient flow Equations 22.22, 22.27 or 22.31 can be
integrated using one or other of the time-stepping processes discussed in

R R

N
o

i

(B) 1= 15 At

1

R A

R R I

g’"//////////////////' S S S é’//////////‘/////////4'l-’/7/. P

! (¢) 1 =30 At ’ (d) 1 = 454r

Fig. 22.7 Punch indentation probiem {penalty function approach). Updated
mesh and surface profile. 24 isoparametric clements. Ideally plastic material;
{a). {b), {c) und {d) show various depths of indentation.
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the previous chapter. Indeed it appears that such a procedure may present
a useful technique for obtaining steady-state solutions if these exist. Littie
work has as yet been done on this aspect. but some solutions (o simpie
problems have been obtained 3?33

Time-stepping techniques can readily be adopted to follow the de-
velopment of the form of the free surface. With the initial position of
this known, the velocities at the start of a time step determine the
position of particles on the free surface at a later time. Iteration can be
used here, but if the time interval is not large. a single forward integration
giving a change of position. x. as

Axm-k} —_— umA! (2244}

is effective,

This technique. when used in the context of slow {creeping)} flow in
which all acceleration effects are ignored, necessitates simply an updating
of the free surface and a successive resolution of the problem with a
new configuration. Indeed the whole mesh can be updated in this way, but
if this is found to produce badly shaped elements a new mesh can be
generated to fit the new surface at each stage.

Techniques of this kind are extremely usefu] in a variety of metal
forming and rolling processes.?* 27343536 15 Fjp 237 we show suc-
cessive stages of deformation caused in an ideally plastic metal by a
punch.*’

Steady-state {ree surface problems are in a sense more difficult. Here
we have to ensure that the traction-free surface develops velocities which
are sirictly rangential to this surface,™*7 In such cases it is convenient
to specify the original surface, obtain a velocity solution. and recompiite
a new surface by integrating from a known point, noting that the slope
is given by the direction of the velocity vector at all points. Three or
four repetitions of this process frequently suffice. In Fig. 22.8 we show
an axi-symmetric drawing problem of a creeping Newtonian fluid
emerging from a tube. The problem is of some importance in glass fibre
drawing.

22.7 Shalow Water Flow : Estuaries and Lakes

22.7.1 General equations. In many problems of practical engineering
importance the concern is with flow in bodies of water whose plan
dimension is much larger than the depth. Lakes, estuaries, and indeed
the oceans provide such examples for which a study of currents caused
by wind action, periodic tidal forces. or wave drag is of interest. In
contrast lo the corresponding plane stress problems, the distribution of
velocities across the depth is not uniform and often the changes of depth
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provide the main driving forces. Nevertheless, complete thrze-dimensional
analysis of such flows is not practicabie and two-dimensional approxi-
mations have to be made. Various forms of such approximations are
available,’® °-*0 4nd here we shall present a derivation of a set of quite
general equations which are of a form not dissimilar to those of Navier—
Stokes™ equations already derived, but now involve some additional
terms.

In subsequent parts of this section we shall show particular simpiified
forms of the equations which are of some practical interest.

The derivation of basic shallow water equations uses the assumptions
that the vertical accelerations are negligible and that the pressure distribu-
tion in the vertical directions is hydrostatic. i.e. (see Fig. 22.9).

p = pgl—z)+p, (22.45)
ya
PLAN
dx
.1 & T
‘"1’ A
r
T\'- R
E

Fluid surface

7, (atmospheric Referenlce plang

5 N
i pressure} /

| Pa +E-ngj’ Hy+n=H

.t
i
o]
I
b=

Definitions for shallow water flow problem
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where p, is the atmospheric pressure. Further, we shall be concerned
only with the average velocities in the plan direction, i.e.. U or V.

N L[
U= mj udz, Vo= e ndz, (22.46)
H ~Ry+x H

=~ Hy+ny
With these two assumptions the overall continuity and equilibrium
relations can be written.

For complete generality we assume that the density p can vary with
position in the plan (of importance when density currents are considered)
and we can write the continuity condition for a prism of unit plan area
shown in Fig. 22.9 as

-~
|

%(;)HUM (pH1)— pm 0 (22.47)
&

where the last term gives the rate of fluid accumulation due to the rising
surface.

To examine the equilibrium in the plan directions we shalt proceed
in a manner completely analogous to that used in deriving the general
viscous equilibrium equations.

First we observe that on the {aces of an elementary prism we have
tractions 7. 7. and T, which are due partly to the pressures and partly
to Lurbulem mass transfer in which 7 is the eddy viscosity. Thus

" au H? el
T, = -j pdz F2H o =~y —p H+ 2 H—  (22.48a)
’ ax 2 ax

~Hu+y
Similarly,
H.’Z 1
T, = — Py m])‘,H-}-EﬁH%]—' (22.48b)
and
I
T _;:H((U ¢ ) (22.48¢)
éx

We note that the tractions due to turbulent mass transfer are of precisely
the same form as those associated with the viscosity coefficients in Eg.
(22.7) but that the "pressures’ are now defined in terms of the depth H
which piays, in shallow water equations, the same role as the density in
compressible flow (in fact we shall find that the equations of shallow
water flow bear a striking resemblance to compressible flow equations).
The tractions given by Eq. (22.48) must be in equilibrium with the
appropriate body force vector b and the equilibrium equations (Egs.
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(22.1a) and (22.1b)) can again be written with the operator L appropriate
to the two-dimensional problems as '

L'T+b=0 T =[T.7,.7,] (22.49)

For discretization it is convenient to use the virtnal work eguation
corresponding to Eq. (22.2), ie..

j 3T dQ—J&UTb—J SU™TTdr =0 (22.50)
19 Q r

where T stands for prescribed boundary " tractions” (which depend on the
depths A) on suitable boundaries.

Once the body force vector is available the discretization can be wrilten
in the standard manner which we shall not pursue here in detail. However,
it is essential to define the body force vector, as several terms not previously
encountered now enter the problem. As before we can write (remembering
that a depth of fluid H is considered)

B==bg- peH (22.51)
where the acceleration ¢ is
AU .
€= —+(VUYU
UT - [U E/"‘]. (22'52)

Further. the vector by is now specifically divided into several causes—
and can be written as the sum of the following:
{(a} Coriolis effects: if rotation of the earth is important due to extent of
. I . . )

problems — pf { E 0] U. where fis the Coriolis parameter (f=
2 x angular velocity of frame of reference rotation).

(b) Surface traction due to wind {or waves), z.

{(¢) Bottom traction resisting motion, —pU. with f§ a coefficient
dependent on the absolute value [U] if turbulent conditions exist.

{¢) Horizontal component of surface pressure. 7,V
{¢) Horizontal component of bottom pressure, ( PopgH)YVH,.

Noting that the essential variables of the problem are the velocity
{mean) vector U and the surlace elevation Jj as
H=y+H, (22.53)

where H, is a known depth of the mean water surface. the full discretized
equations can be written in a manner analogous to that described in
section 22.3.1 by using the virtual work statement and a weighted form
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of the continuity equation, Eq. (22.47). We shall spare the reader the
details which he can readily fill in, but before proceeding further we shall
give an explicit form of the equilibrium equation (in a manner equivalent
to that of (Eq. 22.13)) as such equations have been used as the starting
point of the discretization by many investigators. With an explicit form
ol the operator L, which we remind the reader is given by

¢ é
—_— 0
T éx ay
) (22.54)
o L 2
dr Ox

the substitution of b and T into Eq. (22.49) results in two differential
equations, i.e.,

A At
H.u(c U~+» US«({Jr I/%i——ﬂf)

&
o H?§ ap, .8
mwpgﬁﬂ—.q——gﬁwﬂv+lf—‘ﬁ+?~— —-(HU)
ax 2 dx ax

(“r a -
(HU) A HFY 41, = 0 (22.55)
r'fv c71 dx
with a similar equation for the y direction.
As the surface elevation i is generaily small compared with the depth
H it simplifies matters to assume that

Hx H,.

With this simplification the reader will note that Eq. (22.55) together with
the Eq. (22.47} are essentially similar to the Navier-Stokes equation in two
dimension Eq. (22.13) and Eq. {22.9), but now conlain some additional
terms. Techniques of solution for both steady-state and transient situations
for both problems will be essentially identical and therefore it is convenient
to write programs capable of incorporating both classes of problems
stmultaneously.

In Fig. 22.10 we show some results of computations carried out for
determination of tidal currents in Tokyo harbour.*' Here the periodic
nature of the tides was used to simplify the time response by a harmonic
analysis applied despite the inherent non-linearity of the equations.

22.7.2 Simplified shaflow water flow equations. Very few investigators
have so far used the full set of equations of shallow flow even if certain
forces or effects are absent.#2-+3

First. the horizontal eddy viscosity terms are frequently dropped.**+3
When this is done it should be remembered that only one velocity com-
ponent can be prescribed as the boundaries {the second order of the
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equations being now reduced to first). Indeed the "no slip’ condition on
boundaries can no longer be imposed.

Second, the convective terms are frequently omitted thus linearizing
the eguation system (22.47) and (22.35) to a much simpler form (for
constant density p and taking H = H).*®

én
(H U)+ (Ho /)_57 =0

ﬁﬂa

ay an
A = —por Sy i 2.3
o ()( 5 S ) P, —fU+1, (22.56)

o

7 d
pH, (C +fU) = —-pqh’o‘,? p,,

HU BV,
For steady-state conditions it is convenient to introducz once again the
notion of a stream function. Defining

i 6:,!1
HyU = —: H V=
ol dy 0 T ox

(22.57)
the first of Eqgs. (22.36) (with time differentiation omitted) is identically
satisfied.

On elimination of # between the second pair we find that the governing
equation reduces simply to the quasi-harmonic form (discussed in

Chapter 17):
aif o i 8!/1 dr, dt, an &
e s T i e __.38

éx\ H, 5,\‘) +81(H9 oy dr  dx ( )

It is of interest to see thai the Coriolis and pressure gradient forces do
not now affect the solution. Despite this drastic simplification apparently
reasonable predictions of wind (or wave) induced velocities can be
made.*" *® It seems. however. desirable to ascertain in all cases the errors
due to the approximation: this can always be done by computing the
contributions due to the omitted terms.

22.7.3 Long wave equations. 1{ the time derivative terms of Egs.
(22,56) are not omitted we find that these equations are typical of wave
problems.

For instance, if the drag, Coriolis, and pressure force terms are omitted
we can eliminate U and ¥ (by differentiation of the first equation with
respect of time and the second and third by x and y, respectively) and
obtain the classical wave equation of the form

é an\ @ a1 2%y .
A e {H e e oy = 0 22,59
8.\-(H“6.\'> +8}-’( 06*_1') oy érr (
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We have discussed this type of equation in Chapter 20 and some aspects
of it are dealt with in Chapter 23.

With the drag terms included it is possible, by the introduction of some
further mathematical approximations, to derive an equation of type
{22.59) with a damping term included.

22.8 Convective Transport Equation and some Special Finite Element
Problems. ‘ Upwind® Weighting
22.8.1 The convective transport problem. In the basic fluid problem
discussed in this chapter we have encountered a new type of term. i.e..
that of convective acceleration (vide Eq. (22.5))

AR {22.60)

which has caused a major difficulty by introducing a non-symmmerric
mairix into the final equation.

Terms of this kind arise in an Eulerian formulation (i.e., one in which a
fixed space element is considered) when a certain quantity is rransporred
by a velocity field u. In Eq. (22.60) the quantity is the momentum but in
many problems it may be, say, the amount of a chemical dissolved in the
fiuid or, of heat carried by it, etc.

If. for instance, we consider the heat transfer in a moving fluid in which
the velocity u is known, then the heat balance equation derived by
precisely the same reasoning as that concerning heat diffusion in Chapter
17 and Chapter 20 (Eq. 17.6 and Eq. 20.1) now contains an additional
term. The balance equation now takes the following form:

Vi V) + 0 — c%—‘ff—- Viegu) = 0 (22.61)

where the last term is due to the transport of the heat content ¢¢ by the
moving fluid.

In steady flow, if the velocitics obey the incompressibility condition,
Le. if

Viu =0 {22.62)
this equation can be written as
VIk Vo) —VTcpu+ 0 = 0 (22.63)
orif ¢ is independent of position and the diffusivity is isotropic we have
Vi V) —(Vigu+0Q' = 0 (22.64)
with &' = kfcand Q' = Q/c.
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This type of convective problem is of extreme importance in ali branches
of physics and engineering. Heat transfer in fluid machirery, dispersion
of pollutant in shallow water, etc., are but a few examples.

In Chapter 3 (section 3.3, p. 56) we have already treated this specific
example by the Galerkin process and. beyond remarking that now non-
symmetric matrices arise {just as in the corresponding fluid mechanics
case), the impression was given that no special difficulties arise. However,
in the context of high velocity fluid flows we have already remarked
on page 621 that numerical instability has sometimes been noted. We shall
now investigate the problem further—in the context of the simple
form of Eq. {22.64). All the remarks which will be made are applicable
to the more complex forms and. indeed, to the basic fluid flow problem
itself.

In passing it should be noted that in equations of the type (22.64) the
relative importance of the two terms will be obviously of crucial import-
ance on the very nature of the problem. I, for instance. the conductivity
(diffusivity) terms were to become zero, then we would have only 2 first
order equation which clearly would not allow the specification of the
same number of boundary conditions and wouid be one of initial value-
propagation type.*® We would indeed find that the temperature conditions
at entry would govern entirely the solution and downsrrean conditions
could not be imposed. Clearly. if & has a small, but non-zero. value the
solution will still have to be of the same nature, and the downstream
effects will be highly localized. It is here that the essentials problems lie.

2281 General discretized form and the Galerkin approximation. In
section 3.5. p. 56 of Chapter 3 we have discretized the probiem of Eq.
{22.64) a priori, specifying the Galerkin form of weighting. Proceeding
with an arbitrary weighting function set ¥, we can similarly derive a
more general discretization {which the reader can check as an exercise).

Writing

$ =3 Na, = Na (22.65)
a system of linear equations of standard form
Ka+f=0 (22.66)

is obtained. in which {omitting ail boundary contributions for simplicity)

K, = f (VIV)Th'(VN,) dQ + j WaTVN,dQ  (2267)
4] Q

f, = j W0 dQ
Q
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Now the formulations and solutions can be obtained using any desired
element form or weighting function.

To illustrate the difficulty which is encountered we shall consider a
simple entry flow region, Fig. 22,11, where the velocity solution is assumed
known {or derived as it was in this example by processes of viscous flow
solution). With the diffusivity &' assumed constant, the solutions will be
characterized by a non-dimensional (Péclet) number

P, = Udit {22.68)

where U is the entry velocity and o a typical problem dimension (in our
case half the duct width).

Using W; = N, i.e., the standard Galerkin procedure, and a bilinear
isoparametric element mesh shown in Fig, 22,11, we find that reasonable
results are obtained for P, = 3-75 but that on increasing this the results
deteriorale untit at P, = 375 a meaningless oscillation is obtained.
Clearly this situation is not acceptable and some corrective measure has
to be taken.

22.8.2 One- and two-dimensional problems— wpwind’ weighting func-
tions. The difficulty just mentioned has been noted repeatedly in finite
difference context®®=3? and in the finite element field the remedy was
derived very recentiy.?*3¢

To appreciate the problem it is convenient to consider it first in one
dimension, using standard Huecar interpolation functions shown in
Fig. 22,12 and elements of a constant size & with a constant velocity u
throughout. Without loss of generality the homogenous problem (O = 0)
is used and the weighting function will be assumed within each element to
have a form

W= N{x)+aF(x) {(22.68)
where o 1s positive when « is directed towards node; and
F(x) = =3x(x—h)/h*? {22.69)

is chosen so as to have a positive value in each element and zero values at
the nodes to preserve C, continuity. Clearly o = 0 will reproduce once
again the classic Galerkin process.

On discretization and assembly of equations for a typical node the
following (difference) equation is found

[1 +%(|a|+ 1)} iy =247 |1])(i),—-§-[§ +%(ialw l)f/),-i.l} =0 (2270)
where the parameter y is defined as

v = uhi/k’ (22.71H)
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Fig. 2212 One-dimensional problem. Shape functions (N,) and weighting
functions (#¥,}. Constant velocity u

The “exact” solution of this difference equation is obtained in reference

54 and is given by
Ft (o) + 1)y /27
b [l + (ol 1) 3/2 ( )

where 4 and B are constants determined from the boundary conditions.
The solution will be oscillatory unless
| >0, = 12/ {ory < 2). (22.73)

Further it can be shown®* that the exaer solution to the original differential
equation will be obtained at nodal points if

|} = o, = coth y/2—2/3, (22.74)

In Chapter 3 we have indeed noted that in a simple diffusion problem
of Fig. 3.4, in which y = 0, such exact solutions were obtained with all
meshes at the nodal points. The above result generalizes this observation.
indicating the best choice of a weighting function.
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In Fig. 22.13 we show that the stable and optimal values of = differ but
little for higher values of y and due to simplicity of computation the
simpler expression (22.73) may be preferred. The process gives results
very similar to those achieved in finite difference approaches by using
"upwind differences’. In a recent publication by Barrett®” the possibility of
using such optimal values of « is indeed also suggested.

1°G -

081 a, = P 2/}' —,
{critical) i

&y = coih ‘,‘/2 - 2/‘,‘
{optimal)

Fig. 22,13 Critical (stable) and optimai values of the “upwind parameter # for
different values of 3 = wi/k’

To generalize the result to a two- (or three-) dimensional field appears
atfirstsight to bedifficult, assimpie *exact " solutions of difference equations
are notavailable. However, proceeding pragmatically the two-dimensional
weighting functions can be derived by simply using the appropriate
products of such one-dimensional functions as shown in Fig. 22.14. After
all this was the basic process-of deriving the two-dimensional shape
functions discussed in Chapter 7.

To take account of the generally varying velocity field, the optimal «
value is chosen in accordance with expression (22.74), depending on the
fow velocity component along the side (e.g., u; ; from node { to node j).
Figure 22.14 illustrates how such weighting functions may vary from node
to node of the bilinear element. The success and stability of using ot = o, is
shown in example of Fig. 22,12,

Processes similar to the one described above can be developed. albeit
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Fig. 22.14  Typical weighting functions for a bi-linear two-dimensional element
{parent co-ordinates). Velocity sign convention

with more difficult mathematics, for higher order elements. This has been
done in reference 56 for quadratic elements where now two parameters
have to be determined along each side. The necessity for doing this is
still there as the oscillations develop even to a greater extent with such
higher order elements. In Fig. 22.15 we show. for instance, the meaningless
results obtained with curved isoparametric quadratic elements for a
diffusion problem to a hypothetic estuary and the improvement consequent
on the use of *upwinding”.

22.9 Some Further Problems of Fluid Mechanics and Concluding Remarks

The scope of this chapter has permitted only a briel mention of some
typical fluid flow problems. Compressible subsonic and supersonic flow
have not been touched upon despite quite an extensive literature already
appearing on finite element approximations in those areas, 5460

Even with incompressibie situations many interesting coupled flow
problems could not be discussed. For instance. density changes owing to
temperature varjation are frequently important contributors to the
velocity field development. As the temperature field is in turn influenced
by such velocity variations, an iterative complex formulation is necessary.
Figure 22.16 from reference 53 shows such a coupled solution in a
ventilating duct. Other similar coupled problems of heat generation, and
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the consequent temperature changes {which in turn affect the viscosities),
are discussed in the context of plastic non-Newtonian flows of metals in
references 24, 34, and 56—the latter showing the importance of con-
sidering the convective terms by processes discussed in the last section.
While the applications of the finite element method in the field of
classical fluid mechanics is fairly obvious, the flow of rocks on a geological

{a) Curvilinear mesh

" Xh\x%‘“‘x

D= R e s \
x- 2
““h

%
\
[N
\\
[ YO e e e O o O b O
2 Iox 4 3 6
¥ o= 10 with upwinding
o— 3 = I} no upwinding
e 3= 50 with upwinding
=== 3 = 50 no upwinding

i o= 50 with finer mesh
(&) Temperature profile along detted mesh line in {a)

Fig. 22,15 Sicady state convective diffusion of a poliutant in an estuary
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Fig. 22,16 Recirculation caused by a hot spot in a duct with uniform velocity

time scale is but one of the new areas in which the principles of this
chapter are directly applicable. A survey of possible application is given

in reference 61.
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function [ K1,Ci,M1 ] = elmt23( local data }
% elmt23: 2-D three-node (triangular) element for Navier-Stokes flow
% (Constant gradient triangle, etc.)
5
sElement subroutine to construct local element matrix from local data
%
% local data.mater = [elt# Hyd.Cond Elt-thickness prop3 prop4 propbd ] For material type
%
% local data.coords = [ X1 x2 of node 1;
% x1 x2 of node 2;
% x1 %2 of node 3}
%
% local _data.dofs = [ dofl dof2 deof3] Globkal dof referenced to local dofs
%
Kl = zeros(9,9);
ClL = zeros(9,8);
Ml = zeros(9,9);
D = zeros(2,2};
A = zeros{Z,3};
% Constitutive matrix - Darcy's Law, Fick's Law, Four
%
density = local data.mater(l,2);
viscosity = local_data.mater({l,3);
thickness = 1
——— Evaluate coefs and determinant for element area

b = local data.coords(2,1)*local data.coords{3,2) - local_data.coords(3,1)*local_data.¥
coords(2,2);

b2l = local_data.coords(2,2) - local data.coords({3,2);

b3l = local _data.coords(3,1) - local_data.coords{Z,1);

a2 local data.coords(l,1)*b21 + local_data.coords{1,2)*b31l + b;

area = d2/2;

o

e Evaluate derivatives of shape functions
A = {1/d2) * [ b2l (local data.coords{3,2)-local_data.ccords(1,2)) {local_data.cocrds¥
(1,2y-local data.cocrds(2,2});

b3i (local data.coords(l,1l)-local_data.coords(3,1}) {local_data.coords¥
(2,1)-1local_data.coords(1,1))1;:

it e i it Evaluate second order matrices

D= 1[(1090; 00 ]; secondorderinx = zercs(3,3); secondorderinx = A'*(D*A)¥
*area*thickness

D=[00; 01 1; secondorderiny = zeros{3,3); secondorderiny = A'*(D*A)«
*area*thickness
B o Evaluate first order matrices

factor = ones{3,1)/3

v=[1;01; firstorderinx = zeros(3,3); firstorderinx = factor*(v'*A}¥
*area*thickness

vo= [ 0; 1 13; firstorderiny = zeros(3,3}; firstorderiny = factor*{v'*A}K

*area*thickness
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R ittt b Assemble local stiffness matrix [ wxl vxZ vx3 vyl vy2¥
vy3 pl p2 p3 1}
null = zercs{3,3)
Kl = [ viscosity*({secondorderinx+secondorderiny) null#
firstorderinx ;
null viscosity*w«
{secondorderinx+secondorderiny) firstorderiny;
firstordering’ firstorderiny'¥
null }
e e Reorder stiffness matrix for dof

2 [vxl vx2 vxr3 vyl vy2 vy3 pl p2 p3] ==> [vxl vyl pl vx2 vy2 p2 vx3 vy3 p3l

& o= Reorder columns
tempcol = KL(:,2); KL(:,2) = KL(:,4); K1(:,4} = tempcol;
tempcol = KLl{:,3):; Kl{:,3) = Ki(:,7); Kil(:,7} = tempcol;
tempcol = K1{:,8); K1{:,86) = Ki{:,8); Kil(:,8) = tempcol;
§ —m— Reorder rows
temprow = K1 (2,:}; KL(2,:} = K1{4,:); KL{4,:) = temprow;
temprow = K1(3,:}; KL{(3,:} = KL{7,:); KL{7,:) = temprow;

temprow = Ki{6,:); K1(6,:)

#

K1{8,:); KL(8,:) = temprow;

T e e e Evalaute consistent mass (storage) matrix
100, 010; G0 11:

o
3
=
8
v
H
0]
f
*
T
o
H .
0
=
5
o
o
®
™~
w
*
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[5:1] Solid Mechanics
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II.5 TInversion (Adjoint Matrix)

It can be shown that
a (adj a) = iajl (1.1

where }aj is the determinant of the matrix a and adj a, called the adjoint
matrix. is the transpose of the matrix of cofuctors of the determinant.
Comparing (I1.10) and (If.11) we see that

adja
a~l =" (I1.12)
jal

from which it is clear that the inverse does not exist when |a| is zero, in which
case a is said to be singular.
To illustrate the method we shall determine the inverse of the matrix
1 hY »
H=1|1 x4 ¥ {11.13)

! Xm Ym

If we delete the pth row and. gth column from the determinant of the
matrix we obtain the minor H :W. e.g. deleting row 3 and column 1 we have

X i

HYy = (I1.14)

X1 i

The cofactor Hp, is the product of the minor and (~ 1}7+0). When the
cofactors are written as a matrix and then transposed we have the adjoint
matrix

X; » Xt » xt  yi]
Xm Ym - Xm ¥m X5 ¥i
= || o LM asy
I Fm 1 Ym 1 b
1 X 1 Xy 1 X
B R L I 'R

Forexample Hy, of (I1.14} is transposed to row 1 column 3. Expanding the

determinants we have

(3¥m— Xm¥1) —{Xiym—~ Xm}i) {xiy5—x34)
adj H = | =0m—21) GOm0 —(y3=y1) (I1.16)
(xm—x;) —(xm—xi) {xs—x0)

The inverse is obtained by dividing adj H by the determinant of H.
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ONONONCHONONONONONONONONY!

1

SUBROUTINE ELMTO03(D,UL,XL,IX,TL,S,P,NDF,NDM,NST, ISW)
IMPLICIT REAL*8 (A-H,0-2)

THREE NODED PLANE STRAIN ELEMENT FOR SOLID MECHANICS

USER INFORMATION

INPUT
VAR FORMAT DESCRIPTION
D(1) F10.0 MODULUS OF DEFORMATION
D(2) F10.0 POISSON RATIO

VARIABLES

NEL - NUMBER OF NODES PER ELEMENT

NDF - NUMBER OF DEGREES OF FREEDOM PER NODE

NST - NUMBER OF DEGREES OF FREEDOM PER ELEMENT (NEN*NDEF')

ISwW - FUNCTION CALL NO.
1 = READ ELEMENT SPECIFIC INPUT DATA
2 = PERFORM MESH CHECK
3 = FORM ELEMENT STIFENESS MATRIX - TANG
4 = EVALUATE ELEMENT STRESSES - STRE
5 = FORM CONSISTENT/LUMPED MASS MATRIX - CMAS
6 = FORM LOAD VECTOR - FORM

OR EVALUATE NODAL FORCES - REAC

ARRAYS - GIVEN

UL (1,J) SPECIFIED DISPLACEMENT BOUNDARY CONDITION FOR
DEGREE OF FREEDOM J (J=1,6)

XL(I,Jd) COORDINATE IN THE I DIRECTION AT NODE J

EG. XL(1,3) IS X COORDINATE OF NODE K

ARRAYS - EVALUATED

A( ) A MATRIX
Cc( ) D MATRIX
S(I,J) STIFFNESS MATRIX S = AT*D*A DV
FOR ROW (VERTICAL) I AND COLUMN (HORIZ.) J
P(I) MODIFIED LOAD VECTOR FOR LOCAL DOF I (IGNORE)

CHARACTER*4 O, HEAD

COMMON /CDATA/ O,HEAD (20), NUMNP, NUMEL, NUMMAT, NEN, NEQ, IPR

COMMON /ELDATA/ DM,N,MA,MCT,IEL,NEL

DIMENSION D(2),UL(1,1),XL(NDM,1),IX(1),TL(1),S(NST,1),P (1)
+A(3,6),C(3,3)

GO TO CORRECT ARRAY PROCESSOR



GO TO(1,2,3,4,5,3),ISW
C.... INPUT MATERIAL PROPERTIES

1 READ (5,1000) D(1),D(2)
WRITE (6,2000) D(1),D(2)
RETURN
MESH CHECKING FACILITY
RETURN

STIFFNESS MATRIX COMPUTATION

CONTINUE

THE STIFEFNESS MATRIX MUST BE COMPUTED IN THIS PORTION
OF THE ELEMENT SUBROUTINE. BETWEEN STATEMENTS 3 AND 300
THE STIFFNESS MATRIX MUST BE EVALUATED.

USE THE FOLLOWING STEPS TO EVALUATE THE MATRIX S (6,6)
S(6,6) MUST BE EVALUATED BEFORE STATEMENT 300
EVALUATE C( ) MATRIX

EVALUATE COEFFICIENTS IN A( ) MATRIX

COMPLETE TRIPLE MATRIX PRODUCT AT*D*A

PERFORM VOLUME INTEGRATION (*AREA)

MODIFY LOAD VECTOR FOR BOUNDARY CONDITIONS

THIS IS THE END OF YOUR ADDITIONS

NN ONCHONONONONO NN NONONONONONONONONONONONNNONON VN@!

00 CONTINUE
DO 320 I=1,6
DO 320 J=1,6

320 P(I) = P(I) - S(I,J)*UL(1,J)
RETURN

cC.. EVALUATE ELEMENT STRESSES

4 RETURN

C.. LUMPED MASS COMPUTATION

5 RETURN

C FORMATS FOR INPUT AND OUTPUT

1000 FORMAT (2F10.0)

2000 FORMAT (/5X, 'THREE NODED CONSTANT STRAIN ELEMENT',//
1 10X, 'DEFORMATION MODULUS ', 6X,E14.7,/

2 10X, 'POISSON RATIO ',6X,E14.7,/)

END



FEAP
11
COORD
1
11

ELEM

O oy U1

MATE

END

MACR
TANG
FORM
SOLV
DISP
REAC
END

STOP

1-D LOADING CASE FOR A COLUMN

10

NN P o

O o O

2 1

N O
o O

O oy U1
P 3o N

1000000.

1000000.

1

BLOCK 1

BLOCK 2

2

(File asst2.d)



FEAP TWIN TRIANGULAR ELEMENTS - SOLID MECHANICS

4 2 1 2 2 3
COORD
1 0.0 0.0
2 1.0 0.0
3 1.0 1.0
4 0.0 1.0
ELEM
1 1 1 2 3
2 1 1 3 4
MATE
1 3 MATERIAL 1
1.0 .25
BOUN
1 1 1
2 0 1
3 0 0
4 0 0
FORC
1 0.0 0.0
2 0.0 0.0
3 0.0 -1.0
4 0.0 -1.0
END
MACR
TANG
FORM
SOLV
DISP
REAC
END

STOP
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[6:1] Linked Mechanisms
Dual Porosity/Dual Permeability
Concept
Dual permeability
Heuristic derivation

Comsol implementation
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[6:2] Linked Mechanisms
HM — Poromechanics
Effective stresses
FE equations
Summary equations (Biot, 1941)
EGEEfem

Comsol



PROCESS COUPLINGS [T-H-M-C]
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ToTAL STPESS = EFFeCTive STRESS + s PEeXSUEE

Figure 4.1.1 Saturated porous medium
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The settlement of soils under load is caused by a phenomenon called consolidation, whose
mechanism is known to be in many cases identical with the process of squeezing water out of
an elastic porous medium. The mathematical physical consequences of this viewpoint are
established in the present paper. The number of physical constants necessary to determine the
properties of the soil is derived along with the general equations for the prediction of settle-
ments and stresses in three-dimensional problems. Simple applications are treated as examples.
The operational calculus is shown to be a powerful method of solution of consolidation

problems.

INTRODUCTION

T is well known to engineering practice that a
soil under load does not assume an instan-
taneous deflection under that load, but settles
gradually at a variable rate. Such settlement is
very apparent in clays and sands saturated with
water. The settlement is caused by a gradual
adaptation of the soil to the load variation. This
process is known as soil consolidation. A simple
mechanism to explain this phenomenon was first
proposed by K. Terzaghi.! He assumes that the
grains or particles constituting the soil are more
or less bound together by certain molecular
forces and constitute a porous material with
elastic properties. The voids of the elastic skel-
eton are filled with water. A good example of
such a model is a rubber sponge saturated with
water. A load applied to this system will produce
a gradual settlement, depending on the rate at
which the water is being squeezed out of the
voids. Terzaghi applied these concepts to the
analysis of the settlement of a column of soil
under a constant load and prevented from lateral
expansion. The remarkable success of this theory
in predicting the settlement for many types of
soils has been one of the strongest incentives in
the creation of a science of soil mechanics.
Terzaghi's treatment, however, is restricted to
the one-dimensional problem of a column under a
constant load. From the viewpoint of mathe-
matical physics two generalizations of this are

* Publication assisted by the Ernest Kempton Adams
Fund for Physical Research of Columbia University.

1 K. Terzaghi, Erdbaumechanik auf Bodenphysikalischer
Grundlage (Leipzig F. Deuticke, 1925); “Principle of soil
mechanics,” Eng. News Record (1925), a series of articles.
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possible: the extension to the three-dimensional
case, and the establishment of equations valid for
any arbitrary load wvariable with time. The
theory was first presented by the author in rather
abstract form in a previous publication.? The
present paper gives a more rigorous and complete
treatment of the theory which leads to results
more general than those obtained in the previous
paper.

The following basic properties of the soil are
assumed: (1) isotropy of the material, (2) re-
versibility of stress-strain relations under final
equilibrium conditions, (3) linearity of stress-
strain relations, (4) small strains, (5) the water
contained in the pores is incompressible, (6) the
water may contain air bubbles, (7) the water
flows through the porous skeleton according to
Darcy’s law.

Of these basic assumptions (2) and (3) are
most subject to criticism. However, we should
keep in mind that they also constitute the basis of
Terzaghi’s theory, which has been found quite
satisfactory for the practical requirements of
engineering. In fact it can be imagined that the
grains composing the soil are held together in a
certain pattern by surface tension forces and tend
to assume a configuration of minimum potential
energy. This would especially be true for the
colloidal particles constituting clay. It seems
reasonable to assume that for small strains, when
the grain pattern is not too much disturbed, the
assumption of reversibility will be applicable.

The assumption of isotropy is not essential and

2 M. A. Biot, “Le probléme de la Consolidation des

Matiéres argileuses sous une charge,” Ann. Soc. Sci.
Bruxelles B55, 110-113 (1935).
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anisotropy can easily be introduced as a refine-
ment. Another refinement which might be of
practical importance is the influence, upon the
stress distribution and the settlement, of the
state of initial stress in the soil before application
of the load. It was shown by the present author?
that this influence is greater for materials of low
elastic modulus. Both refinements will be left out
of the present theory in order to avoid undue
heaviness of presentation.

The first and second sections deal mainly with
the mathematical formulation of the physical
properties of the soil and the number of constants
necessary to describe these properties. The
number of these constants including Darcy’s
permeability coefficient is found equal to five in
the most general case. Section 3 gives a dis-
cussion of the physical interpretation of these
various constants. In Sections 4 and 5 are
established the fundamental equations for the
consolidation and an application is made to the
one-dimensional problem corresponding to a
standard soil test. Section 6 gives the simplified
theory for the case most important in practice of
a soil completely saturated with water. The
equations for this case coincide with those of the
previous publication.? In the last section is
shown how the mathematical tool known as the
operational calculus can be applied most con-
veniently for the calculation of the settlement
without having to calculate any stress or water
pressure distribution inside the soil. This method
of attack constitutes a major simplification and
proves to be of high value in the solution of the
more complex two- and three-dimensional prob-
lems. In the present paper applications are
restricted to one-dimensional examples. A series
of applications to practical cases of two-dimen-
sional consolidation will be the object of subse-
quent papers.

1. SoiL STRESSES

Consider a small cubic element of the con-
solidating soil, its sides being parallel with the
coordinate axes. This element is taken to be large
enough compared to the size of the pores so that
it may be treated as homogeneous, and at the

. *M. A. Biot, “Nonlinear theory of elasticity and the
linearized case for a body under initial stress.”
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same time small enough, compared to the scale of
the macroscopic phenomena in which we are
interested, so that it may be considered as
infinitesimal in the mathematical treatment.

The average stress condition in the soil is then
represented by forces distributed uniformly on
the faces of this cubic element. The corresponding
stress components are denoted by

G Ty Ty
(1.1)

Ty Oy Tz
Ty Tz Oz

They must satisfy the well-known equilibrium
conditions of a stress field.

do, 07, 07y

—p—+—=0,

dx dy 0z

dr, dg, 97,

+_+ = Oy (1 '2)

dx dy 9z

dry, 01, 0o,

—_— =0.

dx Jy 09z

Physically we may think of these stresses as
composed of two parts; one which is caused by
the hydrostatic pressure of the water filling the
pores, the other caused by the average stress in
the skeleton. In this sense the stresses in the soil
are said to be carried partly by the water and
partly by the solid constituent.

2. STRAIN RELATED TO STRESS AND
WATER PRESSURE

We now call our attention to the strain in the
soil. Denoting by #, v, w the components of the
displacement of the soil and assuming the strain
to be small, the values of the strain components
are

ou dw ov
e=—) Yz=—t—,
ox dy 09z
ov ou ow
ey =-—, 'Yy=_+“—: (2'1)
dy dz Ox
Jw dv Jdu
e,=—, Yi=—+—.
0z dx dy

In order to describe completely the macroscopic
condition of the soil we must consider an addi-
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‘tional variable giving the amount of water in the
pores. We therefore denote by 6 the increment of
water volume per unit volume of soil and call this
quantity the wvariation in water content. The
increment of water pressure will be denoted by o.

Let us consider a cubic element of soil. The
water pressure in the pores may be considered as
uniform throughout, provided either the size of
the element is small enough or, if this is not the
case, provided the changes occur at sufficiently
slow rate to render the pressure differences
negligible.

It is clear that if we assume the changes in the
soil to occur by reversible processes the macro-
scopic condition of the soil must be a definite
function of the stresses and the water pressure
i.e., the seven variables

e. e, e, Yo Yy Y O

must be definite functions of the variables:
() Uy [P} Tz Ty T2 ag.

Furthermore if we assume the strains and the
variations in water content to be small quantities,
the relation between these two sets of variables
may be taken as linear in first approximation.
We first consider these functional relations for
the particular case where ¢=0. The six com-
ponents of strain are then functions only of the six

stress components ¢, 6y 0, 7, Ty 7.. Assuming the .

soil to have isotropic properties these relations
must reduce to the well-known expressions of
Hooke's law for an isotropic elastic body in the
theory. of elasticity ; we have

or ¥
3x=E—_E_'(oy+0z)v
oy v
ey=E—E(6z+Jz),
g, v
ez=E—‘E‘(0'z+0y), (2.2)
Vo= T12/G,
v=1,/G,
Y:=17,/G.

In these relations the constants E, G, v may be
interpreted, respectively, as Young’s modulus,
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the shear modulus and Poisson’s ratio for the
solid skeleton. There are only two distinct
constants because of the relation

E
G=——.
2(14»)

Suppose now that the effect of the water pressure
¢ is introduced. First it cannot produce any
shearing strain by reason of the assumed isotropy
of the soil; second for the same reason its effect
must be the same on all three components of
strain e, e, e¢,. Hence taking into account the
influence of ¢ relations (2.2) become

(2.3)

Oz 14 g
ex:_‘—(a'y+0'x)+_v

E E 30

T (2.4)
&= (o) s :
‘"E E 3H

g, ¥ a
E;=‘—_—(0'x+6y)+—1

E E 3H
'szTz/G,
V= 14/ G,
7z=Tz/Gv

where H is an additional physical constant.
These relations express the six strain components
of the soil as a function of the stresses in the soil
and the pressure of the water in the pores. We
still have to consider the dependence of the
increment of water content 6 on these same
variables. The most general relation is

6=a10:4as0,+as0, a4t

“asry+asr.+as0.

Now because of the isotropy of the material a
change in sign of 7, 7, r, cannot affect the water
content; therefore ay=a;=as=0 and the effect
of the shear stress components on # vanishes,
Furthermore all three directions x, y, 2 must have
equivalent properties ¢,=a;=a;. Therefore rela-
tion (2.5) may be written in the form

(2.5)

1 0
=3—I{1(Ux+0'u+0'z)+};, (26)

where H; and R are two physical constants.
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Relations (2.4) and (2.6) contain five distinct
physical constants. We are now going to prove
that this number may be reduced to four; in
fact that H=H, if we introduce the assumption
of the existence of a potential energy of the soil.
This assumption means that if the changes occur
at an infinitely slow rate, the work done to bring
the soil from the initial condition to its final state
of strain and water content, is independent of the
way by which the final state is reached and is a
definite function of the six strain components.and
the water content. This assumption follows quite
naturally from that of reversibility introduced
above, since the absence of a potential energy
would then imply that an indefinite amount of
energy could be drawn out of the soil by loading
and unloading along a closed cycle.

The potential energy of the soil per unit volume
is
U=%(”’xez+6’yeu+0’ze¢+7:ﬁ’x

+Ty7u+7'z'yz+0'0>'

In order to prove that H=H, let us consider a
particular condition of stress such that

2.7)

0z =0y=0,=01,
T:=Ty=7,=0,

Then the potential energy becomes
U=131(s16+00) with e=e.,+e,+te,
and Eqgs. (2.4) and (2.6)

3(1—=2v) ¢
e=——0a1+—,
E H

0=01/Hi+0/R. (2.8)
The quantity e represents the volume increase of
the soil per unit initial volume. Solving for o,
and ¢

€ 0
o=———,
RA HA
—e 3(1—-2»)6
o= _ (2.9)
HA EA

3(1—-2») 1
Am—m—m——
ER HH,
The potential energy in this case thay be con-
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sidered as a function of the two variables e, 6.
Now we must have

U aU
—=0;, —=0.
de 06
Hence
doy Jdo
30 e
or
1 1
HA HA

We have thus proved that H=H; and we may
write ‘

1
0=-——(oz+0'y+0',)+i. (2.10)
3H R

Relations (2.4) and (2.10) are the fundamental
relations describing completely in first approxi-
mation the properties of the soil, for strain and
water content, under equilibrium conditions.
They contain four distinct physical constants
G, v, H and R. For further use it is convenient to
express the stresses as functions of the strain and
the water pressure ¢. Solving Eq. (2.4) with
respect to the stresses we find

Ve
o,=2G(e,+ ) — a0,
1—2»
Ve
ay=2G(ey-|— ) —ao,
1—2y
Ve
02=2G(e,-|- )—ao, (2.11)
1—2y»
Ta::G'Yz,
79=G"y,
7.=Gv,
with
2t4+») G
a=——,
3(1-2») H

In the same way we may express the variation in
water content as

0=cae+a/0Q,

(2.12)
where
1 1 «
0 R H
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3. PuysicaL INTERPRETATION OF THE
SoiL. CONSTANTS '

The constants E, G and » have the same
meaning as Young's modulus the shear modulus
and the Poisson ratio in the theory of elasticity
provided time has been allowed for the excess
water to squeeze out. These quantities may be
considered as the average elastic constants of the
solid skeleton. There are only two distinct such
constants since they must satisfy relation (2.3).

Assume, for example, that a column of soil sup- -

ports an axial load py= —¢, while allowed to
expand freely laterally. If the load has been
applied long enough so that a final state of
settlement is reached, i.e., all the excess water has
been squeezed out and ¢=0 then the axial strain
is, according to (2.4), .

s

€, = (3.1)
E
and the lateral strain
vp
ex=ey=——0= —ve,. (3.2)
E

The coefficient » measures the ratio of the lateral
bulging to the vertical strain under final equi-
librium conditions.

To interpret the constants H and R consider a
sample of soil enclosed in a thin rubber bag so
that the stresses applied to the soil be zero. Let
us drain the water from this soil through a thin
tube passing through the walls of the bag. If a
negative pressure —o is applied to the tube a
certain amount of water will be sucked out. This
amount is given by (2.10)

: ag
0= ——.

3
2 (3.3)

The corresponding volume change of the soil is
given by (2.4)

a

€= —m

= (3.4)

The. coefficient 1/H is a measure of the com-
pressibility of the soil for a change in water
pressure, while 1/R measures the change in
water content for a given change in water pres-
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sure. The two elastic constants and the constants
H and R are the four distinct constants which
under our assumption define completely the
physical proportions of an isotropic soil in the
equilibrium conditions.

Other constants have been derived from these
four. For instance « is a coefficient defined as

2(14-») G

=_— 3.5
* 31-2»nH (3.5)

According to (2.12) it measures the ratio of the
water volume squeezed out to the volume change
of the soil if the latter is compressed while
allowing the water to escape (¢=0). The coeffi-
cient 1/Q defined as

1 1 «a
———— (3.6)
Q R H
is a measure of the amount of water which can be
forced into the soil under pressure while the
volume of the soil is kept constant. It is quite
obvious that the constants « and Q will be of
significance for a soil not completely saturated
with water and containing air bubbles. In that
case the constants o and Q can take values
depending on the degree of saturation of the soil.
The standard soil test suggests the derivation
of additional constants. A column of soil supports
a load po= —o. and is confined laterally in a rigid
sheath so that no lateral expansion can occur.
The water is allowed to escape for instance by
applying the load through a porous slab. When
all the excess water has been squeezed out the
axial strain is given by relations (2.11) in which
we put ¢=0. We write

€= — Dua. (3.7) ]
The coefficient
1—2»

a=_——_2G(1—-v) (3.8)

will be called the final compressibility.
If we measure the axial strain just after the
load has been applied so that the water has not
had time to flow out, we must put =0 in
relation (2.12). We deduce the value of the water

pressure '
o= —ale,.

(3.9
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substituting this value in (2.11) we write
e,= —Pol;. (3.10)
The coefficient
a
= (3.11)
14 a2aQ

will be called the insianianeous compressibility.

The physical constants considered above refer
to the properties of the soil for the state of
equilibrium when the water pressure is uniform
throughout. We shall see hereafter that in order
to study the transient state we must add to the
four distinct constants above the so-called
coefficient of permeability of the soil.

4. GENERAL EqQuaTioNs GOVERNING
CONSOLIDATION

We now proceed to establish the differential
equations for the transient phenomenon of con-
solidation, i.e., those equations governing the dis-
tribution of stress, water content, and settlement
as a function of time in a soil under given loads.

Substituting expression (2.11) for the stresses:

into the equilibrium conditions (1.2) we find

de do

GV -+ ——a—=0,
1—2v0x ox
de do

GV27J+1 . ——a—=0,
—2v 8y Oy

4.1)

’ de do

GViw+ - ——a—=0,
1—-2v 9z 9z

V2 =92/9x2432/9y?+ 32/ 022,

There are three equations with four unknowns
u, v, w, 0. In order to have a complete system we
need one more equation. This is done by intro-
ducing Darcy’s law governing the flow of water
in a porous medium. We consider again an
elementary cube of soil and call V, the volume of
water flowing per second and.unit area through
the face of this cube perpendicular to the % axis.
In the same way we define V, and V.. According
to Darcy’s law these three components of the
rate of flow are related to the water pressure by

the relations

do do do
V:c=_"k"_‘, Vy=_k"_', Vz'—“'k—
dx dy 0z

4.2)

The physical constant £ is called the coefficient of
permeability of the soil. On the other hand, if we
assume the water to be incompressible the rate of
water content of an element of soil must be equal
to the volume of water entering per second
through the surface of the element, hence

——— (4.3)
¢’ dx 0y 9z

Combining Eqgs. (2.2) (4.2) and (4.3) we obtain

de 1 9o
kEVio=a—+——.

(4.4)
at Q at

The four differential Egs. (4.1) and (4.4) are the
basic equations satisfied by the four unknowns
u, v, W, 6.

5. APPLICATION TO A STANDARD Soir TEsT

Let us examine the particular case of a column of soil supporting a load po= —o. and confined
laterally in a rigid sheath so that no lateral expansion can occur. It is assumed also that no water can
escape laterally or through the bottom while it is free to escape at the upper surface by applying the

load through a very porous slab.

Take the z axis positive downward; the only component of displacement in this case will be w.
Both w and the water pressure ¢ will depend only on the coordinate z and the time ¢. The differential

Egs. (4.1) and (4.4) become

19w OJw
———a—=0, (5.1)
a 0z? 0z
0%¢ d0w 1 do
F—=a _—— (5.2)
dzr  dz0t Q ot
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where a is the final compressibility defined by (3.8). The stress ¢, throughout the ioaded column is a
constant. From (2.11) we have
1 ow
po=—0g,=———=ac (5.3)
a 9z
and from (2.12)
dw o

8=a—-+—.

Iz Q
Note that Eq. (5.3) implies (5.1) and that
1 0%w do

adzdt ot
This relation carried into (5.2) gives
0%¢ 1d¢

dz2 ¢ at’

1 a 1
et (5.5)
c kR Qk
The constant ¢ is called the consolidation constant. Equation (5.4) shows the important result that the
water pressure satisfies the well-known equation of heat conduction. This equation along with the
boundary and the initial conditions leads to a complete solution of the problem of consolidation.
Taking the height of the soil column to be & and z2=0 at the top we have the boundary conditions

—
()]
1N

-~

with v

a=0 for z=0,
do 5.6
—=0 for z=h. (56
0z

The first condition expresses that the pressure of the water under the load is zero because the perme-
ability of the slab through which the load is applied is assumed to be large with respect to that of the
soil. The second condition expresses that no water escapes through the bottom.

The initial condition is that the change of water content is zero when the load is applied because the
water must escape with a finite velocity. Hence from (2.12)

ow o
=a—+—=0 fort=0.
dz Q
Carrying this into (5.3) we derive the initial value of the water pressure
1 a—a;
a=po/ (——+a> for t=0 or o= o (5.7
aa() aa

where a; and ¢ are the instantaneous and final compressibility coefficients defined by (3.8) and (3.11).
The solution of the differential equation (5.4) with the boundary conditions (5.6) and the initial
condition (5.7) may be written in the form of a series A

4 a—a; 3w\ 2 3rz
pglexp[ ( ) ct] sin —+— [ (——) ct] sin ——- - - - l (5.8)
T o 2h 2k 3 2h 2h

The settlement may be found from relation (5.3). We have

Jw
—=aac—aps. (5.9)
9z
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The total settlement is

fh 6wd ( o Z 1 l [(2n+1)7r]2 t]—l— . (5.10)
Wo== g = a—a;)npo " i) exp 7 [/ anpg. .

Immediately after loading (¢=0), the deflection is

8 w 1
W= ——2(a—a1~)hpo Z ————l—ahp
s

v 2n+1)2
Taking into account that
5T h | )
= -, wi == a"i N 5 . 1 1
o 2n+1)2 8 be (
which checks with the result (3.10) above. The final deflection for = «» is .
Woo = alipo. ©(5.12)

It is of interest to find a simplified expression for the law of settlement in the period of time immedi-
ately after loading. To do this we first eliminate the initial deflection w; by considering

Wy =W — =—-(a @) pOZ(Z—n-lijﬁ_{ —exp[¥—(-(2—n2——i;—1)—7—r)2ct]}. (5.13)

This expresses that part of the deflection which is caused by consolidation. We then consider the
rate of settlement.

Po 2 (5.14)

d@s 2c(e—as) { [(21'L-1—1)7r:|2
= exp{—|——m ct’.
dt h 0

For ¢=0 this series does not converge ; which means that at the first instant of loading the rate of
settlement is infinite. Hence the curve representing the settlement w, as a function of time starts
with a vertical slope and tends asymptotically toward the value (¢ —a)kp, as shown in Fig. 1 (curve
1). It is obvious that during the initial period of settlement the height % of the column cannot have
any influence on the phenomenon because the water pressure at the depth =% has not yet had time
to change. Therefore in order to find the nature of the settlement curve in the vicinity of =0 it is
enough to consider the case where = . In this case we put

n/h=§ 1/h=Af
and write (5.14) as

dw, ®
*d7=25(a—ai)i’o 2 exp [ —w2(§4-3A8) %t ]AL
/]

for 2= . The rate of settlement becomes the integral

dw, ® cla—ai)po
E—=26(a—a.~)pof exp (—mct)df=———-. (5.15)
0

(wet)t

The value of the settlement is obtained by intégration
¢ dw, ct\?
ws=f ——dt=2(a—a,:)po(—) . (5.16)
o 4t T

It follows a parabolic curve as a function of time (curve 2 in Fig. 1).
)
| .
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6. SIMPLIFIED THEORY FOR A SATURATED CLAY

For a completely saturated clay the standard .

test shows that the initial compressibility ¢; may
be taken equal to zero compared to the final
compressibility a, and that the volume change of
the soil is equal to the amount of water squeezed
out. According to (2.12) and (3.11) this implies

Q= e, (6.1)

This reduces the number of physical constants of
the soil to the two elastic constants and the
permeability. From relations (3.5) and (3.6) we
deduce

a=1,

_ 2G(1+v)

H=R=
3(1—2v)

(6.2)

and from (5.5) the value of the consolidation
constant takes the simple form

c=Ek/a.
Relation (2.12) becomes

(6.3)
f=ce. (6.4)

The genefal differential equations (4.1) and
(4.4) are simplified,

G 9de¢ Jo
GV ———=0,
1—2y0x 0dx
G de do
GV -+ — =0, (6.5)
1—-2v0y ay
de Odo
GViw+- ———=0,
1—2» 9z 09z
Jde
kVol=—., (6.6)
ot

By adding the derivatives with respect to x, v, 2
of Egs. (6.5), respectively, we find

Vet=aVo?, (6.7)
where ¢ is the final compressibility given by (3.8).
From (6.6) and (6.7) we derive

1 de
Ve == —,
c ot

(6.8)

Hence the volume change of the soil satisfies the
equation of heat conduction.
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Equations (6.5) and (6.8) are the fundamental
equations governing the consolidation of a com-
pletely saturated clay. Because of (6.4) the initial
condition =0 becomes ¢=0, i.e., at the instant
of loading no volume change of the soil occurs.
This condition introduced in Eq. (6.7) shows that
at the instant of loading the water pressure in the
pores also satisfies Laplace’s equation.

Vo?=0. (6.9)

The settlement for the standard test of a column
of clay of height % under the load py is given by
(5.13) by putting a;=0.

8 w 1

Ws=—ahpy 3, ——
2 o (2n+1)?

X{l—exp [—(SM—;)——W):;“. (6.10)

From (5.16) the settlement for an infinitely high
column is :

ct\?
W= Zap(,(—) .
m

(6.11)

It is easy to imagine a mechanical model having

the properties implied in these equations. Con-
sider a system made of a great number of small
rigid particles held together by tiny helical
springs. Thissystem will be elastically deformable
and will possess average elastic constants. If we
fill completely with water the voids between the

-~
//
//
-
%, 2.~
~
//
///
- 1
7
Ve
7
Z

V. 9
B

g

|

g

F1G. 1. Settlement caused by consolidation as a function
of time. Curve 1 represents the settlement of a column of
height & under a load po. Curve 2 represents the settlement
for an infinitely high column.
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particles, we shall have a model of a completely
saturated clay.

Obviously such a system is incompressible if no
water is allowed to be squeezed out (this corre-
sponds to the condition Q= ») and the change
of volume is equal to the volume of water
squeezed out (this corresponds to the condition
a=1). If the systems contained air bubbles this
would not be the case and we would have to
consider the general case where Q is finite and
a®l.

Whether this model represents schematically
the actual constitution of soils is uncertain. It is
quite possible, however, that the soil particles are
held together by capillary forces which behave in
pretty much the same way as the springs of the
model.

7. OPERATIONAL CALCULUS APPLIED TO
CONSOLIDATION

The calculation of settlement under a suddenly
applied load leads naturally to the application of
operational methods, developed by Heaviside for
the analysis of transients in electric circuits. As
an illustration of the power and simplicity
introduced by the operational calculus in the
treatment of consolidation problem we shall
derive by this -procedure the settlement of a
completely saturated clay column already calcu-
lated in the previous section. In subsequent
articles the operational method will be used
extensively for the solution of various consolida-
tion problems. We consider the case of a clay
column infinitely high and take as before the top
to be the origin of the vertical coordinate 2. For a
completely saturated clay a=1, Q= = and with
the operational notations, replacing /4t by p,
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Egs. (5.1) become
1062w 4o

a 922 6z’

d%¢  dw
h—=p—.

= (7.1)
dz2 0z

A solution of these equations which vanishes at
infinity is
w= Cie— @I}

1 3
o =C2—_—(£) Cle_l(}?/ﬂ)é.

a\c

(7.2)

The boundary conditions are for z=0
16w

g,=—1=——

a 62’

c\}
C1=(L('—) y C2=1.
2

The settlement w, at the top (2=0) caused by the
sudden application of a unit load is

ma(2) 10

The meaning of this symbolic expression is
derived from the operational equation*

a=0.

Hence

j%l(t) =2(t;)%.

The settlement as a function of time under the
load py is therefore

ct\?
w3=2ap0(——) .
T

This coincides with the value (6.11) above.

(1.3)

(7.4)

+V. Bush, Operational Circuit Analysis (John Wiley,
New York, 1929), p. 192.
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HM — Poromechanics
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Implementation
Validation
EGEEfem-based
HM — Dual Porosity/Permeability Poromechs
THM — Thermomechanics

Comsol-based



Validation, Verification, & Certification and related QA/QC
[IEEE Standard Glossary of Software Engineering Terminology]

Verification is “The process of evaluating a system or component to
determine whether the products of a given development phase satisfy
the conditions imposed at the start of that phase."

i.e. Whether the model represents the physics and chemistry you
have programmed into it.

Validation is "The process of evaluating a system or component
during or at the end of the development process to determine
whether it satisfies specified requirements."

i.e. Whether the physics and chemistry represent the real world.
Certification is "A written guarantee that a system or component
complies with its specified requirements and is acceptable for

operational use."

i.e. What would you bet on it?
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[6:4] Linked Mechanisms
HM - EGEEfem implementation
HM — Dual porosity/permeability models
THM — Implicit coupling

Explicitly coupled codes
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1. Introduction

ABSTRACT

A method is introduced to couple the thermal (T), hydrologic (H), and chemical precipitation/dissolution
(C) capabilities of TOUGHREACT with the mechanical (M) framework of FLAC?P to examine THMC
processes in deformable, fractured porous media. The combined influence of stress-driven asperity
dissolution, thermal-hydro-mechanical asperity compaction/dilation, and mineral precipitation/
dissolution alter the permeability of fractures during thermal, hydraulic, and chemical stimulation.
Fracture and matrix are mechanically linked through linear, dual-porosity poroelasticity. Stress-
dissolution effects are driven by augmented effective stresses incrementally defined at steady state with
feedbacks to the transport system as a mass source, and to the mechanical system as an equivalent
chemical strain. Porosity, permeability, stiffness, and chemical composition may be spatially
heterogeneous and evolve with local temperature, effective stress and chemical potential. Changes in
total stress generate undrained fluid pressure increments which are passed from the mechanical
analysis to the transport logic with a correction to enforce conservation of fluid mass. Analytical
comparisons confirm the ability of the model to represent the rapid, undrained response of the fluid-
mechanical system to mechanical loading. We then focus on a full thermal loading/unloading cycle
of a constrained fractured mass and follow irreversible alteration in in-situ stress and permeability
resulting from both mechanical and chemical effects. A subsequent paper [Taron ], Elsworth D.
Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal
reservoirs. Int ] Rock Mech Min Sci 2009; this issue, doi:10.1016/j.ijrmms.2009.01.007] follows the
evolution of mechanical and transport properties in an EGS reservoir, and outlines in greater detail the
strength of coupling between THMC mechanisms.

© 2009 Elsevier Ltd. All rights reserved.

concern. Volcanic environments are also impacted, as in the case
of failing volcanic domes [4], where elevated fluid pressures

It is well known that fractured rocks exhibit changes in may destabilize an existing volcanic pile. In other cases, such

mechanical compliance and hydraulic conductivity when sub-
jected to thermal, hydraulic, mechanical, and chemical forces. In
many engineering applications it is important to be able to predict
the direction and magnitude of these changes. However, the
interplay between temperature, effective stress, chemical poten-
tial, and fracture response is complex: it is not only influenced
by anisotropic and spatially varying fracture properties, but also
by fracture properties that are dynamic, and evolve with the
dynamic nature of the applied forces.

The gaping or sealing of natural fractures has clear implica-
tions in reservoirs for the sequestration of CO, [2] and radioactive
waste repositories [3], where the release of CO, or the redistribu-
tion of pore fluids around contained radioactive waste is a primary

* Corresponding author. Tel.: +1814 863 9733; fax: +1814 865 3248.
E-mail address: jmt269@psu.edu (J. Taron).

1365-1609/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijrmms.2009.01.008

as petroleum or gas reservoirs, hot dry rock [5] or enhanced
geothermal systems [6] (HDR/EGS), engineered stimulations may
beneficially improve fluid circulation; a topic of significant
interest since the majority of worldwide geothermal capacity is
contained within low permeability rock masses [6,7].

Despite their importance, the competing influence of processes
that degrade fluid conductivity in dominant fractures, such as
thin-film pressure solution [8-10] and mineral precipitation, and
those that enhance it, such as shear dilation [11,12], mineral
dissolution [13-15], and strain energy driven free-face dissolution
[9,16] have yet to be addressed at geologic scale. To examine these
processes together, a link between chemical and mechanical
behavior that maintains dependence on thermal and hydrologic
changes is required, i.e., THMC coupling. And while several
THM [3,17-20] and THC [14] coupling methodologies have been
suggested, to the authors’ knowledge no single numerical
simulator has been introduced to examine THMC processes in a
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Fig. 1. Conceptual, behavioral trend of thermally loaded and fractured rock: (A)
follow light gray line as (1) increasing temperature builds stress (partially reduced
by elastic fracture strain). (2) Irreversible fracture strains reduce stress, which, for
illustrative purpose, is applied at the end of loading (3). Thermal unloading follows
the black line. (B) Follow gray temperature (stress) loading line (4) elastic
reduction in fracture aperture (idealized as linear). Loading reaches maximum
value (5). Aperture irreversibly closes (chemical strain) and causes corresponding
drop in stress. Black (6) unloading line returns the system to its resting state for an
(7) irreversible aperture reduction and (8) corresponding irreversible stress loss.

construct that is applicable to the broad variety of above-
mentioned engineering applications.

Fig. 1 illustrates the potential error in excluding the chemi-
cal-mechanical link from numerical modeling. In the figure, we
follow a complete cycle of thermal/stress loading in a chemically
active fractured rock. During the loading/unloading cycle, rever-
sible (elastic) and irreversible (chemical-mechanical: pressure
solution or other) changes in aperture occur, with the ultimate
result that after unloading, once the system has been returned to
its initial background state, we see an irreversible aperture
reduction, and a corresponding irreversible loss in the state of
stress. These two occurrences (7 and 8 in Fig. 1) are the behaviors
of primary interest, as they indicate a complete and potentially
significant alteration of the resting system that cannot be
represented without the inclusion of THMC processes.

2. Model capabilities

We now introduce and implement a method for coupling the
multiphase, multi-component, non-isothermal thermodynamics,
reactive transport, and chemical precipitation/dissolution capa-
bilities of TOUGHREACT [14] with the mechanical framework
of FLAC®P [21] to generate a coupled THMC simulator. This
“modular” approach, first proposed by Settari [22] to couple

geomechanics with reservoir flow simulation, has some advan-
tages over the development of a single coupled program. Modular
approaches will typically be more rapid and less expensive to
develop, although working within the framework of an existing
code can sometimes lack the freedom that is inherent in “from
scratch” code development. Additionally, as pointed out by Settari
and Mourits [23], the modular construction allows for easier
implementation of future advances in constitutive relationships
or modeling structures (rather than modifying an entire coding
structure), and the system can utilize highly sophisticated,
rigorously validated existing codes developed at high cost. It can
take many years for a new modeling structure to be validated by
the research community, but in the case of TOUGHREACT and
FLAC?P, each has been extensively scrutinized and each code is
“qualified” for regulated programs, such as the US radioactive
waste program.

Furthermore, single codes often simplify behavior beyond the
principal scope of the analysis. For example, complex geomecha-
nical codes may represent the flow system as only single phase,
and complex reactive transport codes often incorporate mechan-
ical response as invariant total stresses. Appropriate coupling
enables the important subtleties of geomechanical response to be
followed while maintaining complex fluid thermodynamics and
reactive processes. Although development time is shortened in
this modular approach, execution times are commonly extended,
as neither code is optimized for the couplings, and data transfer
must occur between the concurrently or sequentially executing
codes. As suggested by Settari and Mourits [23] and Minkoff et al.
[24], however, this may not always be the case, because in systems
where geomechanics may be loosely coupled (not changing at a
rapid pace) the geomechanics simulation may not need to be
conducted very often, thus improving computational efficiency
over fully coupled codes where mechanics are equilibrated at
every fluid flow time step.

The coupled analysis that we present incorporates features
unique to engineered geosystems, particularly those under
elevated temperature and chemical potential, involving the
undrained pressure response in a dual-porosity medium and
stress-chemistry effects including the role of mechanically
mediated chemical dissolution of bridging fracture asperities.
FLAC3P is exercised purely in mechanical mode, where undrained
fluid pressures may be evaluated (externally) from local total
stresses. This undrained methodology allows calculation of the
short-term build-up in fluid pressures that result from an
instantaneous change in stress, provided we have knowledge of
the compressibility of the pore fluids and the solid matrix. In this
way, the complex thermodynamics of phase equilibria of multi-
phase water mixtures, and even multi-component mixtures (such
as CO, and water), can be tracked in the pre-existing framework of
TOUGHREACT. As TOUGHREACT has no use for compressibility,
however, it is necessary to code this capability into the program
or, as we have done, to insert a thermodynamic calculation into
the external linking module (discussed later). For water mixtures,
we utilize the 1997 International Association for the Properties
of Water and Steam (IAPWS) steam table equations [25]. For CO,
mixtures, an appropriate equation of state would be required, and
we have not yet added this capability. If a system is unsaturated
(such as in HDR/EGS), fluid compressibility is very large, and the
undrained poroelastic equations approach their drained counter-
parts. Therefore, while our construct is tailored to saturated
systems, drained systems are automatically accommodated.

FLAC®P is applied independent of time to accommodate
the incremental equilibration of stresses for various mechanical
constitutive relationships. TOUGHREACT performs time-dependent
transport calculations, tracking thermodynamic relationships
for temperature, phase equilibria, and pore pressure dissipation
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together with aqueous chemical equilibrium and kinetic pre-
cipitation/dissolution in a dual-porosity medium. Under large
thermal stresses, shear failure may be expected, and FLAC?P is
capable of handling this with the constitutive theories of
Mohr-Coulomb or Hoek-Brown. Plastic flow is also possible,
although this would require consideration of permeability
changes that occur during fracture shear and also fracture
compression. This complexity is not addressed here, and will be
the topic of a future paper.

3. Simulation logic

Simulation is executed within FLAC®P’s FISH programming
language [21], where external operations by TOUGHREACT and
the linking module are controlled. TOUGHREACT, an integral finite
difference code [26], calculates all properties at the central
coordinate of element volumes. In contrast, the first order finite
difference program FLAC3P, with explicit temporal derivatives and
a mixed discretization method that overlays constant strain-rate
tetrahedral elements with the final zone elements (adding greater
freedom in methods of plastic flow), utilizes properties of state
(p,T) at corner nodes and mechanical variables (o,u) at central
coordinates. Correspondingly, state properties from central
TOUGHREACT nodes are interpolated to connecting corner nodes
of FLAC3P. Stress (not displacement) outputs from FLAC3P are used
as the independent variable in constitutive relationships. The
parsing of stresses to TOUGHREACT is direct, as they are calculated
centrally within the node-centered blocks of FLAC3P (in spatial
agreement with TOUGHREACT).

In its current construction, the codes iterate upon the same
numerical grid. This structure, however, is not required. As
pointed out by Minkoff et al. [24], un-matched meshes are one
benefit to a modular code. For example [24], it may be desirable to
conduct flow simulations upon a reservoir area impacted by fluid
injection and withdrawal only, while the mechanical grid may
include the reservoir area in addition to all overburden up to the
ground surface. Neither must the overlapping simulation areas
utilize identical grid spacing, such that it may be desirable to
refine the fluid flow mesh to capture some complex physics in a
specific area, without adapting the mechanical mesh to agree. It is
only required that interpolation of data accommodate the
differences in mesh extent and geometry.

Sequential execution of the two programs is linked by a
separate code capable of parsing data outputs from each primary
simulator as input to the companion. This separate code is
referred to as the “interpolation module”. The module is a Fortran
90 executable, and maintains access to data outputs from
TOUGHREACT and FLAC?P. In addition to data interpolation, this
module executes constitutive relationships including permeabil-
ity evolution, dual-porosity poroelastic response to stress, and
thermodynamically controlled fluid compressibility.

All transient calculations take place within TOUGHREACT, and
it is here that the time step is controlled for conditions of fluid
velocity, grid size, and reaction rates. Additionally, there is a
secondary (explicit) time step that controls how often stress is
corrected to changes in fluid pressure (for what length of time
TOUGHREACT conducts a flow simulation before allowing stress
equilibration in FLAC3P). This frequency is controlled in the
interpolation module. If the magnitude of stress change in the
system over one time step is beneath a pre-determined tolerance,
the frequency is decreased (if stress is not changing, mechanical
re-equilibration is unnecessary), and vice versa for an upper
tolerance. Coupling is explicit and constitutive calculations are
performed once per iteration (assuming constant constitutive
values throughout a fluid flow time step), requiring sufficiently
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Fig. 2. Coupling relationship between TOUGHREACT, FLACP, and the interpolation
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small time steps relative to the rapidity of change in the system.
The validity of utilizing such a methodology is discussed in later
sections to provide insight into this explicit time step.

The coupling cycle is shown in Fig. 2, and is comparable to the
loose coupling, modular structure of Minkoff et al. [24] and
Rutqvist et al. [3]. Simulation begins with equilibration of
temperature (T) and pore fluid pressure (py) in TOUGHREACT,
where porosity (¢) changes due to mineral precipitation/dissolu-
tion and liquid saturation (S) are also obtained. Constitutive
relationships in the interpolation module transform these outputs
into fluid bulk modulus (Kj), as obtained from IAPWS steam table
equations, and permeability change due to mineral behavior
(Akrc). The TOUGHREACT central node data (psT) are then
interpolated to corner node information as input to FLAC?P. After
stress equilibration in FLAC3D, the interpolation module uses
stress outputs within a dual-porosity framework, consisting of
matrix (p{") and fracture (p{?) pore fluid pressures, to obtain the
pressure response to the new stress field via domain (matrix,
fracture) and state (p,T) specific Skempton coefficients. Effective
stress is then used to obtain the permeability change due to
pressure solution type behavior (Akgyc) while chemical strain (&c)
is accommodated in the stress field (discussed later). Parameters
then re-enter TOUGHREACT for the next time step.

4. Governing equations

The physical system of interest is modeled herein as a multi-
continuum, fully or partially saturated fracture/matrix system
with direct communication between the domains. Local thermal
equilibrium is assumed between the fluid and solid (at a single
point in continuum space, the fluid and solid exhibit the same
temperature), but not between separate fracture and matrix
domains. From this framework, a differential of pressure and
temperature may develop between the fracture and matrix, with
properties of pressure and temperature dissipation influencing
the rapidity of transfer from local changes in the fracture system
into the surrounding matrix blocks, and vice versa. As such,
the multi-continuum distinction is fully maintained within
the numerically represented THC system, while local continuity
of stress requires equilibrium of stresses between fracture and
matrix, which is then represented within the single continuum
framework of FLAC3P. For this transition, physical characteristics
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are delegated based upon dual-porosity poroelastic theory
[27-31]. The governing balance equations and their constitutive
counterparts are discussed below.

4.1. Conservation of momentum—solid

Mechanical equilibrium of the solid phase is governed by the
balance of linear momentum,

G,‘J‘J-Fbj:/)i/i. (1)

where b; are the body forces per unit volume, v; are the material
time derivatives of velocities, and o;;; represents the divergence of
the transpose of the Cauchy stress tensor. In an iterative
formulation, for static equilibrium of the medium, the momentum
balance becomes the common force equilibrium relation

ijj = —b,‘. (2)

The resulting unknowns can be related to each other through
any of several elastic or plastic constitutive relationships. We
begin with the case of an isotropic, elastic solid, thus introducing
the stress/strain constitutive relationship for a medium with two
distinct porosities (see dual-porosity discussion below), including
the effects of pore fluid pressure, p, and temperature, T (a
combined equation utilizing constitutive poroelasticity (e.g. [32],
Eq. 7.42), with thermoelastic response, and utilizing two distinct
pore fluid pressures as in Wilson and Aifantis [27]),

2Gv
0y = 2Géj + 7 ucdij — @Pp + o p)dy — ar Ty, (3)

where G is the shear modulus, v is the Poisson ratio, ocg) and o are
the coupling coefficients for fluid and thermal effects for the (V)
fracture and ® matrix, J; is the Kronecker delta, and the
linearized (“small”) strains are defined as the symmetric part of
the displacement gradient u;, i.e.,

& = H(Uij + ). (4)
Inserting Eq. (4) into Eq. (3) and the result into the equilibrium

equation, Eq. (2), yields the Navier equation for the displacements,
u

G
GVu; + 1oy Ukki = @Pp;+oPp;) +orT; — by, (5)

4.2. Conservation of momentum, mass, and energy—fluid

Fluid, aqueous species, and energy are transported through the
system as defined by their respective mass and energy balances.
The master equation for these processes is given in integral form

as

i .

7/ MKdV:/FK~n+/ q.dv, 6)
dt 74 r 14

where the left-hand side represents the rate of accumulation of
the conserved quantity (M, is mass of fluid, mineral mass, or
energy density) resulting from the arrival of the fluxes F,, (of fluid,
mass, or energy) across the boundary, I, and complemented by
volume sources, q,., distributed over the nominal element volume,
V, for each component, x (gas, liquid, advected species, or heat). In
this discussion we have adopted (for clarity of coefficients)
standard tensor notation, where bold values represent first or
second order tensors. Eq. (6) may be transformed into its common
PDE counterpart through use of the divergence theorem

OM;
ot

= _V'F)€+q;cv (7)

where the mass, flux, and source terms must then be indepen-
dently determined for a given system.

Mass, or energy density, M,, in Eq. (7) is defined for each
component, x, as the summation of the various contributions to
the component across all phases (subscripted I, g, s for liquid, gas,
or solid) as

M. = ¢SipXi + ¢SgpgXe + (1 — P)psXs, (8)

where S is phase saturation, p is density (or species concentra-
tion), ¢ is porosity, and X;,¢ is mass fraction (or internal energy).
Simplification then occurs for each calculation. The third term
disappears for fluid mass calculations (no solid phase present),
while the second and third terms are excluded from aqueous
species mass (species may be present within the liquid medium,
but not solid or gaseous).

Fluxes, F, in Eq. (7) are given by the summation across phases
(f = Lg) of the advective and diffusive terms as

KK
F= Z 7Xﬁp/i7ﬁ(vp/f - P/;g) - )v/;VC, (9)
j=lg Hg

where the first term represents the contribution of advection
through consideration of the multiphase extension of Darcy’s law
for relative permeability, k', intrinsic permeability vector, Kk,
dynamic viscosity, p, and, as before, p is density of fluid (or
concentration of species) and X is mass fraction for fluid transport,
specific enthalpy for heat flow, or unity for chemical calculations.
The second term represents diffusive transport as governed by the
laws of Fick and Fourier, and introduces conductivity, Az and
gradient (of temperature or concentration), VC. This last diffusive
term is only present when calculating the flux of temperature or
concentration, and therefore disappears when calculating pure
liquid flux. For heat flow calculations, /4 is thermal conductivity,
while for chemical flux Ag = psrpSpDp with tortuosity, 7, and
diffusion coefficient, Dg. Note that a hydrodynamic dispersion
concept is not utilized in the classic Fickian sense. Instead,
TOUGHREACT utilizes the interaction of regions with differing
velocities (fracture and matrix in a dual-porosity construct) to
induce solute mixing [33]. In the case of mineral mass, the flux
term disappears (colloid transport is not considered).

The source term, q,, in Eq. (7) may be comprised of an injection
or withdrawal source or as an increase in species concentration
(or mineral mass) due to dissolution (or precipitation). A thermal
source may also arise due to a release of energy during chemical
reactions. This last case is not currently considered. Sources of
aqueous species and/or mineral mass are discussed in the
following.

4.3. Chemical precipitation/dissolution

A generalized rate law for precipitation/dissolution of a

mineral, m, is [34,35],
! < m)
K¢

where k¢ is the rate constant, A is the specific mineral reactive
surface area per kg of H,0, K°® is the mineral/water equilibrium
constant, and Q is the ion activity product. The function f(q;)
represents some (inhibiting or catalyzing) dependence on the
activities of individual ions in solution such as H* and OH™ [36],
and sgn(Q,,/K},) provides a direction of reaction: positive for
supersaturated precipitation. The exponential parameters, ¢ and
n, indicate an experimental order of reaction, commonly assumed
to be unity. An additional term (multiplied by Eq. (10)) may also
be introduced to represent the dependency of reactive surface
area on liquid saturation [33]. Dependency of the rate constant

n

m = sgn(log(Qum /Ky ki Amf (ay) , (10)




846 J. Taron et al. / International Journal of Rock Mechanics & Mining Sciences 46 (2009) 842-854

may be handled, to a reasonable approximation [37], via the
Arrhenius expression,

o e E, (1 1
k _k256Xp<_RT,<T_7298.15>>' (11)

for the rate constant at 25 °C, ks, activation energy, E,, and gas
constant, R,,.

In the case of amorphous silica an alternate expression may be
used following [38], where the precipitation rates reported in [39]
were observed to underestimate behavior in geothermal systems.
This new rate law, based upon experimental data for more
complex geothermal fluids, becomes, in a form modified in [40] to
approach zero as Q/K approaches one (i.e., as the system

approaches equilibrium)
Qm o K; 2u
() - (a2)

These are the formulations utilized in TOUGHREACT. Reactions
between aqueous species (homogeneous reactions) are assumed
to be at local equilibrium, and therefore governed by the
relationship between the concentrations of basis (primary)
species and their activities, partitioned by the stoichiometric
coefficients. This relationship is termed the law of mass action
(e.g. [34]). The assumption of local equilibrium greatly reduces the
number of chemical unknowns and ODEs (between primary and
secondary species), and is accurate to the extent that the true
reaction rates outpace the rate of fluid transport in a given system.
This is a correct assumption for most aqueous species [34] (and
flow systems), but less so for slower redox reactions [33,34]. In
TOUGHREACT, species activities are obtained from an extended
Debye-Hiickel equation with parameters taken from [41].

n

'm= Sgn(]Og(Qm /Kren))kmAmf(ai) (12)

5. Deformable dual-porosity material

To represent the pressure loading of a fully or nearly liquid
saturated system (particularly at high temperature and pressure
and with multi-component liquids) coupling of the above
formulation requires the undrained (instantaneous) response of
pore fluid pressure to mechanical loading in both the fracture and
matrix domains. Hydrologic considerations allow a timed pres-
sure-dissipation response throughout the fracture dominated
fluid system and between the fracture/matrix companionship
following undrained loading.

Classically, a dual-porosity material is represented as a porous
matrix partitioned into blocks by a mutually orthogonal fracture
network [42,43]. In this scenario, permeability is much higher
within the fracture network, thus allowing global flow to occur
primarily through the fractures, while the vast majority of storage
occurs within the higher porosity matrix (due to its larger global
fraction of the medium). Interchange of fluid and heat between
fractures and matrix, so-called “interporosity flow”, is driven by
pressure or temperature gradients between the two domains.

Expansion of this classic two-domain interaction into “multi-
ple interacting continua” [44,45] allows the gradual evolution of
gradients between fracture and matrix through the existence of
one or more intermediate continua placed, mathematically, some
linear distance from the fracture domain. This development has
allowed for numerical approximations to more accurately repre-
sent the slow invasion of locally (to the fracture) altered pressures
and temperatures deeply into the matrix blocks, and introduced
dispersive mixing that arises at the interface of zones with
differing fluid velocities. While this multi-continuum methodol-
ogy may be adopted in TOUGHREACT to represent dual-perme-
ability fluid transport with uniformly constant stress fields in

time, we do not seek such an expansion with respect to a flow-
deformation response [46]. As such, a dual-porosity framework
with two interacting continua (fracture and matrix) is utilized in
this study, while a compatible poroelastic theory carries this
behavior into the mechanical domain.

5.1. Fluid pressure response

Extension of Biot’s poroelastic theory [47-50] to a dual-
porosity framework has been previously addressed [27-31,
46,51]. The methodologies presented in these works provide an
adequate framework for the phenomenological representation of
poroelastic coefficients capable of describing flow-deformation
response in such a medium.

Continuity of fluid mass is represented in a compressible
media as,
a¢

5t VE=0 (13)

where ( is the increment of fluid content as in [52], and comprises
the relative motion between fluid and solid. Inserting Darcy’s law
for the flux term yields

Vp=aq. (14)

Biot’s [48] linear-poroelastic constitutive equivalence, for volu-

metric strain, e, is
e o (15)
) p)
where the coefficients 1/K, 1/H, and 1/R are the bulk drained
compressibility, poroelastic expansion, and specific storage,
respectively. Substituting
op R

= el " H' (16)

T = X[ =
x| =T =

for the Skempton coefficient, o =K/H, for the Biot-Willis
coefficient and

1o
R™dp
for the specific storage, condensing Eq. (15) to relate fluid content
to strain, and substituting its time derivative in Eq. (14),
establishes the flow condition for a single-porosity medium with
no fluid sources

o

-2, (17)
so KB

o . . koo

where we have utilized the relationship for undrained bulk
modulus,

oo K

Ky EEC:():—] ~— B

(19)
Extending to a dual-porosity medium, we follow the same
procedure leading to the dual-porosity form of Eq. (5), where
Eq. (18) is modified to exhibit two separate fluid pressures
(for fracture and matrix) with flow between them governed by, in
its simplest form, an instantaneous pressure differential, Ap =
(p1—p2) [42], to obtain two continuity relationships [28],

ﬂvzpm = O,C(i) .
Iz K{PB®
where i is not a repetitive index, but represents the existence of
two separate equations for the matrix (i = 1) and fracture (i = 2),

P +aDe + (=1)'yAp, (20)
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and y is the cross coupling coefficient for flow exchange between
the two domains [53]. Eq. (20) states that the divergence of fluid
flux for a given control volume must equal the rate of accumula-
tion within that volume, and is thus a statement of mass
conservation.

5.2. Dual-porosity load response

The general linear relation between strain, increment of fluid
content, total stress (¢), and pore fluid pressure (p), simply
extends Eq. (15) to allow, again, for two separate fluid pressures
[31]

oe C11C12€C13 —00
1
*5C( V| = | carcaacas —opD |, (21)
*5(:(2) €31C32C33 —op®@

where the superscripts refer to the (1) matrix and (2) fracture
domains. The single porosity coefficients of Biot are no longer
applicable, and are replaced by the uknown coupling coefficients,
ci;, that may be designated via a phenomenological deconstruction
similar to that of Biot and Willis [52]. The coefficient matrix can
be shown to be symmetric [31] by the Betti reciprocal theorem.
Performing manipulations of the above equation through isolation
of independent components (i.e. long-time versus short-time
limits) allows determination of the central coefficients (see
detailed procedure in [31,30]).

Herein we assume that c;3 = ¢35 = 0 [31], which differs slightly
from the procedure of [27,28,30]. Examination of Eq. (21) shows
that this assumption implies the following: an undrained
application of stress that influences a change in fluid content for
the fracture domain does so through modification of fracture fluid
pressure, and does not influence that of the matrix. The reverse is
also true, with the overall implication being, see discussion in
Berryman and Wang [31], that in the undrained limit the matrix
and fracture domains are completely separate. This can be
considered a justification for a dual-porosity approach [31].

In our analysis, the purpose of dual-porosity elasticity is to
attain Skempton coefficients representing both the fracture and
matrix domains

opV = BVsg = -2 54
C22

op® = BPgg = — B g, (22)
€33

which represent the undrained (6{=0) build in pore fluid
pressure in each domain for a given change in stress as provided
by FLAC3P. Relationships to calculate these two Skempton
coefficients are provided in Table 2 of [31]. For this procedure,
we choose as the known coefficients K, K, Ki("), and K}, where K
is the solid grain modulus (in a microhomogeneous medium [54])
and the fluid bulk modulus,

116V

=75l (23)

is calculated in the interpolation module as a function of position,
temperature, and pressure utilizing the IAPWS steam table
equations [25]. For a complete reconstruction of the individual
relations required to represent the dual-porosity poroelastic
response, refer to [31,51].

5.3. Effect on the global mass balance

Injection of fluid mass into TOUGHREACT in the form of fluid
pressure violates conservation of mass by an amount proportional
to the compressibility of the local fluids. A change in pressure by

this procedure necessitates a change in local fluid volume, and
therefore appearing or disappearing mass. However, when the
local element is fully saturated, a stiff fluid will not significantly
respond (volumetrically) to stress induced pressure changes,
while for unsaturated media even a significant volumetric
response will not in general dictate a noticeable change in mass.
Nonetheless, we err on the side of safety and correct for this
discrepancy with a recast of Eq. (23),

1
dv = EVdp . (24)

which indicates the volume (or mass) error due to an increase in
pressure, dp (at a given temperature). To correct for potential mass
loss, we alter elemental volumes (physically reduce the volume
of the mesh element) within TOUGHREACT by this amount (in an
integral finite difference formulation, this does not require the
alteration of geometric coordinates). In our simulations, including
both single and multiphase flow with water/steam phase changes
occurring, we have not detected total system mass losses greater
than ~0.01% of total system mass.

6. Undrained fluid/mechanical response

We now examine the error that our formulation introduces to
the fluid-mechanical coupling. Excluding constitutive approxima-
tions, error may be introduced into the coupling procedure as it
has been described up to this point in two primary ways: explicit
time step size, and the equilibration step between a stress change
and its undrained pressure response (Fig. 3).

The first is a direct byproduct of explicit coupling, insomuch
as an increase in time step (length of the TOUGHREACT fluid
step between each mechanical equilibration), allows a greater
amount of fluid pressure to diffuse between each mechanical
equilibration, introducing error proportional to the fluid diffusiv-
ity and inversely proportional to the rate of mechanical change
(not the amount of mechanical change per timestep, do, which
implies proportionality to error, but the rate of change per unit
time (do/dt), implying inverse proportionality).

The second form of error, shown in Fig. 3, is due to the nature
of the undrained pressure response, which may not be fully
accommodated by a single stress equilibrium step. In other words,
at a given time step a fixed pressure field enters FLAC?P and
is accommodated by a calculated stress distribution. This stress
distribution induces a modification of the previously fixed
pressure field, and this new pressure field may, in turn, produce
a redistribution of the stress field whether or not any fluid is
allowed to diffuse (within TOUGHREACT). A number of steps may

k+1

(T. B 5, Ady,)

Inter-loop
Equilibration

TOUGHREACT FLAC3D

k)" <— ot

Fig. 3. Relationship between coupling methodologies. Interior looping may occur
over n steps (at fixed time, t = t*) to equilibrate the response of stress to an
undrained increase in pressure. Alternatively, this inter-looping may be excluded
in favor of a “leapfrog” method, where a single stress equilibration (run of FLAC?P)
is conducted per time step.
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be required to find the true equilibrium magnitude of stress and
pressure, which tends to asymptote at a value higher than is
suggested by a single equilibration step. This is not necessarily a
Mandel-Cryer type effect [55,56], which is a real occurrence and
would require the action of a diffusing fluid pressure and
redistribution of stresses around the diffusing magnitudes
(although the behavior is comparable). The case where FLAC?P is
run once per explicit time step (single equilibration step) is
referred to herein as the “leapfrog method” (Fig. 3). Each of these
possible error sources ('explicit time step and 2leapfrog versus
p = o iteration) requires further examination, which conse-
quently leads to validation of the undrained fluid-mechanical
coupling.

6.1. Fluid-mechanical couple: instantaneous loading

In one dimension, we may examine the accuracy of the fluid-
mechanical coupling in comparison to the classical fluid diffusion
equation of hydrogeology (e.g. [57]),

op 62p
o~ Yoz
which is a specific poroelastic result of Eqs. (14) and (15)
restricted to a one-dimensional column of soil (or rock) under
constant applied vertical stress [58], and gives its form to the
analytical solution for heat flow [59, p. 96]

4po 1
pa.t="20%"
m=0

2m+1
where ¥ = (2m + 1)1/2L, and py = B¥)g is the initial undrained
pressure response to the applied vertical stress (o). The one-
dimensional Skempton coefficient (“loading efficiency” in [58]) is
given by

B(1 +vy)
31—’

for the Skempton coefficient, B, and undrained Poisson ratio, v,,.
This is the canonical consolidation problem of a one-dimensional
column of soil subjected to a constant vertical stress applied at
t=0" to the top of the column, with fluid pressure allowed to
drain freely from the point of applied stress. A similar solution is
available for column displacement u (e.g. [48,58]),

=0, (25)

exp(—zpcht) sin(y/z), (26)

BV = (27)

Q*u __Op
2 Cm 2’
for Geertsma’s [60] uniaxial expansion coefficient (consolidation
coefficient), ¢, = o/K", with uniaxial bulk modulus, K" = K+4G/3.
Under the same boundary conditions as above, the analytical
solution is [58]

(28)

Au(z,t) = cmpy | (L — 2) — % > ﬁexp(— P2¢st) cos(Pz) |,
m=0

(29)

with definitions the same as for Eq. (26), and the instantaneous
displacement at the time of stress application u(z,0") = go(L—2)/
K, for the undrained unaxial bulk modulus,
o _ Ku(l+vy)

K =30 ) (30)
All undrained parameters approach their drained counterparts as
fluid compressibility becomes large, or fluid saturation ap-
proaches zero.

Results of a TOUGHREACT-FLAC3P simulation mimicking these
boundary conditions are presented against these analytical
solutions in Fig. 4. A column of porous rock (E= 13GPa,
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Fig. 4. Comparison of TOUGHREACT-FLAC3P fluid-mechanical coupling simulation
versus analytical results in one dimension: (A) normalized (po = p(z,0) = B™ay)
pressure diffusion response versus diffusive time (tp = ct/L?); (B) normalized
(Uso = u(0, 00) = goL/K™) displacement response versus diffusive time.

v =0.22) with displacements constrained laterally and pore
pressure initially zero, is subjected to an applied vertical load,
0o = 50MPa, at t = 0%, and pressure is allowed to drain freely from
the top of the column only. Time step was chosen large enough to
illustrate the error incorporated in very early times (near the time
of undrained loading) due to the leapfrog method of simulation
(Fig. 3).

Pressure builds up (and elastic displacement decreases) in the
early stages as the model cycles between stress equilibration
and undrained pressure response (leapfrog artifact). Following the
instantaneous loading period (50 MPa applied over one time step)
numerical results overlay nearly identically the analytical solution
as pressure diffuses and stress accommodates the pressure
reduction. A slightly greater error occurs at points nearest the
free draining surface (left-most curve in Fig. 4A) due to the explicit
time step size, where a greater rate of fluid diffusion allows the
fluid to move greater distances before being accommodated by a
mechanical response.

6.2. Fluid-mechanical couple: constant loading rate

In light of Fig. 4, it is of interest to examine more precisely the
error that arises while the sample is being loaded. To do so, we
wish to utilize the same geometry, but apply the load gradually
over a finite loading period at a given loading rate, day/dt (rate of
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increase of applied load at the top of the column per unit time).
Here, we maintain the one-dimensional form, but alter the
governing diffusion equation (25) to accommodate a constant
loading rate [58]:

2
laﬁ,ailz’zcmlﬂ, (31)
cg ot 0z k dt
with the series solution adjusted so that, as above, the free

draining boundary is at z=0 [59, p. 130],

_ cmdao L2 p (L - z) RS =ym
Pzt = =4 W(l Z(2m+1)
x exp(— lAl’cht) cos(V(L — z))). (32)

Results of the gradual loading analysis are presented in Fig. 5.
Loading rate refers to the rate of increase of applied load at the top
of the column per unit time. The amount of load change per
iteration (day) is a function of the time step (dt), so that a smaller
load change is experienced per iteration as the time step is
decreased. Time steps were chosen for A and B such that
dop = (doo/dt) x dt is the same magnitude in each case. From
the figure, two primary conclusions are apparent. Firstly, at
the slowest loading rate (Fig. 5A) and smallest time step
(and correspondingly smallest value of day) there is no difference
between the leapfrog approach and a simulation with additional
p = o iteration (inter-looping), proving the intuitive result that
small explicit time steps remove the need for inter-looping. In this

A
20 ‘ -
T ___ With puo
15| "*-..‘ Interlooping
-------- —~— "Leapfrog"
wl . T pirog

Pore Pressure Error [%)
o

_12 dt=1sec (do= 5.0x10%
[ dt =50 sec (do,=2.5x10°)
13 do, /dt =5.0x10" dt =100 sec (do,=5.0x10°)
2 10 20 30 40 50
B
5

dt=10sec (dg,=5.0x10°%) ]
dt=5 sec (do,=2.5x10°
dt=0.1 sec (do,=5.0x10%

Pore Pressure Error [%]

do, ! dt =5.0x10°
0 10 20 30 40 50
Applied Stress [o,, MPa]

Fig. 5. Error (compared to analytical solution) in undrained pore pressure
response for constant loading rate of one-dimensional vertical column for (A)
slower loading rate (doo/dt=5.0x10% and (B) faster loading rate (dao/
dt = 5.0 x 10°). “Leapfrog” method of simulation is solid gray line with data
points. Additional inter-looping method is dashed black line.

case, if the time step is too large to capture the fluid-mechanical
coupling, then inter-looping has little effect because more error is
introduced by the fluid-mechanical couple than by the leapfrog
method (evidenced by the fact that the dashed lines do not
improve in accuracy over their corresponding solid lines).
Secondly, a faster loading rate (Fig. 5B) results in greater error
due to the leapfrog method, but lesser error due to the explicit
time step size (evidenced by the relative accuracy of all three
dashed lines). In other words, mechanical change (loading) is
faster relative to fluid diffusion, and so the explicit time step size
may be larger and still accommodate the fluid-mechanical
coupling because less frequent mechanical equilibration is
required to keep up with the relatively slower fluid diffusion.
However, precisely because the loading rate is faster, greater error
will result due to the non-iterative equilibration of stress and
pressure. Therefore, a larger time step is viable, but only with
inter-looping. In any case, the system may be accurately
represented with the proper selection of time step and iterative
method for a given rate of mechanical change, and at the slower
loading rate (likely closer to those that might be seen in natural
systems) the leapfrog method is sufficient provided that the
explicit time step is reasonably small. For now, experimentation is
required to guarantee accurate coupling.

7. THMC mediated aperture/permeability change

Having now examined the fluid-mechanical mechanism, we
proceed to introduce further complexities that surround chemical
behavior. And, because constitutive behavior in a geological
system is generally non-linear, responses mediated by stress,
fluid pressure, temperature, and chemical potential often require
empirical examination. Notably, permeability of the system
may change by orders of magnitude in response to changes
in effective stress. In the following, we describe changes in
permeability resulting from both stress and chemical effects,
utilizing the empirical relationship proposed in [61]. That
relationship is further developed herein to accommodate
unloading of fracture asperities in a manner that suggests
fracture gaping may occur only through mechanical means
(or by thermal contribution to the stress field). Section 7.1
presents the governing loading equations as found in [61],
whereas Section 7.2 illustrates an unloading construct similar to
that used in [61], but where unloading is allowed to occur only
through mechanical means.

7.1. Loading behavior

Hydraulic aperture of a fracture under an applied effective
stress, ¢’, may be defined empirically as [3]

bm = bl + B° —

where b,, is the hydraulic aperture (subscripted m indicating
changes due solely to mechanical effects), b° is the aperture under
no mechanical stress, by, is the residual aperture at maximum
mechanical loading and w is a constant that defines the non-
linear stiffness of the fracture.

The dissolution of bridging asperities may also reduce the
effective aperture of the fracture. These “chemical” effects may be
accommodated in the relationship for fracture aperture in a form
that includes the mechanical compaction process of Eq. (33) and
pressure solution-type dissolution of contacting asperities, where
we have substituted b =b° — b’ as the maximum possible
mechanical closure [61]

bnec = b% +

b},) exp(—wa"), (33)

{by, — by + by™ exp(—wa")} - exp(—a'(B — x/T),  (34)
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where T is temperature and the empirical constants f and
y define the chemical compaction process. The subscripted c
represents changes due to chemical effects and b] is the
residual aperture at maximum chemical loading. Buried within
these two constants (see [61]) is the critical stress [61, modified
from 62,63],

o En(1=T/Tw)
c — 4vm ’

where E,, is the heat of fusion, T;, is the temperature of fusion, and
Vi is the molar volume of the mineral comprising the fracture
asperity. Dissolution of the contacting asperity will progress
where the local asperity stress exceeds this critical stress that
represents both the chemical and mechanical potential of the
contact.

Permeability is evaluated for an orthogonal set of persistent
fractures of spacing s, from the cubic law, [64,65] k = b>/12 s. Note
that Eq. (34) represents equilibrium behavior, where chemically
mediated changes have run to completion (i.e., it is a thermo-
dynamic, not a kinetic relationship).

(35)

7.2. Unloading behavior

The above constitutive relationship governs aperture closure
under conditions of thermal/mechanical loading due to the effects
of mechanical deformation (Eq. (33)) and chemical alteration
including mechanical deformation (Eq. (34)). If utilized in its
entirety and without memory of any previous mechanical/thermal
state, this represents the case of complete reversibility. However,
aperture closure should not be viewed as completely reversible or
irreversible, but as a mechanism that is dependent on the initial
stress state and subsequent loading, as well as one that maintains
memory of some attained stress magnitude and a subsequent
unloading period.

For instance, subsurface storage of radioactive waste is
characterized by a loading period during which temperature
steadily increases and fracture apertures correspondingly de-
crease, followed by a period of sustained cooling towards the
background state, implying a reversal of this process (fracture
gaping). Alternatively, geothermal reservoirs are largely charac-
terized by unloading behavior, where the maximum stress/
temperature condition is the in-situ state of the fractured mass,
and the injection of cooler circulation fluids causes unloading
from this in-situ state. It is of some interest to determine the
precise behavior of such an unloading period and its beginning
transition.

The mechanical component of fracture closure is not
a completely reversible process, but exhibits hysteresis as
governed by both the elastic and plastic properties of
the contacting asperities. Furthermore, while chemical behaviors
may contribute to permeability increases through the action
of thermodynamically governed dissolution, pressure solution
type mechanisms as discussed above are incapable of
inducing gaping of the fracture during an unloading stage
(barring the inclusion of “force of crystallization” processes,
pressure solution is irreversible). Therefore, it is apparent
that an additional term is needed to describe the reversible
portion of mechanical closure, while excluding the possibility
of chemical reversibility. In this aim, we follow a procedure
similar to that of Min et al. [61] to develop an unloading
relationship, but maintain a reversibility that is due purely to
mechanical effects.

In the simplest formulation, this need may be addressed
through a mechanical recovery ratio, R, that governs the degree
of elastic reversibility, and is defined as the ratio of the potential

unloading mechanical aperture change, by, to the maximum

potential loading mechanical aperture change, by™, as

blTlElX

Ry = m(u) (36)

— jmax *
bm

It is first necessary to examine the case of a mass unloaded from a
state of infinite stress with the unloading version of Eq. (33)

max

b = b + binay €Xp(—wa’), (37)
or, from the definition of recovery ratio
b = by + Ry ™ exp(-a”). (38)

However, the unloading process is dependent on the maximum
loading stress (initial unloading stress). The difference in aperture
between this maximum loading stress and some unloaded state is,
utilizing Eq. (38),

Abmy = Rnbp™ exp(—wa ) — Rubp™ exp(—wao ), (39)

with the maximum (prior to unloading) effective stress
Omax >0y, for any subsequent unloading effective stress, o(,y.
This inequality states that load cycling is not considered. The
unloaded aperture is then comprised of the difference between
this change and the fully loaded aperture, b’:

by = b’ + Abp. (40)

In the case of mechanical loading and unloading, the aperture at
maximum loading stress, b/, is equivalent to the final loaded
aperture, b;,(0max’), and so the unloading aperture is obtained by
substituting Eq. (33) in Eq. (40). However, we are seeking the
relationship for a fracture that has been chemically and mechani-
cally loaded, and then unloaded along a path defined by the
recoverable portion of mechanical loading. Therefore, substituting
b = bm(0max’) and inserting Eq. (39) into Eq. (40) and simplifying
yields

brn(u) = me(Gmax/)) + Rmbgllax{exp(_wa(u)/) - exp(_wamax/)}- (41)

where by (0max’) is Eq. (34) evaluated at ¢/ = o nax'. This relation-
ship defines the aperture at a stress magnitude lower than and
obtained a posteriori the fully loaded state. Egs. (34) and (41) then
fully define the loading and unloading cycle, respectively, of a
fractured mass. The required empirical parameters are shown in
Table 1. Parameters were obtained through a comparison with
experimental results introduced in the heated block test of Terra
Tek [66], where the aperture was monitored during a complete
loading and unloading cycle in-situ, on a 2 x 2 m cube of granitic
gneiss subjected to stresses supplied by flatjacks with tempera-
ture alteration via borehole heaters. The original experimental
results of Hardin et al. [66] are shown in Fig. 6, alongside
theoretical reproduction of this behavior calculated with Egs. (34)
and (41). In the figure, loading begins at point 9 (and is isothermal
for the first three data points) and continues until point 16
(non-isothermally), before being unloaded to the initial state at
point 21. Hardin et al. also performed two intermediate load/
unload cycles at points 13 and 16. These two intermediate cycles
are not considered here, and the analytical solution is incapable of

Table 1
Parameters of the permeability constitutive relationship as utilized in Fig. 6.

Parameter Fitted value
Residual mechanical aperture, b, (Lm) 6.0
Residual chemical aperture, b} (Lm) 3.0
Constant in aperture relationship, f 1.00
Constant in aperture relationship, y 345
Stiffness coefficient (1/MPa) 0.375
Mechanical recovery ratio, R, 0.8
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Fig. 6. Comparison of the analytical results of Eqgs. (34) and (41) against
experimental results of [66]. Experimental results are shown as black dashed line
with solid data points. Gray solid line with hollow data points is the analytical
solution. Each data point is numbered to correspond with the original data points
of [66].

representing them. Agreement between the two data sets is
satisfactory for the primary points of interest (intermediate
loading/unloading cycling is not considered), excluding point 19,
where unloading aperture cannot be reproduced with the given
analytical model (which is purely mechanical and does not
undergo unloading with decreasing temperature unless the stress
field is altered).

7.3. Force of crystallization

Chemical precipitation is commonly assumed to cause a
reduction in fracture aperture due to a buildup of deposited
species along the fracture face. Contrary to this assumption is the
concept of “force of crystallization”, dating back to 1896 with the
work of Dunn [67] and 1920 with Tabor [68], with a phenomen-
ological model presented by Weyl [8]. Force of crystallization
operates analogously and inversely to pressure solution where,
instead of relieving fracture stress through dissolution at asperity
contacts, if the fluid is sufficiently super saturated mineral
precipitation and crystal growth may exert pressure at contact
points and lead to physical gaping of the fracture. Further
discussion of the mechanism is available in the literature (e.g.
[69-71]). While we do not, in a fundamental sense, implicitly
consider the impact of this process in our model, the current logic
is capable of accommodating this effect in a straightforward
manner—should solution concentrations be sufficiently super
saturated. The phenomenological relationship for pressure solu-
tion that we utilize is able to adequately match the laboratory
studies on which it is based, all of which involve significantly
under saturated fluids only.

8. THC mediated porosity/permeability change

Thermo-chemical induced changes in permeability may be
referenced to precipitation/dissolution behaviors along the con-
tinuum fracture and matrix domains. Here, aperture changes are

caused by the addition or removal of mineral components from
the walls of (at the scale of these investigations) an assumed
uniform fracture face, or an isotropic porous volume fraction. This
is not precisely “free face dissolution” (which implies contribution
of strain energy to thermodynamic dissolution), but a purely
chemically driven process governed by the rates of reaction as
previously discussed. In the following, we assume that processes
of this type may act independently from pressure solution over a
single time step, thus enabling them to be additive over that time
step. This does not indicate process independence, which would
allow chemical analyses to be conducted separately of TM or of
TMC without loss of accuracy. These processes are still strongly
dependent on one another outside of a time step. For example,
changes in permeability from pressure solution (or chemical
precipitation/dissolution) will alter the flow characteristics and
residence times of circulating fluids, thus modifying thermal
transport. Changes in local temperature in this manner alter the
stress field and modify chemical reaction rates. Modified reaction
rates and residence times influence the characteristics of chemical
reaction, while modified temperature and stress influence
pressure solution and thermal gaping.

Changes in fracture aperture due to THC behavior are
accommodated via the chemical precipitation behavior incorpo-
rated in TOUGHREACT. Addition or removal of mineral mass from
the continuum system results in a change in fracture or matrix
porosity within a nominal element volume, as given by the overall
change in the volume of minerals present by [40,72],

N
dp=1-> fa-rf" (42)
m=1

where f* is the volume fraction of mineral m in the surrounding
10ck Vinineral/Vmedium» and f* is the volume fraction of the non-
reactive surrounding rock. Relations between fracture porosity
and permeability are provided in the literature. One such
possibility is a simple cubic relationship [34]:

k = ki<(%i>3, (43)

where the subscript, i, refers to an initial property and k, and ¢ are
permeability and porosity, respectively. While several such
relations may be implemented from within TOUGHREACT, it is
necessary in our case to calculate permeability changes externally
in order to operate multiple mechanisms simultaneously. Com-
patibility between the permeability change due to this behavior
and that of pressure solution can be indexed to the change in
fracture aperture by, as before, b = </12ks. Aperture change via
this mechanism is then assumed additive to the THMC aperture
reductions associated with pressure solution driven compaction.

Several options also exist for the relationship between matrix
porosity and permeability. One such possibility is the Carman-
Kozeny equation [73],

L =9 (o}
kfklm<$i> , (44)

where all parameters are as previously defined, although matrix

permeability is likely an insignificant contributor (in many cases)
to overall system behavior.

9. Chemical strain and stress

Modifications in fracture aperture necessarily lead to changes
in the local stress field. However, because FLAC3P uses grid point
displacements to calculate strains, see Eq. (4), and does not store
values of strain, no provision is available to input strains due to
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Fig. 7. Thermal loading/unloading cycle examining the effects of chemical strain. Parameters: E = 13 GPa, v = 0.22, or = 12 x 1075/K.

aperture change and subsequently convert them into gridpoint
displacements. An alternative method is needed.

For equally spaced orthogonal fractures, the impact of a change
in aperture on local linear strain (unidirectional from a single
fracture) is represented by

s =22, (45)
S

where s is fracture spacing and the subscript CH refers to the
“chemical strain” component of total strain owing to aperture
change. In the usual manner, total strain, & can be spectrally
decomposed into components due to mechanical, M, chemical, CH,
and thermal, T, behaviors as, ¢ = &y + &r + &cy. Considering only
thermal and chemical effects, the thermal/chemical strain is
erc = €r + A, where A is some constant representing the chemical
portion. At incremental equilibrium we have é&rc = oarAT +A
which, upon rearranging, becomes

erc = AT (OCT + %) , (46)

where A = Ab/s. This relationship provides a method to accom-
modate chemical strain by altering the coefficient of thermal
expansion, op in FLACP at all nominal element volumes for
respective aperture changes, and, as desired, maintains a non-
linear dependence on temperature. However, because the function
is undefined for temperature changes approaching zero, care
should be taken in its application. In physical systems where
aperture change, which is a strong function of the effective stress
field, is dominated by thermal stress, such as geothermal systems,
such strains will be tracked appropriately, but in systems that are
nearly isothermal this method will be ineffective in transferring
information to the mechanical system (which may or may not be
necessary, as isothermal systems are unlikely to experience
chemical strain to the same degree).

9.1. Chemical strain in cyclic loading

Chemical strain is defined here as thermo-chemo-mechani-
cally irreversible reduction in fracture aperture that results in a
relaxation of stress in the surrounding rock. As illustrated in Fig. 1,
this process is proposed to be of significant importance in
fractured reservoirs and replicating it one of the primary goals
of THMC modeling. To examine this process, we consider the case
of a liquid saturated, high temperature and pressure fractured
mass subjected to a complete cycle of thermal loading and
unloading (Fig. 7). The model is a pseudo three-dimensional mass
(unit width in the z-direction, discretized in x and y) with zero-
displacement boundaries and initially at a uniform temperature of

80°C, and ¢’ =20.8MPa. A high temperature (120°C) and
pressure (2 MPa above in-situ) source is placed at one end of the
geometry (x =0, y=1L/2) with a low pressure source (2MPa
below in-situ) at the opposing end (x =L, y = L/2), allowing the
thermal source to translate across the geometry with the fluid
pressure gradient. After thermal breakthrough to the injection
temperature, the temperature source is reversed to 80 °C, so that
the mass then gradually declines to its initial temperature state.
Progress is monitored at the central coordinate (x = L/2, y = L/2),
and the results of temperature and aperture change versus stress
at this location are displayed.

In the figure we present four cases incorporating different
assumptions of response, which may be compared to the
conceptual representation of Fig. 1. Fig. 7A is the baseline case,
with completely reversible permeability change (Eq. (34) only),
and no feedback of this chemical strain on the stress field (Eq. (46)
not used). Fig. 7B represents the case of complete permeability
constitutive treatment (Egs. (34) and (41)) and includes feedback
on stress field (Eq. (46)). Fig. 7C maintains full permeability
constitutive treatment (as in 7b), but this time does not include
feedback on stress (Eq. (47) not used). Finally, Fig. 7D considers
complete reversibility (as in 8a), but this time includes feedback
on the stress field (Eq. (47)).

The non-linear dependence of aperture on the temperature/
stress field is evident, as is the non-linear dependence of stress on
temperature that results from the feedback of chemical strain on
the stress field. Two-dominant impacts on the system, hysteretic
in nature, are visible by comparing the initial, ambient system
with the final, ambient system. Importantly, when the system
returns to its initial state, there has been an irreversible reduction
in the stress field as well as an irreversible decrease in
permeability. Neither of these occurrences, intuitively operative
and significant in natural systems, may be represented without
the inclusion of thermal, hydrologic, mechanical, and chemical
processes.

10. Conclusions

A coupled THMC simulator has been developed with the
capability of reproducing the undrained loading behavior of a
fractured rock mass. Reactive transport has been included in
the model via the equilibrium behavior of aqueous species
(homogeneous reactions) and through kinetic considerations of
mineral precipitation and dissolution. From multi-continuum
hydrogeologic analysis, multi-phase fluid behavior is coupled
to the mechanical response in one continuum via dual-
porosity poroelasticity and thermodynamically controlled fluid
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compressibility. Permeability of the mass is followed with a new
constitutive relationship representing thermal loading and un-
loading behavior: Closure of the fracture is controlled by thermal-
elastic compaction and the dissolution of stress-concentrated
asperities, while dilation occurs via thermal-hydraulic stress
relaxation. Bulk permeability is also modified by the precipita-
tion/dissolution kinetics of mineral species. The explicit coupling
between THC and M behaviors is shown to reproduce the rapid
response of a loaded mass. Additional couplings have also been
explored, and a subsequent paper [1] examines the strength of
coupling between THMC mechanisms as well as the application of
this model to an EGS scenario.

Chemical strain is accommodated by the permeability con-
stitutive relationship, and its impact on the stress field of a
geologic environment is illustrated. For the first time, we present
geologic scale numerical results illustrating the conceptual model
that thermal loading may lead to an irreversible reduction in
aperture and stress, so that the in-situ system may be completely
altered by a cycle of loading.
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Lagrangian-Eulerian Methods

{From: Yasuhara, H., and Elsworth, D., A Numerical Model Simulating Reactive Transport and Evolution of Fracture
Permeability, submitted for publication.]

Lagrangian-Eulerian Approach

These methods use the idea of operator splitting to solve the diffusion component of flow using
Eulerian methods, but treat the advective term using Lagrangian methods.

For example, the advection-dispersion equation is given as:

%{4-\’ VM = DVM, (1)

where M denotes the mass of the solute, V is the velocity, and D is the diffusion coefficient.

Applying the Galerkin finite element method, Eq. (1) may be written in discrete form for the
Lagrangian-Eulerian approach, as [Yeh, 1990],

]DM [

[ N.N.dR J-(VN )D(VN, )a’R]M = J'D (VM)-nNdB (i=1,2,,N), (2

. o D . .
Where the substantial derivative is defined as—ﬁ}« = —g—t +V .V, and where N, is the shape function

at the ith node, DM,/Dr is the Lagrangian derivative of M, with respect to time, R is the region of
interest, B is the global boundary, and N is the total number of the nodes in the system.
Integrating Eq. (2) using explicit time stepping, linear interpolation, and a fixed time step A,
yields,

@l ae+[K g = (il anifpa 1+ (B, (3)

where
)= Z(L N,N,,dR), 4)
[&]= 3\ (v, )D(7w,)ar), 6)

(B}=3"|[ D (va1)-nN @B, ©)



And where {M ™"} is the mass at the new time and {M "\ is the Lagrangian mass. To obtain the

Lagrangian mass at ™', a forward-particle-tracked mass M7, is first computed during time step
A1, given as,
st L
M2 =M )= M0 (j=1,2 N), %
where

€ =x+V, A (j=1,2,,N), (8)

in which x is the fictitious particle position at £ ™! when traveling from nodal location X at

1", Subsequently, applying finite element interpolation with the shape functions, the Lagrangian

mass M, ateach node is evaluated as (see Figure 1),

L
M =3 (5) (=120, ). o

J=l

n+l

Once the Lagrangian mass M, is obtained, the final mass M at !/

(3.

Careful treatment is required for no-flow boundaries. Solutes are not allowed to cross
no-flow boundaries, but for certain choices of large time steps, particles may be inadvertently
ejected, as illustrated in Figure 2. This condition may be corrected by relocating the escaping
particle back into the flow-field by using its closest projection to the boundary, as illustrated in
Figure 2. This correction will thus tend to return the particle close to its true flow trajectory.

is computed using Eq.
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Figure 1. Trajectory of Lagrangian mass.
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Figure 2. Schematic of correction applied to
the computed particle location near no-flow

boundary.
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evolution of fracture permeability
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SUMMARY

A numerical model is presented to describe the evolution of fracture aperture (and related permeability)
mediated by the competing chemical processes of pressure solution and free-face dissolution/precipitation;
pressure (dis)solution and precipitation effect net-reduction in aperture and free-face dissolution effects net-
increase. These processes are incorporated to examine coupled thermo-hydro-mechano-chemo responses
during a flow-through experiment, and applied to reckon the effect of forced fluid injection within rock
fractures at geothermal and petroleum sites. The model accommodates advection-dominant transport
systems by employing the Lagrangian—Eulerian method. This enables changes in aperture and solute
concentration within a fracture to be followed with time for arbitrary driving effective stresses, fluid and
rock temperatures, and fluid flow rates. This allows a systematic evaluation of evolving linked mechanical
and chemical processes. Changes in fracture aperture and solute concentration tracked within a well-
constrained flow-through test completed on a natural fracture in novaculite (Earth Planet. Sci. Lett. 2006,
in press) are compared with the distributed parameter model. These results show relatively good
agreement, excepting an enigmatic abrupt reduction in fracture aperture in the early experimental period,
suggesting that other mechanisms such as mechanical creep and clogging induced by unanticipated local
precipitation need to be quantified and incorporated. The model is applied to examine the evolution in
fracture permeability for different inlet conditions, including localized (rather than distributed) injection.
Predictions show the evolution of preferential flow paths driven by dissolution, and also define the sense of
permeability evolution at field scale. Copyright © 2006 John Wiley & Sons, Ltd.

KEY WORDS: fracture permeability; Lagrangian—Eulerian method; dissolution

1. INTRODUCTION

Coupled thermal-hydraulic-mechanical-chemical (THMC) processes exert significant influence
in controlling the evolution of the mechanical and transport properties for fractured rocks. The
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competition between agents that reduce porosity (grain interpenetration, compaction,
pressure solution, and precipitation) and those that generate porosity (dilation and free-face
dissolution) control the rates, magnitudes, and sense of permeability modification,
strength gain, and change in stiffness. In turn, these processes are important in defining the
evolution of porosity and permeability in subsiding basins, in geothermal and petroleum
reservoirs, and around repositories for the entombment of radioactive wastes, and in defining
rates and magnitudes of strength gain that impact recurrence times and magnitudes of
earthquakes.

To better understand the effects of temperature, stress, and fluid chemistry on the evolution of
fracture permeability, only a limited number of experiments have been conducted under
hydrothermal conditions, indicating the conflicting predictions on evolution in fracture
permeability; sealing, gaping, or spontaneous switching between sealing and gaping is observed
to result from net dissolution or precipitation within a fracture. Dissolution-driven sealing,
likely resulting from dissolution beneath propping asperities in contact, is reported for natural
and artificial fractures at elevated temperatures (> 300°C) in sandstone [1, 2], in granite [3], and
in quartz [4], and at modest temperatures (50—-150°C) in tuff [5] and in novaculite [6]. These are
supplemented by results at both high confining stress (> 150 MPa) in granite [7] and at low stress
(0.2 MPa) in marble where an acidic permeant is circulated [8]. Conversely, precipitation-driven
sealing is observed in tuff at a range of temperatures [9]. Gaping is observed in hydrocarbon
reservoir rocks [10, 11], and spontaneous or induced switching from sealing to gaping is reported
at ambient temperatures (20°C) in limestone [12] and at modest temperatures (20-120°C) in
novaculite [13]. These limited studies on fractures provide no conclusive view of the effects
controlling the evolution of the transport properties, and the evolving rates and magnitudes of
fracture permeability driven by interaction between the mechanical and chemical processes
remain poorly constrained.

Modelling studies are an important supplement to experimental observations of the evolution
in the transport properties of fractures under hydrothermal conditions. Such studies allow
complexly interacting processes to be unraveled, to explain counter-intuitive results. These
models must incorporate the interactions of reactive mass transport and mechanical effects, with
these approaches complicated where flows are advection dominant—as they may be for flows in
fractures. Difficulties result in accurately solving using numerical methods where flows are
dominated by advective transport since numerical oscillation may result for Eulerian
approaches where local Peclet numbers are large. To circumvent this problem, a variety of
numerical treatments may be employed; the easiest involving a reduction in the spatial element
(or grid) size. However, for very large velocities, this treatment is not always practical, due to the
requisite large number of elements. For purely advective flows, Eulerian methods are
intrinsically unstable, and erroneous oscillations may not be removed. Upstream-weighted
finite element (FEM) and finite difference (FDM) methods may enable oscillations to be
eliminated for high Peclet numbers, but these methods may generate artificial or numerical
dispersion, resulting from their incapacity to preserve the sharpness of the front (or steep
concentration gradients). An alternative to these flawed methods is the mixed Lagrangian—
Eulerian approach [14-16] that overcomes many of the innate problems in high velocity flows.
This method accommodates the advection term through a Lagrangian approach—the advective
component is solved by tracking particles along characteristic pathlines, with all other terms in
the solute-transport equation solved from an Eulerian viewpoint on a grid fixed in space. This
method has the advantage that numerical oscillations and artificial dispersion are automatically

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2006; 30:1039-1062
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damped, and the procedure may continuously handle problems with mesh Courant numbers in
excess of unity.

In this study, a Lagrangian—Eulerian algorithm is presented to follow the progress of
evolution in permeability when a fracture is subjected to chemical dissolution by circulating
hydrothermal fluids. Notably, our focuses are in examining the chemical processes that
significantly influence the evolution in fracture permeability and in accommodating evolving
advection-dominant transport problems. To demonstrate capability and validity of the model,
predictions are compared with a companion flow-through experiment conducted on a stressed
natural fracture in novaculite (> 99.5% quartz) [13].

2. MODEL DESCRIPTION

A numerical model is developed to describe the stress- and temperature-dependent evolution in
aperture (permeability) within a single fracture mediated by chemical dissolution. This model
accommodates solution for fluid flow and solute transport processes under advection-dominant
conditions. The virtual fracture is constructed using the exact topography of two rough surfaces
in contact, which have been previously profiled in 3-D [17]. From this prescribed initial aperture
distribution within the fracture, and assuming steady conditions, the fluid velocity field is
calculated from the Reynolds approximation. The local rate of dissolution/precipitation
throughout the whole fracture domain is then determined, and the updated concentration
distribution is obtained. Subsequently, the new aperture distribution resulting from chemical
reaction is updated, and the final concentration distribution is obtained by solving the
advection—diffusion equation. Each calculation process is explained in detail in the following.

2.1. FE mesh

The rectilinear two-dimensional mesh occupies the mean plane of the fracture and uses data
from the measured topography of two rough surfaces in contact—the profile measured by 3-D
roughness profiling (for details, see References [13, 17]). Each node in the fracture mesh has a
local aperture datum that may be determined simply by point-by-point subtraction of the two
digitized surfaces. However, careful positioning and orientation of the two surfaces is required
before the subtraction since the profiles are initially unmated—the upper and lower rough
surfaces are measured in an open-book format. To limit skewing of the aperture data, the mean
planes of both surfaces are calculated and are made parallel to each other [18].

Figure 1 shows the parallel digitized rough surfaces of a natural fracture in novaculite. The
differenced surface (i.e. the point-by-point subtraction of two surfaces) represents the
distribution of the mechanical aperture, rather than the hydraulic aperture recovered from
the flow-through experimental results. However, as a first-order estimation, the arithmetic mean
aperture of the initial differenced surface is used for model prediction. This is calibrated by
adjusting the separation between the two virtual parallel surfaces, and setting the initial
hydraulic aperture to that obtained from the experiment [l13]—mechanical and hydraulic
apertures are assumed approximately equivalent [18].

Note that at contact points between the rough surfaces, a finite thickness water-film is
assumed. This allows diffusive transport of mineral mass dissolved and then mobilized at these
contacts by the elevated chemical potential beneath the stressed surface. Such a thin water-film

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2006; 30:1039-1062
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Figure 1. Oblique view of the parallel rough surfaces digitized by the 3-D laser profilometer system.
The digitized surface measures 50 x 89.5 mm?.

at the contact may be a function of applied stress and may range from less than 1 nm to a few
hundreds nanometers [19, 20]. In this study, we presume a constant water-film thickness, w, of
4.0nm as this thickness remains ill-constrained.

2.2. Fluid flow distribution

The FE mesh of the fracture aperture distribution is utilized for fluid flow simulations. The flow
simulation is conducted using the steady-state approximation of the Navier—Stokes equation for
incompressible laminar flow (the Reynolds approximation) [21,22] as

b3
V- [—Vp)| =0 1

<1 o p) (1
where b is the local aperture, u is the fluid viscosity, and p is the fluid pressure driving flow. This
returns a steady distribution of velocity, which is updated as the aperture distribution changes.
Although the Reynolds equation is known to overestimate fluid velocity when fracture aperture
is small relative to surface roughness [23], this error is small in relation to the other uncertainties
within the analysis.

2.3. Pressure solution and free-face dissolution

Dissolution-dependent evolution of the fracture aperture is controlled by the competing
influences of pressure (dis)solution and free-face dissolution. Fracture aperture (or related
permeability) may decrease if pressure solution dominates, or may increase if free-face
dissolution prevails. Pressure solution within a fracture incorporates three serial processes;
dissolution at asperity contacts, diffusion along the interfacial water-film, and precipitation at
the pore (fracture) wall, and may result in net reduction of fracture aperture. Conversely, if the
mass rate of supply to the fluid occupying the fracture void is sufficiently low, or the flow-system
sufficiently open, then the solute concentration in the pore fluid will be below the equilibrium
concentration, net dissolution at free walls may dominate, and the fracture will widen. The
competition between pressure solution and precipitation in the fracture void, that together
contribute to a net reduction in permeability, and dissolution from the wall of the fracture void,
that increases permeability, will prescribe the dominant effect; either net sealing or gaping.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2006; 30:1039—1062
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Importantly, the dominant mechanism may change with stress and chemical condition of the
solvent, or as a result of the evolution of fracture topography, and flow topology.

Here, stress- and temperature-dependent dissolution at contacting asperities and free-face
dissolution/precipitation are systematically defined. First, dissolution at the asperity contacts
provides a source of mass into the fracture cavity. Applying nonhydrostatic and nonequilibrium
thermodynamics and then considering the chemical potential difference between the
compressive site of contact and the less-stressed site of the pore wall, that is the motive force
driving pressure solution, the source of mass injected into the fracture void space is most
conveniently defined in terms of a dissolution mass flux, dMgiiS /dt, given as (for details, see
Reference [24]),

dMili)lis 31/31(6(7 - Uc)k+pgAC
B @
d¢ RT

where V,, is molar volume of the solid (2.27 x 10~5m® mol™! for quartz), ¢, is the disjoining
pressure [25] equal to the amount by which the pressure acting at a contact area exceeds the
hydrostatic pore pressure, k is the dissolution rate constant of the solid, p, is the solid density
(2650 kg m ™ for quartz), A, is the size of the local contact area, R is the gas constant, and 7 is
the temperature of the system. o, is the critical stress that defines stress state where the
compaction of indenting asperity contacts will effectively halt. Where confining stress is applied
to a rock fracture, asperity indentation will occur as a result of high localized contact stresses.
Transient interpenetration may develop by plastic creep as the contact stress remains in excess of
a critical stress, g.. Where stresses remain in excess of the critical interpenetration stress,
dissolution will proceed in the water-film enveloping the interface, and mass will be removed by
dissolution and transported by diffusion. This process will continue until the applied contact
stress is sufficiently reduced by the growth of the contact area that compaction essentially ceases.
The limiting stress may be defined by considering the energy balance under applied stress and
temperature conditions, given by Revil [26] modified from Reference [27],
o E,(1-T/T,)
¢ 4Vl?1

where E,, and T,, are the heat and temperature of fusion, respectively (E,, = 8.57kJ mol ™!,
T, = 1883 K for quartz).

Next, free-face dissolution and precipitation components are quantified as mass fluxes,
dMEE /di and dM,ye./di, defined by the dissolution/precipitation rate constants and the

difference between the fluid mass concentration in the pore space and the equilibrium
concentration, defined as (modified from Reference [28]),

3)

aMsy Cpore\"Y
TISS = k+Apore,0g Vin <1 - <C—eq “4)
derec Cpore ' %
T = kaporepg Vm C—eq —1 (5)

where Apore is the area of the fracture void, k_ is the precipitation rate constant of the dissolved
mineral, Cpore is the concentration in the pore space, and Cgq is the equilibrium solubility of the
dissolved mineral. m and n are two positive numbers normally constrained by experiment; for
quartz—water reaction, the reaction Kinetics is likely first order [29], and in the model m and n are
set to unity. Note that the free-face dissolution/precipitation mass fluxes will be zero as the mass

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2006; 30:1039-1062
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concentration in the pore fluid is either greater or smaller than the equilibrium solubility,
respectively.

Dissolution/precipitation rate constant k,,_, equilibrium solubility Ceq, and diffusion
coefficient D of quartz have all Arrhenius-type dependence with temperature, given by

ki = k% exp(—Ex./RT) (6)
k_ =k exp(—E_/RT) (7)
Ceq = CYyexp(—Ec/RT) ()

D = Dyexp(—Ep/RT) ©9)

Appropriate magnitudes are selected for these constants defining the temperature dependence
as, kY, =1.59/1.27mol m*s™" and E,, = 71.3/48.9kImol™"' [30], C§, =2749kgm* and
Ec =264%kImol ! [31], and Dy = 5.2 x 10 m?s ! and Ep = 13.5kI mol~! [26].

2.4. Lagrangian—FEulerian approach

The solute transport in a fracture is modelled by the mixed Lagrangian—Eulerian approach. An
advection—diffusion equation is given as

aﬂ+V-VM:Dv2M (10)
ot

where M denotes the mass of the solute, V is the velocity, and D is the diffusion coefficient. The
diffusion coefficient of the solute may be different between contact and void nodes. The
diffusivity inside contacts may be a few orders of magnitudes smaller than that in the bulk pore
fluid due to electro-viscous effects [32, 33], although others [34] justify that this has minor
influence. Correspondingly, we use the same value of the diffusion coefficient for both contact
and void points.

Applying the Galerkin FEM Equation (10) may be written in discrete form for the
Lagrangian—Eulerian approach, as [15]

{ JR2Y dR]

where

DMZ == . . . ;] —
b {A(VNi)D(VNi)dR]Mi_LD (VM)-nN;dB (i=12,....,N) (11)

D 0
- . 12
Di 6Z+V \Y (12)

in which N; is the shape function at the ith node, DM;/Dt is the Lagrangian derivative of M;
with respect to time, R is the region of interest, B is the global boundary, and N is the total
number of the nodes in the system. Integrating Equation (11) using explicit time stepping, linear
interpolation, and a fixed time step A¢, yields,

(W1/Ar+ [KDIM™ ) = (W]/A){M*} + {B} (13)

where
(W] = Z(/ N;N; dR) (14)
R
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k1= 3 ( [ (ompon ar) (15)

(B} = Z(/BD (VM) - nN; dB) (16)

in which {M”*1} is the mass at the new time and {M*} is the Lagrangian mass. To obtain the
Lagrangian mass at /"', a forward-particle-tracked mass Mf , 1s first computed during time step
At, given as '

MP = M) =M (j=1,2,...,N) (17)

where
Xf=x!+ VAt (j=1,2,...,N) (18)

in which x]’?‘ is the fictitious particle position at #**! when travelling from nodal location X} at 1".
Subsequently, applying FE interpolation with the shape functions, the Lagrangian mass M} at
each node is evaluated as (see Figure 2),

N
MF =" MIN(x) (i=12,...,N) (19)
=1

Once the Lagrangian mass M} is obtained, the final mass M"™" at #*! is computed using
Equation (13).

Careful treatment is required for no-flow boundaries. Solutes are not allowed to cross no-flow
boundaries, but for certain choices of large time steps, particles may be inadvertently ejected, as
illustrated in Figure 3. This condition may be corrected by relocating the escaping particle back
into the flow-field by using its closest projection to the boundary, as illustrated in Figure 3. This
correction will thus tend to return the particle close to its true flow trajectory.

2.5. Overall computational procedure

With the fracture topography digitized, the flow simulation defines the initial flow velocity field.
Mineral mass is either injected-into, or removed-from, the flow-field, depending on the relative
dominance of processes of pressure solution and free-face dissolution/precipitation. These
components are then transported within the fluid phase, until conditions dictate their removal to

S
'Q

-

Compute nodal values
by Interpolation

Figure 2. Schematic illustration of computing the Lagrangian mass at the nodal locations. During time
step Az, the nodal mass M travels to MJ’?, and the new nodal values are interpolated using shape functions.

M7 ‘/

.

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2006; 30:1039-1062



1046 H. YASUHARA AND D. ELSWORTH

A No-flow boundary

mell-  Flow line

= = = = Computed path

o Previous location
O New location after At
[ | Corrected location

Figure 3. Schematic of correction applied to the computed particle location near no-flow boundary.

the fracture walls. Importantly, prior characterizations of an interface region as a
separate diffusive domain [35], are unnecessary, as mass diffusion within the water-film
separating contacts is automatically accommodated by the macro-scale FE mesh. Note that the
flow simulation, the chemical processes, and the solute transport equation are solved
sequentially, rather than simultaneously. The main points of the computational procedure are
as follows.

First, the initial fracture topography is set to generate the FE mesh—each node has a
local aperture datum. Second, the initial and boundary conditions (i.e. temperatures, stresses,
flow rates, and flow or no-flow boundaries) are applied, and flow simulation (Equation (1))
is conducted using the aperture mesh to obtain the distribution of flow velocities within
the fracture. The simulation retrieves elemental velocities at Gauss points, and nodal
velocities are interpolated using shape functions to accommodate solving the solute transport
equation (i.e. obtaining the fictitious particle position using nodal velocity as shown in Equation
(18)).

Third, the dissolution/precipitation processes at contact points and void wall are evaluated
using Equations (2)—(5) at every single node. In Equation (2), the stress acting at contact points
o, 1s simply defined by,

Gu = O (20)

n;
where g is the confining effective stress prescribed. n, and 7, is the numbers of contact points
and total nodes, respectively. This assumes that the contacting stresses are equivalent at all
contact areas distributed within the fracture. The effective area for pressure dissolution (i.e. A.)
is assumed equal to the area of a single element, and that for free-face dissolution/precipitation
(i.e. Apore) is assumed equal to twice the elemental area (both upper and lower void walls
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Figure 4. Representation of contact or void area (shaded area) at each node for chemical calculations. The
effective area for pressure dissolution and free-face dissolution/precipitation is equivalent to either the area
of a single element, or twice that area, respectively.

contribute) (Figure 4). Consequently, the nodal aperture b; at #"*! is calculated as

dMES At dMEE | dMm At
n+l _ pn diss diss prec i=1.2.. .. 21
bl bl dl pgAc ( d[ ; d[ i) pgAc (l < 9N) ( )

where 4, is the area of an element. If »7*! becomes smaller than the water-film thickness of
4 nm, it is then indexed as a contacting node and b;’“ = 4.0 nm. Simultaneously, the nodal mass
dissolved is also updated as

dmPs
M = M7 — ﬁm (if /"' =4.0nm) (22)
FF
Mf’”“ =M - <% —% )At Gf bg’“ > 4.0 nm) (23)
dr |, dr |,
where Mf’”“(i =1,2,...,N)is the updated mass at each node after the incremented time, but is

not the final one at #*! since it is subsequently modified by solute transport.

Finally, the contribution of solute transport (Equation (10)) is computed using the
Lagrangian—Eulerian approach. The final mass at #*! is calculated as schematically shown in
Figure 5. Then, the concentration at each node is evaluated using the updated mass at !,
given as

MijJrl
crtl = i=12...,N 24
i b?+1Ae ( Pt 5 ) ( )
The updated concentrations are used to calculate free-face dissolution/precipitation (Equations
(4) and (5)) at the next time step. The lumped concentration travelling out of the domain C*!,
which is directly analogous to mineral efflux measurements made during the experiments, is also
calculated by

. M 1
Cout = —ZQ o (25)
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where >~ M7i! is the summation of the solute mass exiting the outflow boundary during one
time increment, and Q is the flow rate.

In summary, the combined algorithm incorporates an initial evaluation of aperture
distribution from profile data, fluid transport simulation, and subsequent evaluation of mineral
mass transport and redistribution, as outlined in Figure 6. This procedure allows the evolution

Time
A ‘Mc‘.lrﬂ
/ Chemistry
i e
(Final value)
_  Solute
M 1},‘_“  transport

Figure 5. Schematic of calculation sequence during incremental time to obtain nodal mass, involving
chemical processes and solute transport. Note that M1 = Afs”,

Mesh generation
(Initial aperture data)

| Apply I.C.s and B.C.s |

n+l

t" ="+ A

>y
Flow simulation
— Obtain elemental velocities
— Interpolate nodal velocities

!

Chemical processes
— Update nodal mass of solutes
— Update aperture data

Solute transport
— Solve advection-diffusion eq. by LE approach
— Update concentrations at nodes and out of domain

More time
steps ?

Figure 6. Flow chart for the overall computational procedure.
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of fracture aperture to be followed where stress, temperature, and fluid flow conditions mediate
behaviour.

3. COMPARISON WITH EXPERIMENTAL MEASUREMENTS

This numerical model is applied to describe the time-dependent evolution in aperture obtained
from a companion experiment in a stressed natural fracture of novaculite [13]. The flow-through
experiment is conducted on a natural fracture of Arkannsas novaculite, which has a uniform
grain size in the range 1-6 um and high quartz content of > 99.5% [36], at a constant effective
stress of 1.38 MPa (200 psi) and at elevated temperatures in the range 20-120°C. Distilled
water is used as a permeant and thus, the chemical system is relatively simple (i.e.
SiO; + 2H,0 < Si(OH),). The experimental conditions during the entire length of experiments
(3150 h) are listed in Table I.

Prior to applying the current model, the lumped parameter model previously developed
[35,37] is first adopted to predict the progress of mean aperture closure and evolution of Si
efflux, for the same experiment. Then, the current model is applied to quantify the experimental
observations, and predictions given by the two different models are compared and examined,
relative to the experimental measurements.

3.1. Lumped parameter model comparison

Lumped parameter models [35,37] are capable of approximately representing the principal
chemical processes of pressure solution at mineral contacts, solute diffusion along these
contacts, and precipitation on the void wall of a fracture at a single representative contact.
These solutions may also represent free-face dissolution, together with changes in fracture
aperture and mineral mass concentration in the effluent fluid that result. These solutions are
approximate in that they require a single representative contact to be defined—all processes at
the contacting walls, and in the void, are averages of the entire contact area and void volume,
respectively. Importantly, characteristic differences of the lumped parameter model from the
numerical model developed in Section 2 are that fracture topography is simplified by a
representative contact surrounded by an appropriate tributary area (see Figure 7) and that a

Table I. Experimental conditions [37].

Time (h) Temperature (°C) Flow rate (mL min~") Flow direction
0-121 20 1.0 Original
121-380 20 0.5 Original
380-858 20 0.25 Original
858-930 20 0.0 —
930-1266 20 0.25 Original
1266-1292 20 0.125 Original
1292-1494 20 0.125 Reversed
1494-1869 20 0.0625 Original
1869-2255 40 0.0625 Original
2255-2875 80 0.0625 Original
2875-3150 120 0.125 Original
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simple, but physically plausible, relation between fracture aperture and fracture contact-area
ratio is defined to represent the irreversible alteration in fracture geometry caused by pressure
solution and free-face dissolution. Correspondingly, processes are innately averaged, and no
account is made for the spatial structure. Such models typically make adequate predictions of
homogeneously distributed behaviours, but not of localized effects, such as the evolution of
a through-going dissolution conduit (wormhole) [12,37].

The digitized fracture obtained through the profiling data constrains the relation between the
fracture aperture and the contact-area ratio as shown in Figure 8. This relation is approximated
by the regression curve, given as [13]

Kby =2.54+16.0exp(—(R. — Re0)/20.0) (26)
where <b) is the mean mechanical aperture, and R, is the contact-area ratio. The initial aperture

is set 18.5 um because the hydraulic aperture evaluated from the companion flow-through
experiment [13] started initially with this value.

T
- 77772
s B
Asperity contacts Local contact area, AL’,

Figure 7. Idealized representation of asperity contact condition for lumped parameter model.
A representative contact area AL (right) represents the assumed average area of each contact
(left), and is considered circular in shape of diameter d..

_ 30 T T T T T
£ o -
5 g O  Result by profiling data
- o e Regression curve N
5 |3
o 0L % <h>= 2.5+ 16.0 exp(- (Rc- Re0) /20)
5 »
R %, [RP=0.92]
o 15 L Q T
a Q
© 0-@_0_
St e o .
s | | TheEl ? 1o o
s b =185um el S
8 °f |Re=s0% it
: . .
0 1 1 1 1 1
0 R 10 20 30 40 50 60

Contact-area ratio Rc [%)]

Figure 8. Relation between mean aperture and contact-area ratio. Circles are evaluated from point-by-
point subtraction using the profiling data, and the dotted line is the regression curve of {(b) =
2.5 4 16.0 exp(—(R. — Re)/20) with the correlation coefficient, R?> = 0.92.
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A detailed description for the calculation procedure is reviewed in References [35,37] and is
also summarized in Appendix A. Parameters utilized in the predictions are listed in Table II.
Predicted changes in fracture aperture and Si concentration are shown in Figure 9 together with
the data measured through the experiments. Note that we omit the predictions during the
reversed flow experiment (stage II) due to the unanticipated sharp reductions in aperture
resulting from changes in fluid pressure distribution within the fracture by the switching of flow
direction, which is not able to be predicted by the model. Thus, the unaccountable reduction is
followed by resetting the aperture according to that recorded in the experiment and the contact-
area ratio is updated using Equation (26). To closely match the evolution in fracture aperture in
the experiment, the significant parameters of reaction rate constants k,, for pressure
dissolution (Equation (2)) and free-face dissolution (Equations (4) and (5)) are separately
increased by factors shown in Table III. Also, the critical stress o, defined by Equation (3) is
reduced by a factor of one-tenth to follow the large aperture reduction (~ 18.5to ~ 10.0 um) in
the early experiment (0 to ~ 800 h); if the unmodified g, is used for the predictions, such a large
decrease in aperture is not predicted because stress acting on contacts (i.e. g,) becomes equal to
g and then no further compaction proceeds (see Equation (2)). This indicates that critical stress
o. may be smaller than that defined by Equation (3) and more data are needed to quantify this
process. However, in this work we merely select a value of one-tenth ¢ in an attempt to replicate
the experimental results.

As shown in Figure 9, the predictions of fracture aperture and Si concentrations using the
augmented k,_ are in good agreement with the actual data although the applied multipliers are
relatively large. Note that precipitation, which may reduce fracture aperture, exerts little
influence on the change in aperture—solute concentration is much lower than equilibrium
solubility as a result of the dominant effect of strongly advective transport and short residence
time in the relatively short core (~ 10 cm). The multipliers applied to follow the experimental
measurements are large, specifically for those in stages [-1V, implicating that other mechanisms
may dominate over pressure solution and/or free-face dissolution, or the model may be
incapable of representing the overall processes since a detailed topology for a fracture is not
involved. This concern is further examined in the following section by accommodating a spatial
distribution of contacts and apertures, using the FEM developed in this work.

3.2. Distributed parameter (numerical) model comparison

The numerical model developed in Section 2 is applied here to follow experimental observations
of changes in fracture aperture and Si concentration. The latter are measured directly, and the
former are inferred from measurements of flow rate and differential fluid pressure. The flow is
along the long dimension of the image (Figure 1), from left to right, with no-flow boundaries
applied along the two long sides, parallel to the flow direction of the fracture. Reasonable
computational limits are placed on both memory and runtime—calculations are conducted
using a constant element size of 2 x 2 mm?>. Note that even for this fine grid, local element Peclet
numbers are of the order of 10° and result in a fully advection-dominant system.

Flow rates and parameters utilized in the predictions are summarized in Tables I and II.
Predicted rates of aperture evolution and Si concentration history are matched with the actual
measurements, as shown in Figure 10. Required modifications in parameters, necessary to
replicate the experiments are listed in Table I'V. Both the evolutions in fracture aperture and in
Si concentration are in fairly good agreement with those observed. The predictions of Si
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Figure 9. Comparisons of changes in: (a) aperture; and (b) Si concentration between the experimental
results [13] and the predictions by the lumped parameter model. Open circles represent the predictions
using modified values of reaction rate constants k,,_ shown in Table III.

Table III. Experimental conditions and modification of parameters used in the analysis by
the lumped parameter model.

Test stages

Parameters I II 111 v v VI
Temperature (°C) 20 20 20 40 80 120
Flow direction Original  Reversed  Original Original Original Original
a. (Equations (2) and (3)) ag. x 0.1 . x 0.1 . x 0.1 g. x 0.1 . x 0.1 ag. x 0.1
k4 (Equation (2)) ky x 10° — ky x10%  ky x10* kg x500 kg x 200
k- (Equations (4) and (5)) K,,_ x 10* — kijo x 10% kiym x 10* k- x 500 ki x 200

concentrations, especially those during stages III and IV underestimate the real data; the
predictions in stages IIT and IV are ~ 0.1 and ~ 0.2 ppm, relative to the measurements of ~ 0.9
and ~ 1.3 ppm, respectively. A systematic improvement in predictions between the lumped
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Figure 10. Comparisons of changes in: (a) aperture; and (b) Si concentration between the experimental

results [13] and the predictions by the distributed parameter model developed in this work. Open circles
represent the predictions using modified values of reaction rate constants k, ,_ shown in Table IV.

Table IV. Experimental conditions and modification of parameters used in the analysis by
the distributed parameter (current) model.

Test stages

Parameters 1 II 111 v \ VI
Temperature (°) 20 20 20 40 80 120
Flow direction Original Reversed Original  Original ~ Original  Original
a. (Equations (2) and (3)) . x 0.1 . x 0.1 . x 0.1 . x 0.1 g. x 0.1 . x 0.1
k. (Equation (2)) ki % 5.0 x 10° — ki %30 ki x 30 ki x 30 ki x 30
k- (Equations (4) and (5)) k- x 30 — kyy- x30 ky/o x30 ky/ox30 ki x15

parameter model and the numerical model is apparent in the applied multipliers for reaction
rate constants to replicate the experiments (see Tables III and IV); the modifiers are much
smaller for the numerical model—the small and constant magnitude multiplier of 30 is applied
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throughout the experimental period except for pressure dissolution in stage I (i.e. 5.0 x 10°) and
for free-face dissolution/precipitation in stage VI (i.e. 15). However, the large multipliers
required to replicate pressure dissolution during stage I (i.e. 10° for the lumped model and
5.0 x 10° for the numerical model) including the relatively abrupt and large aperture reduction,
remain enigmatic. This implicates other mechanisms, such as mechanical creep and clogging
resulting from locally high and unanticipated precipitation rates, of which neither are
accommodated in the current description.

An important component of the model is the ability to follow the evolution in local aperture
with time. Comparison between fracture apertures measured at the close of the experiment
(3150 h) by X-ray CT [13], and those independently predicted by the model are shown in
Figure 11. The white shaded area in the CT image represents apertures greater than the CT
resolution threshold of 60 um. The scanning resolution for the X-ray CT is insufficient for a
rigorous quantitative comparison between the CT image and the prediction. However, the
model prediction is in qualitatively good agreement at several regions with large aperture (or
void), with the CT image.

Flow patterns within the fracture are predicted with time and are shown at the beginning (0 h)
and end (3150 h) of the experimental period (Figure 12). Flow velocities within the fracture at
0 h are entirely faster than those at 3150 h because of the larger flow rate prescribed (i.e. 1.0 vs
0.125mL min ', see Table I). As apparent in Figure 12, flow at both times is tortuous due to the
effects of surface roughness and contact area, and in particular the flow at the end is randomly

Figure 11. Qualitative comparison in aperture distribution between: (a) the X-ray CT image

post-experiment (after Reference [13]); and (b) the predicted response at the end of simulation.

(a) White coloured area represents aperture greater than the threshold of 60 um and the black

area shows aperture smaller than the threshold or contact area, while (b) white area is aperture
greater than 25 um, with contact area shown in black.
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Figure 12. Flow field resulting from the FE solution of the Reynolds equation at: (a) 0h; and (b) 3150 h.
Vectors represent the relative magnitude and direction of local flow. Note that the flow is distributed
randomly with flow-excluded zones growing with increased time, and related contact area.

distributed throughout the fracture without clear channelling although circumventing the
regions of sufficiently small aperture and/or contact. Correspondingly, no preferential flow
paths are generated during net-dissolution (or erosion) processes, which is congruent with the
experimental measurements constrained by X-ray CT images and later Wood’s metal injection
[13]. This contrasts with other experiments where the evolution of flow channels formed through
net dissolution [8, 12] are evident.

4. IMPLICATIONS OF EVOLUTION IN PERMEABILITY

Both the companion flow-through experiment [13] and the model predictions confirm that no
preferential flow paths evolve within the fracture (i.e. pressure solution and free-face
dissolution). This is likely due to the prescribed boundary conditions; the flow is injected
throughout the fracture inlet with relatively high flow rates. In contrast, at the anticipated larger
in situ scales of geothermal and petroleum reservoirs dissolution to enhance fracture
permeability may not occur in the broad area throughout fractures of interest, but proceed
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within the limited regions of fractures with preferential flow paths because flow is spatially
restricted through limited numbers of injection and recovery wells.

To examine the effect of narrowed fluid injection relative to fracture length, which simply
simulates fluid injection in geothermal and petroleum reservoirs, a simple numerical experiment
is conducted. Injection into the same fracture is applied at a point (Q = 1.0mL min~' at the
central node on the inlet boundary). The applied temperature is 120°C and the corresponding
parameters for the prediction are listed in Table II. Predicted flow patterns within the fracture
after 100 h, overlaying the distribution of fracture apertures are shown in Figure 13(a), together
with the difference in apertures between 0 and 100 h, shown in Figure 13(b). Employing no
modifications in reaction rate constants for this prediction, free-face dissolution dominates over
the effect of pressure dissolution, resulting in the mean aperture consistently increasing at a rate
of gaping of 3.7 x 1073 ms~! throughout the prediction. As apparent in Figure 13 several flow
paths are generated during the 100h virtual experiment, with net dissolution and erosion
concentrated within the upper half of the plan-view of the fracture, generating a broad flow
channel. This is likely due to the combined effect of the narrowed flow injection port and is
sensitive to the initial conditions of the local aperture distribution (or roughness). Notably, the
restricted flow presents a positive feedback that favours the development of localized flow
conduits (worm-hole-like flow channels). Clearly, this effect is influenced by geometric factors
relating to the scale of the sample—larger samples may develop multiple distributed flow
channels with the ephemeral dominance of these channels switching with the progress of the
transport network.

]
40,0
30.0
20.0
10.0

[urri]
10
05
00

ih)

Figure 13. Results of numerical flow-through simulation at 100 h after flow started: (a) overlay of flow field
on aperture contour. Note that several flow paths are formed; and (b) contour of aperture difference
between 0 and 100 h. Lighter shading represent dissolution (erosion) regions.
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5. CONCLUSIONS

A numerical model is developed to represent the evolution in fracture aperture mediated
by the significant processes of pressure solution, and incorporating the serial processes of
dissolution, diffusion, precipitation, and free-face dissolution. The model defines an
initial distribution of fracture apertures, and supplements this with a Reynolds equation
solution for the evolving flow-field—this flow-field is used to calculate the influence of
chemical processes of pressure solution and free-face dissolution/precipitation in sequentially
modifying the initial aperture distribution. Significantly, where advective flows dominate, as is
anticipated to be the norm, the transport equation is solved via Lagrangian—Eulerian algorithm.
The model is capable of predicting the evolution in aperture and solute concentration
for a single fracture under arbitrary prescribed stress, temperature, and flow rate conditions.
Predictions of both lumped parameter [35,37] and distributed parameter representation of a
single well-constrained experiment [13] are examined to test the adequacy of each model in
representing experimentally observed behaviour. Notably, if the controlling parameters of
reaction rate constants are increased by a factor of 30, the numerical model show excellent
agreement with the experimental observations although a sharp reduction of the fracture
aperture during the early experiment period is unable to be followed. This mismatch is likely
attributed to processes of mechanical creep, that are not represented in the model. Both
observations by X-ray CT, and model predictions, conclude that fluid flow at the conclusion of
the experiment (3150h) is broadly distributed throughout the fracture—no preferential flow
paths are generated.

The model is applied to examine the evolution of fracture aperture (or permeability) where
injection is concentrated at a point, as an approximation of injection into a reservoir. The
predictions show the propensity to develop channelized dissolution features that concentrate
flow. This exercise portends the potential to determine the form, plausible rates, magnitudes,
and senses of permeability enhancement at field scale.

APPENDIX A: LUMPED PARAMETER MODEL

The evolution of fracture aperture is controlled by the competing influences of pressure solution,
which incorporates interfacial dissolution, diffusion, and precipitation, and free-face dissolu-
tion. Interfacial dissolution at contacting asperities (Equation (2)) and free-face dissolution/
precipitation (Equations (4) and (5)) are defined in the main text, and interfacial diffusion is
defined herein in terms of the diffusive mass flux, d Mg /d¢, as [24]

deiff o 2nwD
dr In(d./2a)

{Cim - Cpore) (Al)

where w is the thickness of the water-film trapped at the interface, D is the diffusion coefficient,
and (Cint)y—, and (Cpore)—q, /> are mineral concentrations in the interface fluid and pore space,
respectively.

A single fracture is idealized as two rough surfaces held apart by bridging asperities, as
illustrated in Figure 7 (left). The average contact-area ratio, R, may be determined by defining a
representative contact area, 4!, surrounded by an appropriate tributary area, 4!, (Figure 7,

c?
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right), and is assumed equivalent to the ratio of the summed local contact areas, 4., to the total
fracture area, A, given as [35]
_ A A
cC= 0 4,
AL Al

Within this tributary area, the contact diameter, d., of the local contact area, Alc, is defined as

[a 41
d. = % (A3)
T

For uniaxial compaction, the normal forces acting on the tributary area and the contacting
asperity balance, yielding the stress applied at the contact area, a,, as
Oeff
R.

(A2)

1 1
Ocff * A, =04 A, = 0, =

(A4)

where o is the average macroscopic effective stress.

Interactive processes of pressure solution and free-face dissolution irreversibly alter the
geometry of the fracture surfaces, and the relation between fracture aperture and contact area
may be defined to follow this modification of the fracture aperture and contact-area ratio within
the tributary domain. A simple, but physically viable, relation between them is defined as [35]

by = ay + a exp(—(R. — Rw)/a3) (A5)

where (b) is the mean aperture, R is the contact-area ratio, and «; (i = 1,2, 3) is a constant.
This curve is adopted as a straightforward and representative relation between fracture contact
area and aperture, to define the phenomenology of fracture sealing/gaping by pressure solution/
free-face dissolution.

A.1. Computational procedure

The individual processes of dissolution at asperity contacts, diffusion along interfacial water-
film, and free-face dissolution/precipitation are combined to define the progress of aperture
reduction of the fracture with time. In the initial condition, a small representative contact area is
set with the initial aperture of the fracture. An effective stress is applied, as amplified by the
tributary geometry, and during time step Az, appropriate magnitudes of mass dissolution at the
representative contact area, diffusion, and free-face dissolution/precipitation are simultaneously
evaluated from Equations (2), (Al), (4), and (5), respectively. Physically, the dissolved mass
evaluated from Equation (2) is supplied to the interface, and domain shortening (i.e. aperture
reduction) proceeds as this mass passes along the interface by diffusion, as defined by Equation
(A1). From the known magnitude of the diffusing mass, the updated contact area and aperture
are calculated using the relation of Equation (AYS) (the integration of Equation (AS) represents
the volume that is removed, and its volume is matched by the diffused volume). A portion of the
mass that diffuses to the pore fluid may deposit to the free surface of the fracture (Equation (5)),
resulting in an additive reduction in fracture void volume. Alternately, net dissolution from the
fracture wall (Equation (4)) and resulting enlargement of the void cavity will compete with the
closure occasioned by the shortening of the bridging asperity. The dominant process will
prescribe whether the fracture gapes or seals. This deposition or dissolution on the free surface
is controlled by the relative concentration differential between the pore fluid solution and
the equilibrium concentration of that fluid (Equations (4) and (5)). Concurrently, mineral
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concentrations in the immobile fluid layer beneath the asperity contact, and the mobile fluid in

the fracture void fluid are updated, as [35]
(Dl + Vp/ZAt) : (deiss/dt + Vp/4At . Cint|t) + Dl VP/Q,AZ : Cpore|r

where

A6
(D) + V,/4A1) - (D) + V,/2A1) — D? (A)
2nw Dy
_ b A

"7 In(de/2q) (A7)

1 (dMgy dMEE )
Coore — §< ar | d—j) (i Cpore < Ceg) (A8)

1 deiff dercc .

- V—_— >

Cpore Q( ds dr > (1f Cpore Ceq) (A9)

and Q denotes the flow rate.
These relations are used iteratively to follow the evolution of dissolved concentrations in the
fracture void, and resulting closure-history of the fracture.
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area of local contact (m?)
area of one element (m?)
area of fracture void (m?)

local aperture (m)

mean mechanical aperture (m)
equilibrium solubility (kgm ™)

NOMENCLATURE

lumped concentration travelling out of domain (kgm™)
concentration in pore space (kgm ™)

diffusion coefficient (m?s~)

activation energy for dissolution/precipitation (J mol™")

heat of fusion (J mol™")

activation energy for solubility (J mol™')

activation energy for diffusion (J mol™')
dissolution/precipitation rate constant (molm 2s™1)
forward-particle-tracked mass (kg)

precipitation mass (kg)

dissolution mass at pore space (kg)

dissolution mass at contact area (kg)

Lagrangian mass (kg)

number of time steps (dimensionless)
number of contact nodes (dimensionless)
number of total nodes (dimensionless)
shape function at ith node (dimensionless)

fluid pressure (Pa)
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flow rate (m3s~!)

gas constant (Jmol ! K1)
contact-area ratio (dimensionless)
temperature (K)

temperature of fusion (K)

fluid velocity (ms™')

molar volume (m?)

particle position (m)

fictitious particle position (m)

Greek letters

U
Pe
Oq4
Oc
Oeff

fluid viscosity (Pas)
density (kgm ™)
contact stress (Pa)
critical stress (Pa)
effective stress (Pa)
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SUMMARY

This paper presents a method to solve two-phase flows using the finite element method. On one hand, the
algorithm used to solve the Navier—Stokes equations provides the neccessary stabilization for using the efficient
and accurate three-node triangles for both the velocity and pressure fields. On the other hand, the interface
position is described by the zero-level set of an indicator function. To maintain accuracy, even for large-
density ratios, the pseudoconcentration function is corrected at the end of each time step using an algorithm
successfully used in the finite difference context. Coupling of both problems is solved in a staggered way.
As demonstrated by the solution of a number of numerical tests, the procedure allows dealing with problems
involving two interacting fluids with a large-density ratio. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: level set; Navier—Stokes; free surface; characteristics Galerkin; uncompressible flows; fract-
ional step

1. INTRODUCTION

There is a large variety of problems, such as the motion of droplets and bubbles, free surface
flows, mould filling, debris flow, etc. involving two fluids interacting across a gas—liquid interface.
In these problems, a jump in the fluid characteristics, viscosity and notably density, exists across
the interface and the evolution of the system strongly depends on the fluid-to-fluid interaction.
Therefore, accurate calculation of the interface evolution is critical for the problem solution.

To describe the evolution of the interface, finite difference practitioners have already developed
a number of methods. These methods can be classified as front-tracking and volume-tracking
algorithms.

Front-tracking methods use, apart form the stationary mesh used to discretize the overall domain,
an additional set of computational elements to describe the interface. In 2D cases, the interface is
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formed by line segments connecting chains of points that are advected by the flow. To maintain
the front resolution during the advection, extra points are incorporated or deleted from the moving
interface as it expands or contracts.

Although this method results in a sharp definition of the front, is expensive and complex to
implement even for 2D problems solution and its extension to 3D cases is non-trivial. Furthermore,
there is a serious difficulty for this method to handle merging interfaces. To solve the latter issue,
merging algorithms and other alternatives have been developed [1].

In the volume-tracking methods, a marker is advected by the flow and used to define the regions
occupied by the different fluids. Marker particles were earlier used by Harlow and Welch [2, 3]
in the marker-and-cell (MAC) method. This procedure was later extended by the marker function
concept, the volume-of-fluid (VOF), due to Hirt and Nichols [4]. Further developments on this
approach include the simple line interface calculation (SLIC) [5, 6]. However, the VOF method
uses a mesh of rectangular donor—acceptor cells difficult to use by the finite element method.

Mixed approaches of cells and finite elements have been successfully applied [7], but the
pseudoconcentration function (PCM) of Thompson [8] overcomes the above difficulty within the
FEM context and it has been successfully used by Lewis [9]. However, the existence of high
gradients in both the velocity and the pseudoconcentration, can result in non-physical oscillations
of the PCM leading to the inception of false interfaces.

This problem has been addressed by Dhatt [10] and, later, by Medale [11] for 2D problems.
As their proposals require the solution of a number of topological issues, Riemann problems, etc.
they seem to be complicated to be implemented for general type of problems and their extension
to 3D situations is non-straightforward.

As an alternative, level set methods [12] have been successfully applied within the finite differ-
ence context to solve flow problems involving two gases of similar densities [13] and fluids with
much larger-density ratios.

Sussman [14] proposed an efficient algorithm to maintain the function indicating the different
fluid regions as a distance function. In this way, solution accuracy was remarkably improved.
Furthermore, (1) there is no obvious restriction to extent Sussman’s method to the solution of
3D problems and (2) the algorithm used for this purpose is very close to that used to advect
the indicator function by the fluid flow. For these reasons, Sussman’s proposal is followed in this
paper to calculate the interface position using the FEM.

As regards the basic flow calculation, to fulfil the BabuSka—Brezzi condition Dahtt, Medale and
other authors have used mixed elements with different order of interpolation for velocities and
pressures.

These high-order elements are not specially well suited to capture steep gradients in the field
variables as those occurring across the interface and for adaptive remeshing [15]. For these pur-
poses, linear triangles in both fields are preferred. Besides, in this way, both the Navier—Stokes
equations and the advection of the indicator function are solved using the same mesh. Unfortu-
nately, triangles with linear interpolation of velocity and pressure, do not fulfil the Babuska—Brezzi
condition and require stabilization [16] to avoid spurious oscillations in the pressure field.

However, some fractional step algorithms, based either on the Taylor—Galerkin [17] or on the
characteristic Galerkin methods [18, 19], provide the required stabilization. The method followed in
this paper uses the characteristic Galerkin procedure for compressible/incompressible flow proposed
by Zienkiewicz et al. [18, 19] to solve the basic flow problem.

The paper is organized as follows: Section 2 presents the mass balance and momentum equa-
tions describing the motion of the two fluids together with the general strategy used to advect
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the interface. Section 3 describes the discretization of the governing equations. A characteristic
Galerkin, fractional step method is used for the hydrodynamics of the two phases. The advection
of the interface is performed in two steps: (1) transport of the interface using a characteristic
Galerkin algorithm and (2) iterative correction of the pseudoconcentration. Finally, the perfor-
mance of the proposed method is assessed in Section 4 using classical tests involving fluids with
large differences in density and interface merging.

2. GOVERNING EQUATIONS

2.1. Equations of motion

Determination of the unsteady, viscid, incompressible, flow of two interacting fluids requires the
solution of the Navier—Stokes equations

p%+pdiv(ﬁ®ﬁ):div1:—gradp+pl_7 (1)

divii=0 ()

supplemented by the state equations for the density and viscosity, which for immiscible fluids are
%—I—gradp-ﬁ:O 3)

%Jrgradu'ﬁzo “4)

In the above equations, p(X,?) and u(x,t) are the discontinuous density and viscosity fields,
respectively, u(x,t) is the fluid velocity, p(x,t) is the pressure, t(x,¢) is the deviatoric stress
tensor which, for an incompressible, simple viscid fluid is related to the symmetric strain rate
tensor through the viscosity coefficient, u,

t=2ué = pu(grad it + grad" @)

and, b(%,t) is a body force, typically, gravity. Another forces, as surface tension at the fluids
interface, are ignored in this paper.

Equations (3) and (4) state that for immiscible fluids, the density and viscosity are constant
along particle paths, i.e. the material derivative of both variables is zero.

From the spatial point of view, the density and viscosity are constant inside each fluid, experi-
encing a jump only at the fluids interface, i.e. the front. Therefore, p and u can be written as a
function of a smooth variable, ¢, whose zero-level set indicates the fluid-to-fluid interface

P {p.u}r if ¢<0

In this way, the solution of the state equations (3) and (4) reduces to the simple advection by
the fluid flow of the indicator function ¢

(%)

ol -
E—I—graddru—o (6)

and the determination of its zero-level set at each time step.
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Besides, the representation of the interface using a smooth function instead of the step one used
in the equation (5) levels out most of the numerical oscillations caused by the shortest wavelengths
present in the mesh, while maintaining the accuracy in the interface position.

This approach to the solution of the problem defined by Equations (1) (2) (5) and (6) works
well for small-density ratios, as verified in Reference [13] in the finite difference context, but it
results in unwanted instabilities in the pressure field for larger ratios as those found in gas—liquid
systems.

Additionally, the advection of the indicator by a non-uniform velocity field can result in non-
physical, spurious, interfaces appearing in the problem solution. It is important to notice that this
effect is not caused by inaccuracies or instabilities of the numerical scheme but by high-velocity
gradients present in the fluid field [11]. Clearly, poor numerical schemes will make this issue to
become worse.

Finally, the numerical scheme contaminates the numerical solution either by diffusion, in the case
of low-order schemes, or destroying the front sharpness causing oscillations, in the high-order case.

2.2. Front capturing

When using the FEM to analyse mould-filling problems, the above issues have been successfully
solved by (1) front tracking and ¢ function reconstruction from the new front position as in
Reference [10] or (2) by reducing the front advection calculations to a limited number of elements
located at the sides of the front: the cursor, which is updated as the front propagates [11].

As these front-tracking methods require too much book-keeping effort and the solution of several
topological issues, among other difficulties, the approach adopted in this paper is based on

1. The diffuse representation of the front.
2. Front capturing using the level set approach.

As regards the first point, to avoid the abrupt changes in the density and viscosity fields implied
by (5) when crossing the front, these properties are interpolated through a constant thickness tube
of width 26 surrounding the front [1]. The zero-level set of ¢ indicates the front position and ¢
is taken of the order of the mesh size [10].

Front smoothing further prevents from oscillations of length scale of the order of the mesh
size [1] and, finally, maintaining the tube thickness constant through the advection eliminates the
diffusion issues. Front smoothing has been previously used in Reference [11], where the transition
region is formed by the elements crossed by the interface. However, using the cursor concept in
Reference [11], the diversity of element sizes in the mesh results in a changing front thickness as
the front is advected through the mesh.

Concerning the interpolation of the fluid properties, different alternatives exist. This paper con-
siders the simple linear interpolation

01 for¢p < =0
p= p1+p22_5p‘(¢+5) for — 5<d <5 (7)
02 for¢p = o

although extra smoothing can be gained considering other functions, as the sine function used in
Reference [14].
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However, the interpolation of the fluid properties as a function of ¢, requires the value of ¢
indicating the signed distance to the interface, i.e. ¢ being a distance function. Besides, requiring
|grad ¢| =1 also avoids spurious interfaces appearing and contaminating the problem solution.

To keep ¢ as a distance, this paper follows the approach proposed by Sussman et al. [14] within
the finite difference context: once ¢ has been advected up to a certain time ¢, to correct ¢(x,")
the following problem is evolved to steady state:

W S grad ) = 59" (8)

with initial conditions
Y(x, 1) = ¢"(¥)
where

e S() is the sign function and
e ¢" is the solution of Equation (6) at time ¢", ¢(X,").

Clearly, the zero-level set of , indicating the front position, matches that of ¢”, thus the term
front capturing, and, when reaching the steady state, |grad | = 1. Thus, while ¢" is not a distance
function, the steady state solution of Equation (8) will be.

Equation (8) can also be written as

xp grad Y

|grad |

showing that this problem consists in advecting {y by a velocity field
0=S(¢y) grad /| grad |

Therefore, the same algorithms used for advecting the indicator function can be used with
advantage to evolve Equation (8) to steady state. Besides, specific numerical schemes for this type
of equation are also available [20].

It is also noted that the velocity field is the unit normal pointing outward from the zero-level set.
Therefore, the zero-level set is the appropriate inlet boundary to prescribe the boundary conditions
for this problem.

+S(¢") grady = S(¢") )

2.3. Summary

The method proposed in this paper to solve the two fluids flow problem consists, of the following
for each time step:

1. Solving the Navier—Stokes equations of motion (1) and (2) with the appropriate initial and
boundary conditions.

2. Solving the advection of the indicator function (6) initialized as a signed distance to the interface
and considering the appropriate boundary conditions.

3. Capturing the interface and keeping the indicator function as a signed distance to the interface
by evolving Equation (9) to steady state.

4. Interpolating the density and viscosity (7) for the next calculations.

The next section describes the discretization procedure for these problems.
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3. DISCRETIZATION

There is a large variety of FEM-based procedures available for the solution of advection-dominated
problems (see, for instance, References [21, 22]). Among them, the characteristics Galerkin method
has demonstrated an excellent performance in general type of problems [23], specially in situations
involving steep gradients in the field variables [24]. Thus, this procedure has been chosen to solve
the Navier—Stokes and the two advection problems.

The next section presents the details of the discretization.

3.1. Navier—Stokes

Time discretization of Equation (1) along the characteristics [18] results in the following semi-
implicit equation for time increment n

A"

P AL

. . At . . =
+ pdiv(a" ® i") — divt" — > i" - grad[p div (" ® @) — divt"]" + grad p"t' =0

Body forces, as gravity, have been ignored in the above equation derivation.
Following now a fractional step procedure as proposed by Chorin [25], the velocity can be
decomposed into two parts

A" = Aa™" 4+ At (10)
such as
ﬁ*’n s (o ~n ] At ~=n s (o ~n EE S V] 0
0 A7 + pdiv(a" ®@ ") —divt —7u -grad[pdiv(z” ® u") — divt"]" =0 (11)
ﬁ**,n _

P—x; +grad p"t1 =0

which are complemented by the continuity equation
divi"t' =0 (12)

For the spatial discretization, the computationally efficient three-nodes triangles are preferred.
Furthermore, it is well known that the excellent performance of the low-order elements in the
solution of problems involving sharp fronts [26]. However, the Babuska—Brezzi condition [27, 28]
precludes using equal order of interpolation for both the velocity and pressure fields unless some
stabilization is provided.

The selected scheme provides such stabilization [17, 21, 24, 29, 30] and therefore it allows using
the linear interpolation of both the velocity and pressures

Nu

u

p=N-p
where N/N are the shape functions matrix/vector for the three-node triangle.
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3.1.1. Step 1 : fractional velocity discretization. Therefore, the discretization of the fractional
momentum equation starts from

lx_l*

P7AL

where the superscript n has been dropped for convenience. Using the standard Galerkin weighting
it results in

At -
+pdiv(u ®@ u) — divrt — - u-grad[pdiv(i ® u) — divt] =0

A
/ﬁNTNdQAﬁ**+/p N+ 2en ) divaoaydo— [ NTridy
o At Q 2 r-r,
At - -n1T - - - T = T N
-5 pu-aN div(u @u)dy — N t;dy+ [ B'7dQ=0 (13)
T . Q

where, considering Cartesian co-ordinates,

ON' ON!
N’diva+06—ux+a—uy 0
C' = X Y oN! oN! for node /
0 Nidivi+ —u, + —u,
0x dy
AN
o
0x
B = 0 6_]\/’
ay
dy Ox
Ty
= |1,
Tyy

Besides, by using linear elements, the contribution of the higher-order spatial derivatives of the
velocity field, u - grad(div t), has been neglected [18].
The boundary conditions are:

e On I, a shear traction Z; is prescribed. As ;= 17, care should be taken to properly deal with
the pressure in the shear traction prescription: 7y =t =67+ pn=1 + pn.

e Fluid velocities are prescribed on I — I',. However, conditions on Ai™* are unknown. There-
fore, the integral frfrﬁ NTzizdy cannot be omitted by assuming Ai™ is known at the boundary.
Calculating this integral, as proposed by Codina [19], eliminates additional assumptions, as
in Reference [17], and possible inaccuracies. In this way, A#™ is calculated at each node in
the mesh and used later.

It is pointed out that in the case of linear triangles, the first derivatives, i.e. gradient and
divergence, of the different fields involved in the calculations are constant within the element.
Therefore, they will always be calculated at one Gauss point location.
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However, p(NT 4+ At/2C")div(i ® i) is cubic at the front, where the density varies linearly,
and quadratic everywhere outside the front. Therefore, density, velocities and shape functions in-
volved in the integral calculation are determined at three Gauss points. Although slightly inaccurate
at the front, it provides an adequate compromise between computational effort and the required
accuracy.

Finally, constant source terms, such as gravity, can be directly added to the right-hand side of

Equation (13) as
/ pNT 5dQ
Q

This integral is calculated using one Gauss point.

3.1.2. Step 2 : continuity equation discretization. Taking into account the continuity equation at
time ¢"*!

diva™!' =0
and using the incremental momentum split,
A il *%,n _
BN +grad p"t1 =0 (14)

the time discretized continuity equation results in
s, Sk : 1 n+1
div ™" — Ardiv grad V% =0

were #™* = u" + Au™*. Note that to improve the accuracy, as explained in the previous section,
the term div #” is kept in the calculations.
Following now the standard Galerkin discretization, this equation becomes

1 _ _
/ ;grad N grad" NdQ A p"
Q

1 1
= d1V " N dQ — / grad N grad p" dQ + / —grad p"' - AN dy
At r-r, P

where it has been assumed that the pressure is prescribed on I,.
To calculate the boundary integral, Equation (14) is projected along the normal, 7,

1 1
;gradp -ﬁ:—Kt[ "t — (" + At -7
resulting in

1 . 1
/ fgradp”“ﬁNdQ:——/ "t — (@ + Aa*"M)]a N dy
r-r, P At Jr_r,
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This procedure avoids neglecting grad p"*! as in References [19, 21] and, thus the boundary
integral on I' — T,.

Another possibility, which has been successfully used in the context of Solid Dynamics [31], is
approximating grad p"*! by its value at the previous time step, grad p".

The former alternative provides better accuracy and therefore it is preferred. In this way, the
system of equations to solve and calculate the pressure increment is

/lgrad]\_/gradT]\_/dQAﬁ”: —i/divﬁ”’*l\_/TdQ
QP At Jo

1 - 1 _
—/ —grad N grad p" dQ) — —/ [ — (" + Aa™")] iN' 60
QP At Jr_,

3.1.3. Step 3 : velocity correction. Once the pressure increment has been determined in the previ-
ous step, the velocity increment Ai* should be corrected for the effects of pressure. This is done
by solving the spatial discretization of (14) to calculate Aiu**:

/ﬁNTNdQAa*“+/NTgradp"+1 dQ=0 (15)
o At 0

which, according to (10) is added to A#™" to obtain A#u".
Finally, #"*! is obtained taking into account the corresponding boundary conditions on I,

3.2. Indicator advection
3.2.1. Step 1. pure advection. The indicator function ¢ is advected by the fluid velocity accord-
ing to

%Jrgradd)ﬁzo (16)

and initialized as the signed distance to the initial front position
¢(x,t =0)= =+ distance to the front (17)

The time discretization of (16) along a characteristic results in

n

A A
Aqi + grad ¢" - 1" — %grad(grad ¢-a)-u"=0

and the Galerkin spatial discretization in

/A%N@NdQAJ)Jr/grad(p-a<N+%(5-gradﬁ+divaﬁ)> dQ
Q Q

A (18)

grad ¢ - ii(ii - n)N dy =0
2 Jr,

where the superscript, #, has been dropped for convenience.
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The procedure followed to initialize ¢ in the general case as the signed distance to the initial
front position, Equation (17), consists of:

e making first ¢(x,?) to be a signed step function of amplitude 2a, ¢(x,t)=aSE — ¥),
where
— 2a is the value assigned for the jump across the front. In the examples presented in this
paper, a =0, as defined in Equation (13).
— 7 indicates the initial front position and
— S() is the sign function.
e evolving this step function of amplitude 2a using the method described in Section 3.2.2 to
convert it to a distance function.

1. To get a well-posed initial boundary value problem, in addition to the initial conditions
(17), the value of ¢ should be prescribed at any time along that part of the boundary, Ij,
which corresponds to the incoming characteristics [21, 26, 32]. As in the current problem the
characteristics are particle paths, ¢ should be prescribed at the fluid inlet boundaries, where
u-n<0.

The right value of ¢ on Ij at any time ¢ is the distance to the front

¢(x,t)= £ distance to the front at time ¢; X € I}

but, as the front position is unknown, ¢(¢) |p¢ is also unknown.
The method used here consists of approximating the value at ¢"*! by the value of "

PE " =¢@F,1") T

leaving the calculation of the right value of ¢(¥,#"*!) for the global correction step performed
next to keep ¢ as a distance function.

Finally, as most of the integrals in (18) involve second-order functions, the examples presented
in this paper are solved using three Gauss points. However, it is pointed out that only one Gauss
point could be sufficiently accurate and slightly faster [26].

3.2.2. Step 2 : correction. As described in Section 2.2, once ¢ has been advected up to time ¢”
using the algorithm described in the previous section, it is transformed into a distance function,
denoted as y, by evolving

oy

ot

grad
|grad |

+S(¢") grady = S(¢") (19)

to steady state, with initial conditions

Y(x,0) = p(x, ")

As already pointed out, ¢(¥,¢") and the steady-state solution of (19), , share the same zero-
level set. Thus, (19) preserves the fluid-to-fluid interface.
Taking into account that the velocity field in this problem is

grad
|grad |

7= S(¢") (20)
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and, thus,
o - grad (1) = S(¢")|grad y|
the discretized form of Equation (19) is

izv@NdQAl;":/NS((p") 1 — |grad y/*| 1+§div5’f dQ
o At 0 2 1)

At - At _ -
—/—gradn/zgradeQ—k—/gradn/wﬁNdy:O
o 2 2 Jr

where the superscript £ stands for the iteration number towards the steady state.

As only the steady state is of interest, use of the local time-stepping procedure [21, 26] is
suggested for convergence acceleration.

It is pointed out that as the velocity field in this problem

grad
|grad |

is not divergence free an stabilization term div o appears in Equation (21). This term involves
the calculation of second-order derivatives of . In the authors experience, neglecting it could
slow down convergence to steady state and it could result in errors. Therefore, nodal recovery
techniques are used to calculate the nodal values of grad i and then, using its definition, the nodal
velocities. From the nodal velocities, calculation of div ¢ is straightforward.

For the simple linear triangle used in this paper, the variational recovery is sufficient. Further-
more, Equation (21) uses the div & term only as a correction to the first-order advection term.
Thus, small errors in the recovery are irrelevant and, consequently, the recovery calculations are
carried out simply using the lumped mass matrix.

Finally, to get a well-posed initial boundary value problem, the boundary conditions should be
stated. As for any hyperbolic problem, the value of s should be prescribed at the inlet boundaries.
In the current problem, the characteristics are given by the vector ¢ (20), the unit normal pointing
outward from the front, i.e. the inlet boundary for this problem is just the front.

Therefore (1) the boundary integral in (21) should be extended to the whole body boundary
and (2) ¢ should be prescribed only at the front, where it should be zero.

Regarding the second point, the front thickness is 26. Therefore, all nodes located inside the
front, i.e. those nodes fulfilling |Y(¥)f| < J, are left unchanged during the iteration k of the
correction step.

The value of the front thickness, 20, as stated in Section 2.2, is of the order of the mesh size.
In the examples presented in this paper

= S(¢")

5 - %hmax (22)

where hpay is the size of the largest element in the mesh.

Another possibility to address the issue of prescribing the boundary values of ¥ consists in fixing
only those nodes adjacent to the zero-level set of . This purpose can be achieved by detecting the
elements crossed by the front and leaving unchanged their nodal values during the correction steps

Both methods leave unchanged the position of the zero-level set of Yy during the correction steps.
The results of the numerical tests presented in this paper do not favour one specific procedure
either in terms of accuracy or efficiency.
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The stopping criterion for the iteration used in this work is

total nodes

WA ) — YRR )] <6 (23)

In case the error calculation (23) extends over the whole mesh, much of the time is expended
fulfilling the criterion in zones located far from the front. As the critical issue in the far field is
avoiding appearance of false interfaces, small errors in the far field could be accepted. In this case,
nodes located far from the front are removed from the error calculation in (23) and convergence
accelerated.

Comparison of the results for a number of tests cases showed that extending the calculations in
(14) to a tube thickness

[E N, ) <10 % 6

is sufficient for most applications. However, care should be taken to avoid the front crossing the
tube at the end of a time step.

3.3. Stability requirements on the time step increment

Coupling of the two problems is solved in each time step in a staggered way. First, the Navier—
Stokes equations are solved and then, the new front position is determined as the solution of the
transport problem. In this way, the density and viscosity to be used for the next time step can be
calculated.

The feedback from the advection step, i.e. the new front position, is extremely important in
the case of high-density ratios between the two fluids while for low-density ratios, a number of
advection steps can be advanced within the same Navier—Stokes step.

The maximum time step increment allowed for the solution of the Navier—Stokes equation is

calculated from the condition [21]
[ 1 1
C < Fg + o — Fe

where C is the Courant number; C = |i|/h/At, P, is the Peclet number, P, = |it|u/p x h/2 and h is
the element size, which has been considered here as the minimum triangle height and, « =1 when
using the lumped mass matrix and « :% when using the consistent mass matrix.

The corresponding restriction in the time step increment for the advection equation is

C<ua (24)

Therefore, for one of the two problems, Navier—Stokes or the indicator advection, the time step
will not be the optimum one. This will result in unwanted oscillations and lack of accuracy for that
problem [21]. Furthermore, even for the problem setting the time step increment and, thus, being
the optimum for that problem, the time step increment will not be optimum for all the elements
in the mesh due to their different sizes.
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u=1.0

Figure 1. A colour drop advected by a uniform flow. Problem lay-out.

To solve this issue, this paper follows the approach presented in Reference [21]. This approach
consists in calculating the time step increment used in the stabilization terms as

Glopt h

At = —
|7

where the value of o, can also be found in Reference [21].

The test cases presented in the next section have been solved using the lumped mass matrix for
the Navier—Stokes problem and the consistent matrix for the advection one. However, in the general
case, using the consistent mass matrix also for the solution of the Navier—Stokes problem will result
in a more accurate solution of the basic flow problem [21, 26] and will help in eliminating spurious
oscillations. To save computer effort, the consistent matrix can be approximated by the iterative
correction described in Reference [33].

Finally, it is pointed out that the indicator function correction places no restriction in the critical
time step for the overall problem solution. However, the internal time step used to solve it,
should fulfil with the same conditions as those for the advection problem solution described above,
Equation (15).

4. NUMERICAL EXAMPLES

This section shows the capabilities of the methods presented in this paper when solving a number
of test problems.

4.1. A colour drop advected by a uniform flow

This test involves a drop of a colour, with radius 0.3, advected by a uniform flow in a 3.0 x 1.2
rectangular domain. The flow velocity is 1.0, constant everywhere in the domain and it is assumed
that the presence of the drop does not affect the flow.

Figure 1 presents the domain, discretized using 1213 nodes in 2280 triangular elements. The
drop advection is solved using the characteristics Galerkin method described in Section 3.2.1. The
indicator function ¢ is taken as a cone with unit height.

Figure 2 depicts the contours of ¢ at different instants. It is observed that the method is diffusing
the drop contour. Thus, an interpolation of the fluid properties across the interface as that in
Equation (7) would result in oscillations.

Figure 3 presents the drop contour, i.e. the zero-level set of ¢ at the same instants as above,
calculated using the proposed reinitialization. It is observed that the contour remains sharp during
the transport and maintains the initial circular shape.
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t=0.29 t=1.76

Figure 2. Pure advection of a colour drop by a uniform flow. Contours of the indicator function.

O O

t=0.29 t=1.76

Figure 3. Drop contour calculated using the proposed reinitialization.

—+— Cylinder
—»— Cone

——Lewe! Set

Pseudo-Concentration

Horizontal Distance

Figure 4. Advection of a colour drop. Pseudo-concentration function profiles calculated along
the central horizontal line assuming ¢ is initialized as: (a) a cylinder; (b) a cone and (c) using
the level set with reinitialization.

To further substantiate these observations, Figure 4 depicts the pseudo-concentration function
profiles along a central horizontal line at # =1.76 for these two cases. Also included in this figure
is the profile calculated when using a steep ¢ function as it is a cylinder. These results make clear
that the reinitialization levels out the oscillations existing even using a smooth definitions for ¢,
as it is the cone, and it maintains the drop radius through the advection.

4.2. Flow in a T-branch

This example tests the capability of the proposed advection technique to transport and to merge
two interfaces. For this purpose, this test analyses a colour coming into a T-branch from two
different inlet boundaries and advected by a steady-state flow.

Figure 5 presents the problem lay-out. The mesh consists of 552 nodes and 972 linear nodes
triangles.
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Figure 5. Flow in a T-branch: mesh and problem lay-out.

0.379

0.0

(b)

Figure 6. Flow in a T-branch: (a) velocity contours and (b) velocity vectors.

The colour comes into the domain with a velocity u=0.15m/s at section AB and with velocity
u=0.10m/s at section CD. The pressure is prescribed as zero at section EF and perfect slippage
between the fluid and the walls is assumed at the remaining walls of the domain. Normal velocity
is set to zero along AE, BC and DF.

Considering Re =25 calculated at section AB, the steady-state flow has been determined inde-
pendently from the colour advection using the algorithm described in Section 3.1. Figure 6 presents
the calculated velocity vectors and contours for steady-state conditions.

Figure 7 presents the evolution of the interfaces through its advection. Clearly, the coalescence
of the two interfaces is held without any difficulty.

To illustrate the need of the indicator function reinitialization to accurately calculate the interface
position, Figure 8 presents the results obtained now without the proposed reinitialization. It is clear
that in this case as the front meets areas where velocity gradients exists, the solution accuracy
greatly deteriorates. Therefore, it is important performing the propose reinitialization when the
solution of the flow problem is strongly coupled to the interface position, as in the examples
presented next.
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t=65.0 t=72.2 t=43.3 t=57.7

Figure 7. Evolution of the colour interface as Figure 8. Evolution of the colour interface calcu-
advected by the flow. lated without reinitialization.

U=0.0—ry U=0.0

U=1.0 — p=0.0

Us=0.0

Figure 9. Flow around a cylinder: problem lay-out and mesh.

4.3. Flow around a cylinder

The next example shows the performance of the method when solving the flow around a cylinder.
Initially, a fluid with viscosity ©=2.0 x 1073 Pas and density p=1.0kg/m> is at rest filling a
rectangular domain which contains a circular cylinder.

At time zero, another fluid, characterized by p=2.0 x 107> Pas and p = 103 kg/m?, starts enter-
ing into the domain with horizontal uniform unit velocity, interacting with the existing one. Figure 9
depicts the problem lay-out and the mesh of 529 nodes in 988 three-node triangles used in the
problem discretization.

Figure 10 presents the calculated pressure and velocity contours along with the interface position
at different instants. It is pointed out that while using the same order of interpolation for velocities
and pressures, oscillations in the pressure field are not present.

4.4. Step cavity

Dhatt [10] and Medale [11] used this test to check the performance of their methods in complex
flow problems. The test consists in filling a cavity with a step and initially filled with air at rest,
using a molten metal. Therefore, the example includes again the effect of each fluid flow on the
other fluid and involves large-density ratios between both fluids.

Figure 11 presents the problem lay-out and the discretization by a mesh of 557 nodes and 989
three-node triangles.
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Pressure

Interface

=2.46 1=5.31 t=8.50

Figure 10. Flow around a cylinder: pressure and velocity contours and interface postion evolution.

Figure 11. Step cavity: problem lay-out and mesh of three-node triangles.

A fluid with density 1.0 x 10° and viscosity =2.0 x 1072 starts coming into the domain through
section AB, with a horizontal velocity of 0.1. The cavity is initially filled with air, with density
p=1.0 and viscosity ©=2.0 x 107>. A zero pressure datum is set at C and perfect slippage is
allowed on the walls, i.e. there is no friction of the fluid with the walls. Normal velocities along
BC and A are set to zero. Finally, the test includes the effect of a gravity force with value 9.81.

Figure 12 presents the calculated interface position evolution and the velocity vectors.

5. CONCLUSIONS

This paper presents a method to solve flow problems involving two immiscible fluids within the
FEM context.

The proposed procedure discretizes the Navier—Stokes equations and the pseudoconcentration
function advection along the characteristics, the characteristics Galerkin method. Additionally, the
solution of the Navier—Stokes problem uses a fractional-step method that allows equal order of
interpolation for both the velocity and pressure fields. In this way the same mesh of three-node
triangles can be used for both problems solution.

Interface position is determined using the level set method and a fast algorithm to preserve
accuracy. This procedure shows no problem in handling different interfaces merging and, contrary
to existing approaches, it can be easily extended to the solution of 3D problems.
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t=0.27

1=108

t=2.22

1=3.4

1=3.66

Figure 12. Step cavity: (a) interface position evolution and (b) velocity vectors.
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Abstract

Analysis of a variety of dynamic phenomena requires simultaneous resolution at both atomistic and continuum length
scales. A combined molecular dynamics and finite element method approach, which we discuss in this paper, allows us
to find the balance between the necessary level of detail and computational cost. The combined method is applied to the
propagation of a laser-induced pressure wave in a solid. We find good agreement of the wave profile in the molecular
dynamics and finite element regions. This computational approach can be useful in cases where a detailed atomic-level
analysis is necessary in localized spatially separated regions whereas continuum mechanics and thermodynamics is sufficient
in the remainder of the system. (© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the years a number of approaches have been
developed to simulate dynamics in condensed phases.
In the atomistic regime, the molecular dynamics
(MD) simulation technique has been successfully ap-
plied to a variety of phenomena including structures
of liquids [1], energetic particle bombardment of
solids [2], reactions at surfaces [3], and crack prop-
agation [4,5]. On the other hand, the finite element
(FE) method is successful in modeling propagation
of elastic waves and heat transfer through material
at macroscopic length scales [6,7]. A schism arises,
however, when one wants to examine phenomena that
occur at an intermediate length regime and yet still
retain an atomic-level resolution in some regions of
interest. In principle, one could make MD simulations

larger but even simulations with ~ 10°-10% particles
are not sufficiently large to deal efficiently with situ-
ations such as propagation of the pressure waves de-
veloped in simulations of laser ablation [8], energetic
cluster impact [9] or crack propagation [4,5,10].

In particular, the generation of strong pressure
waves is a natural result of the fast energy deposition
in short pulse laser ablation [8,11,12]. The develop-
ment and propagation of these waves occur at length
scales that are beyond the capability of the MD sim-
ulation technique [8,11]. One problem is that a pres-
sure wave reflected from the boundaries of the MD
computational cell can interfere with the processes
in the ablation region and hinder interpretation of
the results of the simulation. Recently we developed
a simple and computationally efficient approach for
simulating the non-reflecting propagation of a pres-

0010-4655/99/$ - see front matter (© 1999 Elsevier Science B.V. All rights reserved.
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sure wave out from the MD computational cell [11].
While providing an efficient way to avoid artifacts due
to pressure wave reflection, the non-reflecting bound-
ary conditions are not sufficient for more challenging
scenarios in which there are several regions where
molecular-level analysis is needed. For example, in
addition to ablation at the front side of the irradiated
sample, the interaction of the laser induced compres-
sive pressure pulse with the back surface of the target
can cause the desorption of the molecules adsorbed at
the back surface, an effect known as acoustic desorp-
tion [13], or lead to the failure process known as back
spallation [12]. Moreover, in many heterogeneous
systems such as pigmented biological tissues [11,14]
or polymer films containing graphitic nanoparticle
sensitizers [15], the ablation or damage mechanisms
are defined by intensive processes occurring in the
immediate vicinity of the spatially localized absorbers
embedded in a transparent medium. While the sizes
of the systems of interest in these cases are far beyond
the capabilities of the MD method, the areas where
an atomic or molecular level analysis is necessary
can be small enough to be amenable to a treatment
by the MD method. The rest of the system, where
relative displacements of the atoms are small, can
be treated by the use of continuum mechanics and
thermodynamics.

A natural approach to the simulation of multi-
scale processes, thus, is to combine a MD simulation
for the critical regions within the system with a FE
method for a continuum description of the remainder
of the system. There have been a number of works
where the FE method is used to simulate an adequate
static [10,16,17], and dynamic [10] response of
surrounding material to the processes in the MD com-
putational cell. In the present work we demonstrate
that application of a combined MD-FE technique can
be extended to a multiscale simulation of a system
with multiple interacting MD and FE regions.

Here we test this approach on the propagation of
a laser induced pressure wave from the ablation re-
gion through a micrometer-sized sample using a two-
dimensional (2D) model. The extension to three di-
mensions is straightforward and is currently under de-
velopment. The computational method is described in
Section 2, and the application of the method to the
propagation of a pressure wave through the succes-
sively arranged MD, FE, and another MD region of

the model is given in Section 3.

2. Computational method

A computational approach for multiscale dynamic
simulations that combines molecular and continuum
descriptions of different parts of the system is outlined
in this section. We give the essence of the MD and FE
techniques, show the computational similarities, and
discuss a simple prescription for combining the two
methods.

In MD simulations a computational cell is repre-
sented by a set of N particles with coordinates {r;}
and momenta {p,}. The time evolution of the system
is governed by Newton’s second law,

S TN) (1)

where m; is the mass of the ith particle, F; =
—V,U(ry,ra,...,ry) is the force acting on the ith
particle due to interaction with other particles in the
system, and U(ry,r,,...,ry) is the interaction po-
tential. The initial positions and velocities of the par-
ticles together with the interaction potential define the
whole set of thermodynamic, elastic and mechanical
properties of the model material.

The set of 3N second-order differential equations,
Eq. (1), is often solved by recasting it as a set of 6N
first-order Hamilton’s equations of motion,

m; d2r,~/dt2 =-VU(ry,r,..

dp;/dt = =N U(ri,ra,...,rN),
dr,'/dt:p,»/mi. (2)

Given the initial positions and momenta of the system,
integration of Eq. (2) yields the total trajectory of the
system. With a knowledge of the trajectories of all
the particles, one can calculate spatial and temporal
distributions of energy, temperature and pressure, as
well as monitor the structural and phase changes in
the system.

In the FE method the continuum system is divided
into a finite number of elements which are usually
much larger than an individual particle in a MD simu-
lation. Each element is characterized by its geometry,
a sequence of points or nodes on its periphery, and by
a set of properties of the material. In particular, tri-
angular plane-stress elements, used in 2D simulations
discussed in the next section, are shown in Fig. 1. The
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MD part

transition zone
between MD
ans FEM parts

FEM part

Fig. 1. Transition zone between the MD and FE regions of the sys-
tem. Black dots represent MD particles. Open circles represent FE
nodes. Open circles with black dots inside represent node-particles
in the transition layer.

dynamics of a non-dissipative medium is defined, in
the linear approximation, by the following equation
for the displacements, a, of a set of n nodes,

Md’a/dt* = —Ka + F . (3)

In this system of n coupled second-order differential
equations, d’a / dt?, is a vector of nodal accelerations,
M is a mass matrix defined by the geometry of the el-
ements and the density of material, K is the stiffness
matrix that is defined by the geometry of the elements
and elastic moduli of material, and F is the external
force applied to the nodes. The techniques for con-
struction of a FE mesh and calculation of mass and
stiffness matrices appropriate for the simulation of a
particular system are covered in an extensive litera-
ture, see for example Ref. [18].

A dynamic simulation with both MD and FE tech-
niques involves integration of the equations of motion,
Egs. (1) and (3). An apparent similarity of Eqs. (1)
and (3) suggests the possibility for coupling of the two
dynamic simulation techniques. From one perspective,
if the interaction potential used in the MD method is
assumed to be harmonic, then V,;U becomes a linear
function of displacement as in Eq. (3) . From the other
side, the stiffness matrix, K, is defined by the elastic
constants of the system [18] and calculation of the
elastic constants from a given functional form of the
interaction potential is straightforward [10]. Thermal
effects, damping, and nonlinearity can be introduced
into the finite-element analysis [6,7,10,18] providing

a more accurate match with the properties of MD sys-
tem defined by a realistic interaction potential.

In order to effectively combine the regions de-
scribed by the MD and FE methods into a single
model, one not only has to ensure consistency be-
tween the properties of the discrete and continuum
media, but also to provide a smooth transition be-
tween the two media. In the present work the coupling
of the two descriptions of the media is brought about
by a transition zone in which the FE nodes coincide
with the positions of the particles in the MD region,
Fig. 1. The width of the transition zone is equal to
the cutoff distance of the interaction potential used in
the MD region, two layers of particles in this case.
This provides a complete set of neighbors within the
interaction range for all particles in the MD region.
Particles that belong to the transition zone interact
via the interaction potential with the MD region. At
the same time the transition zone constitutes a part
of the FE grid, where the nodes coincide with the
MD particles, and experience the nodal forces due to
the FE grid. The forces exerted on the particle-nodes
in the transition zone due to the interaction with the
MD region make up the external forces F¢ in the
equations of motion for the FE nodes, Eq. (3). F is
nonzero only in the transition zone between the MD
and continuum regions. In order to avoid a density
mismatch at the boundary, the mass at each node in
the transition zone is set equal to the mass of the MD
particle. Both Eqgs. (1) and (3) are solved using the
same integration scheme, which increases the stability
in the transition region.

3. Application to laser ablation

In this section we illustrate the computational effi-
ciency and accuracy of the combined MD and FE ap-
proach. The method is applied to the multiscale simu-
lation of laser ablation of a molecular solid and prop-
agation of a laser induced pressure wave from the ab-
lation region through a micrometer-sized sample. The
schematic view of the model consisting of the succes-
sively arranged MD, FE, and another MD region is
shown in Fig. 2.

A relatively small surface region, part A in Fig. 2,
where complex processes of laser energy deposition,
overheating, buildup of high pressure, disintegration
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Fig. 2. Schematic picture of the model system.

and ejection of a significant amount of material are
occurring, does require a molecular level analysis
and is simulated by the MD method. A breathing
sphere model for MD simulations of laser abla-
tion [8] has significantly expanded the time and
length scales accessible for this molecular level sim-
ulation and has provided insight into the microscopic
mechanisms of laser ablation and damage of organic
solids [8,11,19,20]. In this work we use a 2D version
of the breathing sphere model, described in detail in
Ref. [8], for simulation of the surface region of the
irradiated sample.

The high pressure associated with the fast energy
deposition and ablative recoil lead to the development
of a pressure wave that propagates deeper into the
sample [8]. The long-range propagation of the pres-
sure wave is simulated using the FE method, part B
in Fig. 2. In this work the FE part of the system is de-
scribed within the linear approximation with triangu-
lar elements [ 18] under plane stress conditions [21].
Generally, complete compatibility between the MD
and FE regions requires implementation of nonlinear
elasticity and inclusion of anisotropy of the material in
the FE method [ 10]. Introduction of nonlinearity into
the FE method involves an adjustment of the stiffness
matrix at each integration step whereas anisotropy in-
creases significantly the number of nonzero elements
in the stiffness matrix [6,7,22]. Although neither of
these factors make an apparent problem, the stiffness
matrix in this simple test case could, in principle, be
~ 60 million double precision numbers. We have thus
made efforts to use only the nonzero elements to save
computer memory. Thus for this first test case, we
chose to use an isotropic and linear stiffness matrix. In
order to partially account for nonlinearity within our
linear isotropic FE continuum, we calculate the stiff-
ness matrix based on an effective elastic modulus ob-
tained from the average velocity of the pressure wave

propagation in the MD region. This approximation al-
lows us to decrease energy reflection at the boundary
between the MD and FE parts as compared to the sim-
ulation with an elastic modulus obtained from the in-
teraction potential [ 10,21]. The value of the effective
2D Young’s modulus used in the stiffness matrix is
027 eV/A?, 22% higher than the one obtained from
the interaction potential. A value of 1/3 is used for
Poisson’s ratio of a two-dimensional isotropic mate-
rial [21]. A regular triangular mesh with 145 rows
of elements along the direction of the pressure wave
propagation is used to represent the continuum region.
The internode distance varies from 0.58 nm in the
transition layer, which corresponds to the interparticle
distance in the MD region (Fig. 1), to 4 nm in the
bulk. Of the total number of 3909 finite-element nodes
about one third are in the vicinity of the MD regions
in order to provide a smooth transition from the small
elements in the transition region to the larger elements
in the middle of the continuum region.

The third part of the system, marked as part C in
Fig. 2, is a region at the back of the sample. The in-
teraction of the laser induced pressure wave with the
back surface can cause a mechanical damage in the
surface region [12] or lead to the desorption of the
adsorbed molecules [13]. In order to study the mi-
croscopic mechanisms of the damage and desorption
in part C, we have to switch back from the continuum
FE method in part B to a molecular level MD method.

Thus, the complete computational cell (Fig.2) con-
tains 117600 MD particles in two MD regions, a finite-
element mesh with 3909 nodes, and 560 particle-nodes
in two transition zones. The size of the system is 81
by 965 nm. Periodic boundary conditions in the direc-
tion parallel to the surface are imposed, thus the ef-
fects of the edges of the laser beam are neglected and
a plane pressure wave propagates from the ablation
region. The laser penetration depth is 32 nm and the
laser pulse duration is 15 ps. The MD regions consume
most (~ 98%) of the computer time in the simulation.

The computational setup described above is used
to simulate the propagation of a compressive pressure
wave within the irradiated sample. Fig. 3 shows the
pressure profile at different times following irradiation
with a 15 ps laser pulse. The pressure wave generated
in the ablation region reaches the first transition zone
approximately 60 ps after the start of the laser pulse.
From 60 ps to 245 ps the wave moves through the FE
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Fig. 3. The propagation of the pressure wave through the different regions of the model sample. Pressure profiles are shown for four

different times after the start of the 15 ps laser pulse.

region and by 245 ps it reaches the second MD region.
We observe a good agreement in the wave profile shape
in all three regions of the model (parts A, B, and C).
There are, however, a few changes in the wave profile.
First, the wave front becomes less steep after passing
through the first transition region. Second, there is an
apparent smoothing of the wave profile as it has prop-
agated to the FE region. Both of these differences are
ramifications of having a molecular resolution in the
MD region and a more course grid in the FE region.
The high spatial resolution of the pressure wave sim-
ply cannot be described by the FE grid. Third, while
the pressure wave propagates through the FE region,
additional peaks spaced by 10-20 nm appear on the
wave profile. The spacings between the peaks corre-
spond to the characteristic frequencies of the FE grid.
It appears that the sharp front of the pressure wave has
caused a ringing in the FE grid. It is, of course, desir-
able to eliminate these differences. To accomplish this,
however, would demand that the FE method resolu-
tion be the same as in the MD region. The wave prop-
agates through the second transition zone between the
FE and MD regions (parts B and C) without changes
because in this case the wave is going from a course
grid to a finer MD resolution.

In order to test additionally the combined MD-FE
approach, we performed a large-scale MD simulation
with a 310 nm long computational cell consisting of
86800 particles. Propagation of the laser induced pres-
sure wave from the ablation region to the back side of
this computational cell takes about 100 ps. The pres-

sure distributions at 100 ps in the combined MD-FE
model and in the pure MD model are shown in Fig. 4.
Except for differences due to the smoothing in going
from the fine MD resolution to the course FE grid, both
profiles have the same amplitude and shape. Compar-
isons of the energy in these two models indicate that
only ~ 5% of the pressure wave energy is reflected at
the transition zone.

4. Conclusion

A computational technique based on a combination
of MD and FE methods has been implemented and
tested on the propagation of a pressure wave induced
by laser irradiation of an organic solid. Good agree-
ment of both the total energy of the wave and the wave
profile in MD and FE parts is observed in the simu-
lation. The real strength of this combined approach is
that a pressure wave can be transported over micron
dimensions without losing the essential characteristics
of the wave profile. Certainly improvements can be
made. For example, nonlinear elasticity, anisotropy,
and heat transfer can be included in the FE method.
For our application, however, it is doubtful that any of
these changes would improve the agreement between
the pressure profiles shown in Fig. 4. An improvement
could be achieved by decreasing the grid spacing in
the FE region. This would lead to an increased mem-
ory requirement for the multiplication of matrices in
the FE calculation as well as an increase in computer
time. Ultimately each specific application determines
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Fig. 4. The pressure wave profile in the MD-FE system and the reference pure MD system at 100 ps. The solid line is for the combined

MD-FE system and the dash-dotted line is for the pure MD system.

its own tolerable accuracy and acceptable level of dis-
tortions caused by a more course space resolution in
the FE method.

In summary, the combined MD-FE technique al-
lows one to balance the level of details necessary
to provide reasonable accuracy in some regions of
the model with computational cost. In the field of
laser ablation this approach can readily be applied
to study back spallation, acoustic desorption, or laser
ablation/damage of heterogeneous systems with spa-
tially localized absorbers.

Acknowledgements

We gratefully acknowledge financial support from
the National Science Foundation and the IBM Selected
University Research Program. The computational sup-
port for this work was provided by Center of Aca-
demic Computing at Penn State University.

References

[1] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids
(Clarendon Press, Oxford, 1987).

[2] R.S. Taylor, B.J. Garrison, Langmuir 11 (1995) 1220.

[3] B.J. Garrison, K.B.S. Prasad, D. Srivastava, Chem. Rev. 96
(1996) 1327.

[4] FF. Abraham, Europhys. Lett. 38 (1997) 103.

[5] P.S. Lomdahl, R. Thompson, B.L. Holian, Phys. Rev. Lett.
76 (1996) 2318.

[6] JH. Argyris, H.-P. Mlejnek, Dynamics of Structure

(Elsevier, Amsterdam, 1991).

[7] T. Belytschko, T.J.R. Hughes, eds., Computational Methods
for Transient Analysis (Elsevier, Amsterdam, 1983).

[8] L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison, J. Phys. Chem.
B 101 (1997) 2028; Chem. Phys. Lett. 276 (1997) 269; J.
Phys. Chem. B 102 (1998) 2845.

[9] M. Moseler, J. Nordiek, H. Haberland, Phys. Rev. B 56
(1997) 15439.

[10] S. Kohlhoff, P. Gumbsh, H.F. Fischmeister, Phil. Mag. A 64
(1991) 851.

[11] L.V. Zhigilei, B.J. Garrison, in: Laser-Tissue Interaction IX,
S.L. Jacques, ed., Proc. SPIE 3254 (1998) 135.

[12] I. Gilath, in: High-Pressure Shock Compression of Solids
II, L. Davison, D.E. Grady, M. Shahinpoor, eds. (Springer,
New York, 1996) p. 90.

[13] V.V. Golovlev, S.L. Allman, W.R. Garrett, N.I. Taranenko,
C.H. Chen, Int. J. Mass Spec. Ion Process. 169/170 (1997)
69.

[14] S.L. Jacques, A.A. Oraevsky, R. Thompson, B.S. Gerstman,
in: Laser-Tissue Interaction IX, S.L. Jacques, ed., Proc. SPIE
2134A (1994) 54.

[15] X. Wen, D.E. Hare, D.D. Dlott, Appl. Phys. Lett. 64 (1994)
184.

[16] M. Mullins, M.A. Dokainish, Phil. Mag. A 46 (1982) 771.

[17] E.B. Tadmor, M. Ortiz, R. Phillips, Phil. Mag. A 73 (1996)
1529.

[18] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method
(McGraw-Hill, London, 1989).

[19] L.V. Zhigilei, B.J. Garrison, Appl. Surf. Sci. 127-129 (1998)
142.

[20] L.V. Zhigilei, B.J. Garrison, Appl. Phys. Lett. 71 (1997)
551; Rapid Commun. Mass Spectrom. 12 (1998) 1273.

[21] P.-O. Esbjgrn, E.J. Jensen, J. Phys. Chem. Solids 37 (1976)
1081.

[22] JM. McGlaun, P. Yarrington, in: High-Pressure Shock
Compression of Solids, J.R. Asay, M. Shahinpoor, eds.
(Springer, New York, 1993) p. 323.



[7:3] Alternative Solution Models

Boundary Element Methods



COMPUTATIONAL GEOMECHANICS (GeoEE 557)
Coupled Processes in Geologic Media

11. Boundary Element Methods — Introduction

11.1. Indirect method — General principles
11.1.1. Groundwater mechanics
11.1.2. Elasticity

11.2. Direct Method — General principles
11.2.1. Groundwater mechanics
11.2.2. Elasticity

11.3. Coupled FEM-BEM analysis

© 2000-2004 Derek Elsworth



Rromdagy ELEHERST M&THoD ~ INDIRGET

kerned ﬁmd‘tm: h= m L. ()
t\fj K 21T
mosTT
4-//7, ‘ V, = "Ké!’:- = - K"\ o, o
Vi = -k_% = -— vtm Y
¢ ] 2y 21T 'F"’)

x

/e ("'a‘f'm 7

r, L»M

6
o M

\
J

ln‘GﬂmMmr@LLseaM: /___L_T 1?‘ + ¢+ 4 2

- 2 - p.
b = L_)_T“},.rix .,e,-,_(f‘) -2 -+ g@Jl B‘.’J

Vo= KK = ke [y TP z
S 2ar Ao
!

Vy = “Koh = -kn[03 f

>



R'A
X
N \
§ \
SR

Vi \NPLUEBNCED ELEMENT, L



PRoce Duls “

. Wi

2. Awwf H«,«m« e am,u wth"a??-"

ﬁmﬁmdf-MMt%

S‘Dnm ku-& anrd nbu:&uqfo&a&ldfnwpvwé
_ tﬁt‘h‘. Ao A—_:.)) Ee W e el

,5-.. B



Ewtwrsl 6ol  Indicect Mafrode ven =0

Vil dig = o)(
' K L
A

Consdsr fla ggpare %cé_ﬁ
aerr. G My lteg 2t ' '
& | ?2 . h;='-°.2— . q” _h;*:D

PRIV IAN 1

T

et rol | b o

STV SR N PO £} ii...r'-,u;‘"" e NIz T
- et - \. - . w
. . ) . . —
LRI : - L‘;"'/J..J a’r‘;—-‘ 1‘2-‘?_ Saﬁ_ﬂm é‘f’pﬂ/\é u".z.__{ C(i G_,l-[ a9 W‘W_ﬁ“_ e
A
- ¥y - AT Wi
(v, = 4
Fl = i i@:l:1:' 'mJ
- 3
S T — = fomm = 175!
(v-# )s T Aoy vy
l’i“’ = 2 ! Ly "MU
.. . s s
— . R . i B i A -~ il L
= e -l -taw-m_;j.—//l ,:-.—lJ """'-L :\V':“ﬁ‘-""‘"" v g u-"a'E LW w1 CEI A R it T
! e sl eBss jf’-f A Hwhng T canbue s wnadlin e F s oend e s
. T - Rt A oy P .

Dcwe oow Ao floli Beicw.

3 i o ; oy
ier ot o T rmctaln Sowrcel
A 4

2

| : — 2695’ ‘ o "'S'O

—.0532 4L2% -7l

. 0062 o -1.43¢

St et e W Vy
1
r A
3
¢ - 0533 - .28 ~L3eZ




oo ¥ o i,

O

—~i(2> (B-)

3

ez, l 7777




,og'-:_t\' h= ~0o5

.0062-=h

-48 .
¢



|

HHHHHHHHHHH@HHH
tetetetrttetettttttetettttttt

1 h=-0.27

1.28

h=+0.0062




S»

S»

n

S>



‘!’Lfﬁ\M «:f\fud( 'ﬂu M m‘fr( O'p ('J"—‘p-'/ W‘-‘" ; ‘_] ','2.-'2
'E/Ja-b.:s_,tr.i M A, ad Soiag JW !wa Feer b S‘frmw ¢ HI

,..ecr.;.r.'{::’.. :c. 3”-2 "ff»a JW{C!".—LA fna-wu(aag fﬂ‘lf.sﬁl/‘ca-*u ~ ___c.,

l‘f'l«. Hl.;.‘@u&w_z.f "LJ.(. mﬁgnafuo(e' ane :ub.rfv\‘va‘a(

a~!  Dirs Tee g rc_i. »-
' -
Coh T ouze )
“y i ; : ;
| ! f e
. i R A ~ k.16
J (V fl ;)L ' - , . 0 )’
} Jr‘i \ l\ e a
e ) l - 9226 | 2.29

. ) s , . y
I\éf;r‘: £ L '3_"-..4,»:—. :.;'—..;': Watan, K yrnilesrnn :{:q-a.;;.w‘/:}f..; I,

'?m c'fw:i:ﬁ M&' z:“wm #ra ﬁﬂﬁhﬂsﬁ'\i TorBebhaviz
c'f.‘f’w """" WmMmM?Werfﬁm
sC&-Y’Ximf‘wg frwqd.a_g c-—md.a‘-u, above. There Mtljh.caba(u
are MA&-& cmndo-uj Ta ﬂ”?dgﬁ c—ﬁ Tle (-e.’o(.p*(,uﬁ;q{.



i \ -. L6953 ‘o ~5.0
. 3 . 0061 o - LI
K=i0,0 BcC = Vl:;ﬂ’
(A7 Sle dismgngeon = 1.0 — -
M b V-P‘\s
e : EEtll Rt B
WATRIX DF INFLUENCE COEFFICIENTS A1 *

- 1 2 3 4
0. SOO0000E+01 -0, 1281 000E+01-0. 1476000E+01~0. 12B10OGE+(]

—0. SFC0000E-01-0. 2700000E+00~0. S3S00000E~-01 0. 600000LE—QD

—0. 1476000E+01~0. 12B1000E+01 O. SO00000E+01~0. 1281000E+01

—0. S500000E~01 0. 6000001E-02-0. SSO00000E~01+0, 270000GE+00

-—— - e e mee ow.

LR

T T e e . ——— - i -

MATRIX OF INFLUENCE COEFFICIENTS A2

T T e e mmtn me v e cws m e L,

1 2 3 4 :
1 ~0. 270000O0E+0G—0 . STOUCOOE—G1 0. 6000001 E~02-0. SZO000GE~1 |
2 ~0. 1781 000E+01 O.SOOOOOOE+01—O.1281000E+01*0.147600@E+01f
3 -@_6000001E*02-O.SEOOOOGE—OR-G.27000OOE+OO~0.53000008—01{
4 —0- 1281000E+01~0. 1476000E+01 0. 1281 000E+01 o.sooooooe+01§
VECTOR OF FICTICIOUS SINK STRENGTHS #1
_—
1
1 ~0. 106S80SE+0 1
2 ~0. 32T TSTTECG
3 ~0. 106580SE+01
4 0. 34559195400

. " g, e e P ——

VECTOR OF ELEMENT UNKNDWNS VN

1
0. 8367 6BFE+00
~0. 141674BE+02
©. 4367 689E+00
0.F2962B6E+01 i

B L4 b

N LBC. for all elsmmts] « [A(] foai}
2. CSolus Fv-f’“”]

3 f Qo vl ] = CAZ T 00}
& Solve ﬂév{EZm-u.:r me-m-j}



Boun DARY ELEMENIT METHRD — DILSCT

=

i@ g + [ Viilpg) W(gddm = (| BiGad Vg E oL
()
‘gfv':jd” is inEGiuted e./}éd-af a wuk sowee o elamsnt C

on The resolddy novend e at bavnaltj elemadt

(aHydn & sigmir effect of-o onit sowm at elorud ¢
o Fe resiltvy bgad ot brunday eluwsdt .

(4 e 53t

C5p bs hﬂm‘#&m/causa(éj bm«gojfﬂe Sevce.



PlocEDuee

(. AW,{'] unlt sk at The cﬁﬁhcf a Smgfa
elomed, Eulvale P srhxed heods ot elomok |

h@); = = L) F (@,)J.r = —K

a 21
2. 1B hj el (VY me ewmbuoted fr each eltmat
j Tan me hawe HY ad Vo for  j=1N
fer § = et (ot node whee sowse i appbed)
Ona  equatum (1) wld raslt.
3. Repeat (2. by moviy Ao Sowce/sik o each elime
O o and evoluakyy fhe Sucte V5  Hy for
all ¢, C=/u

Thas resulds i M equathiu

4. Al vitgrols may s ewmboated earsely by annlyfcal

o rwbunéa/— ngoas, E)vcp_ff" e lern (':..-.-J'

T’;’*"("}Lidﬂ LS loaavdhma. Giadioture (Shoed ard
y Secresty
P (Vidl set otk by=PpL j=Lna
Paen. by osfrnitii Mt =0
ahe e?ua:fzc‘—-. a) vauce_c fo,

Lo

lo
N
50 flo - ~E (Vs tp o
r



relatwe 4o UA.E«M h ca.-L v, b A
Vonknne
hodb‘m

[ --Vl' .Y:L {b} - B‘n Elt]{!}
W Mudth th) Hee 1LY
[ }_/ll - B'i-]{b] = [ Hu "\ﬁz](}f}
LV —H.‘ v Hz; - Ve U’L
-1
fti = | Ba - ] [th _H'z]{h}
lbi H, "sz. Ve, fizt v

ard  datirnaia \_/_')_l}

6. Ewvluvets mlanel coqg(,_:{;..,_;/ [,..’ l_-:j “6”/’5':!"‘:7 (1)
at™ milemal prots.



BBM — (SOPABAMETEIC

- 1. Acurte represafatiin off  curved- bowndanu
2. Accurate represactadic, of th‘u,(. vma%m/nlm.t; varfetie,

2 - MNode

R—Node.

s

(P’%)\' ) —a/s

P

—r
@
b = 30U-7 b = 400 -3 @D
; =
bL = —!2:('1‘-1") b, = ?—‘_oi-r) - .-i(]-—rﬂ
by = (1-r®
b =Ib ;b3 b=Lb ;b2 ;bsl
Paramalbrne rogping
x = bx
y= by
ho= bk
Qfﬂ) = EQ{ n)
H"EE";'Q
dn =13 dr dy | }oll"
dx
- g =& AT _ Jrcdse\2 z
TR L/ @



e £ ;rt{" > dr

Su'psﬁn:l'udvj Teuse caw:aplz e Pe Ba'una(a:j cons herat em

cps hip) + Zf V@w ‘(9»)3‘_” Ar = Z f H@,v(‘@ A) o"‘a(r

gy = bh V@n) = br

E_):cu«.r& ovdoatrin uf— coeffreuck H@,?,) fw elemsxt .
; :
T Lt(cp)

= () b ok dr ]

A dr
(ovss ponds
_}-\.M “’r?
/L\} 2 . ' H—dz— /; H"3] V;_
v |
Guosar. HATRX Set.z.s
& . __f-(_.:._”_z,__ i3 vi



CouPED BEH - &M

BEM S/V}s-k'»\
v, q_: V((-Mﬂ:"‘)
u) |
= Vvis iﬂdr . =V, b,_olﬂa(r
v * ,j,dr >k L‘( dr
2
, o 9= vi4
BEM Eguatidu
Hy = Vi
v=H'VE
Ly = LH'Vh
g = £H VK
A PR B
K
FEM_ Gauatiing 4= Kb

e el el



% .

F

L GLogAL .

al MMM B owiiiomiL o

i e d el @

I (//‘{//;///77—;77/"77/77%' “




E=AHALE

= =T
//,‘/"7//;'} .
BEM eguasthio
N k Petcrn
vi? ‘ V,z'f [ﬂ'h H‘L]Z-Yt} 2[!" MZ]{E_\,
e H‘u H‘u Vo %" .'./;" h"
VPVl ds

VL-'-'- o

'ﬂ.;i-! : Qn.aww\?L aé

[" Via }{!r :(‘:’:" “H-"'-J{b' o
e Gl e et
TR B
515 i &J / L
Descord
For ©<epe — K nadse, BEM & 10x10
A St}d
V= ATB h,
—nv



WATER RESOURCES RESEARCH, VOL. 23, NO. 4, PAGES 551-560, APRIL 1987

A Boundary Element—Finite Element Procedure
For Porous and Fractured Media Flow

DERex ELSWORTH
Department of Mineral Engineering, Pennsylvania State University, University Park

A coupled boundary element-finite element procedure is presented for linear and nonlinear fluid flow
simulation in porous and fractured aquifers. Quadratic variation of both element geometry and funda-
mental singularity is used in the constitutively linear direct boundary element formulation. Compatible 3-
to 9-noded Lagrangian finite elements are used to represent the plane flow domain for mixed linear and
nonlinear flows, alike. Nodes on the external contour of the boundary element domain are only retained
if flux boundary conditions are not prescribed, thus resulting in reduced matrix dimension. The geo-
metric conductance of the linear boundary element region is evaluated only once. The resulting system
matrices remain sparse, positive definite, and may be arranged for symmetry. Nonlinearity, in this
context, is restricted to turbulent flow at high Reynolds numbers, although other nonlinearities may be
easily accommodated using a similar procedure. A Missbach relationship is implemented to represent
turbulent flow in rock fractures. Turbulent effects are confined to the finite element domain, and the
resulting nonlinear equations are solved by direct iteration. Validation studies are completed against
analytical solutions to linear and nonlinear flow problems. Excellent agreement is obtained with rela-

tively sparing nodal coverage.

INTRODUCTION

Numerical models provide an effective means of rapidly
evaluating a number of comparative scenarios in the quantifi-
cation of groundwater flows. The heterogeneous and dis-
continuous nature of rock aquifers, combined with the limited
access and penetration of standard site investigation pro-
cedures, makes the acquisition and interpretation of basic hy-
drologic data extremely difficult. High-quality numerical simu-
lation techniques therefore provide an extremely important
tool with which the impact of varied engineering or resource
exploitation schemes may be readily evaluated. Sensitivity
analyses of this nature provide a firm basis upon which subse-
quent judgemental decisions may be made [Bachmat et al.,
19801].

Of the powerful numerical techniques available, formu-
lations may be divided between domain and boundary formu-
lations. Associated with individual models are intrinsic merits
and demerits which regulate their performance in any set engi-
neering situation. Domain formulations encompass finite ele-
ment and finite difference methods and require that the in-
terior of the flow field is suitably discretized. Conversely,
boundary solution procedures require only-that the external
edge contours of separate hydraulic zones be delimited as in
the direct and indirect boundary element methods.

Domain methods offer powerful attributes in that complex
nonlinear flow behavior, such as that evident in partially satu-
rated [Neuman, 1973] or turbulent flow [ Elsworth, 1985], may
be easily accommodated. The system matrices are nonfully
populated and in many instances are sparse, allowing con-
siderable economy in storage requirements and execution
time. Further computational savings may be realized with the
finite element class of domain solutions where elemental and
global system matrices are guaranteed symmetric and positive
definite for linear and nonlinear potential flow problems alike.
The extensive meshing within the domain, however, exacerb-
ates data input requirements and introduces additional inter-
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nal degrees of freedom for which results are sometimes not
required. Thus although the matrix bandwidth may be small,
the number of active equations comprising the system may be
extremely large.

Boundary solution procedures are ideally suited to problem
geometries of large volume to surface area ratio (equidimen-
sional). Relatively trivial meshing is required, the dis-
cretization being limited to the edge contour of hydraulically
homogeneous zones. System matrices are, however, asymmet-
ric and fully populated within identified hydraulic subregions.
Additionally, the virtue exalted in requiring discretization over
the domain contour only is negated if nonlinear analysis of the
interior is attempted. Primarily for this reason, boundary solu-
tion methods have not enjoyed popular application to nonlin-
ear problems.

Coupled boundary element-finite element procedures offer
the potential of using each of the different numerical pro-
cedures in the environment to which they are best suited. The
innate strength of domain methods in dealing with constitu-
tive nonlinearity, together with the relatively favorable struc-
ture of the system matrices make them ideal candidates to
describe the behavior of nonlinear regions embedded within
otherwise linear systems. The effectiveness with which bound-
ary element procedures may accommodate volumetrically
large but constitutively linear domains presents an ideal
medium with which the far field may be adequately repre-
sented. Nonlinear effects discussed in the following sections
are restricted to turbulent flows in fractured and porous-
fractured media.

PREVIOUS APPLICATION

Previous applications of physical coupling between domain
and integral methods are evident within the continuum me-
chanics literature. These applications span the fields of wave
mechanics [Chen and Mei, 1974; Shaw, 1978], electrostatics
[Silvester and Hsieh, 1971], and elastostatics [Brady and
Wassyng, 1981], although this list is not exhaustive. A fine
summary and critical commentary on many of these methods
is given in the work by Zienkiewicz et al. [1977]. Application
to problems of Darcy fluid flow have been investigated by
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TABLE 1. Equivalent Fracture Hydraulic Conductivities
Equivalent Hydraulic
Conductivity Exponent
Hydraulic Zone K, o
gb?
1 —_ .
12v 10
1 g 2 1/4 3 4/7
2 [ogs (D) ® n
3.7
1/2 —_— 1/2
3 4g'% log [k/Zb] b 1/2
b2
12v(1 + 8.8(k/2b)>2)
1.9
5 4g'2 | —— | pi/2
g'/% log [(k /Zb)] 12

Shapiro and Andersson [1983]. A coupled procedure to accom-
modate line finite elements representing fractures in two di-
mensional space was presented using constant singularity
boundary elements and linear variation finite elements.

The following presents a coupled procedure using La-
grangian quadratic basis functions to represent element geom-
etry and dependent variables at the interface between finite
element and boundary element regions. Interelement com-
patability is therefore strictly enforced. A method of straight-
forward coupling is used to condense out unnecessary nodal
equations and application is investigated to linear and nonlin-
ear flow problems.

FLOW NONLINEARITY

A generalized constitutive relationship for flow in saturated
porous and fractured media may be represented by Darcy’s

law
v=- K( 6x) ox W

where v is the Darcy flow velocity, d¢/dx is the driving hy-
draulic gradient, and K(d¢/0x) is the gradient dependent hy-
draulic conductivity. The nonlinearity arises from mixed iner-
tial and turbulent effects which operate simultaneously as flow
velocities become significant. Both inertial and turbulent ef-
fects are manifest as increased flow impedence when Darcy
velocities are increased. Inertial impedance results from spatial
accelerations within the flow field that may commonly be at-
tributed to converging flow. These effects have been observed
experimentally and may be deduced based on consideration of
mometum balance within the Navier-Stokes equations [Irmay,
1958]. Turbulent effects may be evident at the high-flow veloc-
ities possible within open voided or fractured rock masses.
Fractures, especially, provide open conduits in which high ve-
locity flows may be realized under relatively modest hydraulic
gradients. For rock fractures, the transition to turbulent flow
is most conveniently indexed by recourse to the Reynolds
number Re such that

Re = 2bvfv 2

where b is the nominal fracture aperture, and v is the fluid
kinematic viscosity. The nondimensional Reynolds number is
extremely useful in fracture flow applications in that it is pos-
sible to define the range over which certain hydraulic parame-
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ters are applicable. These hydraulic parameters are the con-
stants in the commonly used Missbach and Forchheimer flow
laws.

The Forchheimer law uses a polynomial expression to relate
the Darcy velocity v to driving hydraulic gradient d¢/0x as

2¢/dx = av + bv* 3)

where @ and b are experimentally determined parameters as-
sumed constant over a given range of Reynolds numbers. The
general correctness of this expression may be deduced from
manipulation of the Navier-Stokes equations [Irmay, 1958]
with the constants @ and b being properties of both the fluid
and transmitting medium. For low velocity flows, a is equiva-
lent to the reciprocal of hydraulic conductivity and b is near
zero.

Despite the analytical robustness of the Forchheimer re-
lationship, the more compact Missbach law has found greater
favor within groundwater applications related to fracture hy-
drology [Louis, 1969] and flow in open voided materials
[Leps, 1973] with some exceptions [Volker, 1969; 1975]. The
Missbach law links Darcy velocity v to driving hydraulic
gradient through a power relationship of the form

0¢/0x = cv* @

where the proportionality constant ¢ and the power exponent
e are constant over given ranges of Reynolds number. The
Missbach relationship of (4) may be inverted to yield

_ 220
b= —Ke|: ax] ®)

where a = 1/e and the equivalent hydraulic conductivity K, is
constant only over a given range of Reynolds numbers. For
laminar flow, K, is equivalent to the saturated hydraulic con-
ductivity, and « is unity. For fully turbulent flow in a rough-
walled fracture, the equivalent hydraulic conductivity K, may
be determined empirically, and « is equal to 1/2. Transition
from laminar to turbulent flow is indexed by a critical Reyn-
olds number Re,. For rough-walled fractures, both the critical
Reynolds number and the equivalent hydraulic conductivity
are controlled by the ratio of mean fracture wall roughness to
fracture double aperture k/2b. Experimentally derived suites of
results are available [Louis, 1969] to quantify these parame-
ters. Equivalent hydraulic conductivity magnitudes are given
in Table 1 referring to the hydraulic zones, one through five,
depicted in Figure 1. These results are germane to the follow-
ing.

FINITE ELEMENT IMPLEMENTATION

The nonlinear hydraulic conductivity of (5) may be rear-
ranged into a form directly analagous to Darcy’s law for one
dimensional flow as

_ [k ]2 e
"__[K'[ax] ]ax__K Ox ©

where K is an equivalent scalar value of nonlinear hydraulic
conductivity, and « is set equal to 1 or 1/2 for laminar or
turbulent flow, respectively. For two dimensional flow, the
. . o . S «
appropriate hydraulic conductivity tensor relating cartesian
Darcy velocities to cartesian gradients is given by — KI where
I is the identity matrix. For multinoded plane elements, para-
metric representation of geometry (x, y) and total hydraulic
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Fig. 1.

head ¢ is appropriate. The point values of any of these param-
eters within the bounds of a single element is therefore

x =h"x (7a)
y=h"y (7b)
¢=h"o (79

where h” is a vector of basis functions, the vectoral (boldfaced)
quantities are nodal values, and the left-hand sides represent
interpolated values. Since equivalent nonlinear hydraulic con-
ductivity K in the turbulent regime is a dependent function of
hydraulic gradient, K will, in general, vary within individual
elements. Substituting Darcy’s law of the form given in (6) into
the normal Galerkin method and subsequently applying
Green’s theorem yields the matrix equation

q9=Ké¢ ®

where q is a vector of prescribed nodal discharges defined per
unit area, and K is a geometric conductance matrix. Equation
(8) is equally valid at the elemental and global scales. For two
dimensional analysis, the area integration required to evaluate
the geometric conductance matrix K at the elemental level is
given by

K=b5 L a’Ka dQ )
where a is a vector containing the derivatives of the shape
functions h with respect to global coordinates; K is a 2 x 2
diagonal matrix (i.e., —KI) containing the magnitude of the
equivalent nonlinear hydraulic conductivity K at all nonzero
entries; and Q is the area of the element. For the two-
dimensional case, the thickness b is considered constant over a

(Reynolds Number)

Hydraulic zones for fracture flow [Louis, 1969].

single element and Lagrangian basis functions h for a variable
3- to 9-noded element are used.

Rather than describe the variation of equivalent nonlinear
hydraulic conductivity over the elemental domain using the
nodal based shape functions of (7), the magnitude of K may be
readily evaluated at the internal Gauss points. Dual or triple
point quadrature may be used to evaluate all integrals of (9)
with a dual-point scheme having proved sufficiently accurate
for all examples completed to date. Since, for the turbulent
case, K is a function of the maximum in-fissure hydraulic
gradient, the magnitude of the gradients with respect to global
coordinates are given as

2%
ox
o¢
oy

=ad (10

and the maximum hydraulic gradient is computed as the
vector sum of the orthogonal components. Since the formu-
lation is nonlinear with respect to nodal values of total head
an iterative solution is implemented. For the global system, a
laminar solution is first sought to provide initial nodal heads.
This solution is used to evaluate hydraulic gradients and
hence revise hydraulic conductivities. The direct iteration se-
quence employed is

K' = f(ad’)
ql+ 1 _ Kl¢l+ 1

(n
(12)

where the superscripted I refers to the iteration cycle and f( )
refers to “a function of.” Only those elements in which the
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node 1

Y node 3

neode 2

X

Fig. 2. Representation of a three-node isoparametric boundary ele-
ment.

hydraulic conductivity K changes over a single-iteration cycle
require to be reevaluated.

BOUNDARY ELEMENT ANALYSIS

To ensure effective coupling between the finite element and
boundary element domains it is important that nonlinear ef-
fects propagating throughout the finite element region do not
encroach into the boundary solution region. Under this pro-
viso, the boundary domain is assumed to be constitutively
linear and the formulation is able to operate in its most ad-
vantageous mode. In order that flow continuity between the
domain and integral regions is maintained, the boundary ele-
ment procedure must use basis functions compatible with
those of the finite element region. For the boundary element
procedure discussed in the following, isoparametric repre-
sentation of both singularity and geometry is used. The ele-
ment geometry is illustrated in Figure 2.

The boundary constraint equation corresponding to the
direct formulation of the boundary element method may be
stated as [Jaswon and Symm, 1977]

()i +J VG, Hé()) dr =I oG, Joj)-n dC (13)
T r

where V(i, j) and @i, j) are kernel functions describing the
influence effected at point j due to a unit source located at
point i. The total hydraulic potential ¢(j) and normal to the
boundary velocity v(j)-n may be evaluated at any point on
the boundary I" from the kernel solutions. The free term c(i) is
a function of the domain geometry and is equal to 4,; for an
internal source and 3J,; where point i is located on a smooth
boundary with §;; being the Kronecker delta. For two dimen-
sional porous media flow, the kernels for a line source are
[Kellog, 1953]

O, j) = M Inr (14a)

2n

VG, ) = (14b)

2nr

where r is radius (i to j); K is the formation hydraulic conduc-
tivity; and M is the source strength. Lagrangian basis func-
tions are used to define the geometry of an element where (13)
may be rewritten in terms of local coordinates for a single
biunit line element as

+1

dar +1 dar
VG, pel) 47 d& = I O, jyln — d§
1 -1

ac (13)

ol + J

ELSWORTH: PorROUS AND FRACTURED MEDIA FLOW

and the Jacobian is identified as

dr x\2  (dy\* ]
@]
with
x =h"x (17a)
y=hTy (17b)
¢=h"d (17¢)
v-n=h"(v-n) (17d)

where h” contains a different family of basis functions from
those identified in (7) previous. The Lagrangian basis func-
tions are one dimensional in this case, varying only over the
length of the element and are represented in local coordinates
as

b7 =4[(1—-8) — (1—-&3); (1+8 — (1-&%); 21 —¢%)] (18)

where ¢ represents the natural coordinates of the biunit ele-
ment with —1 < € < 1. Similar functional variation for both
heads and boundary velocities are used, each being of qua-
dratic form. Since velocities are related to the gradient of
head, it may be desireable to use interpolation one degree
lower for velocities than that for heads. The results of vali-
dation studies completed did not warrant implementation of
this constraint. Under parametric representation, the integrals
of (15) are evaluated by Gauss quadrature for all nodes com-
prising the boundary eclement system [Stroud and Secrest,
1966; Elsworth, 1986b]. Where a sharp corner is encountered
at a node, the V kernel integrations are completed on adjacent
segments where there is slope continuity on each element seg-
ment. These quantities are then summed to yield the nodal
weighted flux out of the region rather than represent flux in
any particular normal (to the boundary) direction. For a
system of m nodes, each with a single degree of freedom, m
simultaneous equations result. In matrix format these may be
represented as

Vo=®v-n (19)

which, for m known or prescribed nodal boundary conditions
yields a solvable set. After performing appropriate column
interchanges on (19) to rearrange all known boundary con-
ditions to the right-hand side vector, the identity may be
solved to vield a geometric conductance matrix such that

[®'Vp=v-n (20)
which is of similar form to the finite element statement of (8).
Premultiplying (20) by the ranked cross-sectional area of flow
will convert Darcy flow velocities directly to discharge quan-
tities such that

q=bIth-ndF 21
r

where q is a vector of nodal discharges, and h” is a vector of
element by element defined basis functions. The constant out
of plane thickness of the element is given by b, which is unity
for plane flow or equal to fracture aperture for fracture flow
applications. Identities (8) and (20) are fully compatible in a
rigorous fashion. Interelement flow continuity is maintained
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between boundary and domain formulations in a straightfor-
ward manner.

Boundary Conditions

Simultaneous solution of (19) is only possible if either head
or velocity boundary conditions are prescribed at all nodes of
the boundary solution domain. Since, in general, the boundary
nodes that interface directly with the finite element mesh will
have “a priori” undefined boundary conditions, it is necessary
to prescribe artificial boundary conditions to aid the symbolic
inversion of (20)." Column substitution is first completed to
move all nodal quantities corresponding to known total head
and, as yet, unconstrained head boundary conditions to the
right-hand side of (19). The right-hand side is completely de-
fined if, for all the unconstrained nodes, the head at one node
is held at unity and all others are set to zero. The system of
equations may then be solved. When repeated for all un-
constrained nodes this procedure results directly in a geo-
metric conductance matrix linking nodal heads to nodal dis-
charges. If | prescribed head nodes exist on a boundary
domain of m nodes then the resulting geometric conductance
matrix from the boundary solution procedure is fully popu-
lated and ! x ! in dimension. Thus the symbolic inversion of
(20) is equivalent to solving a system of m equations for [
different solution vectors.

All nodes corresponding to prescribed velocity boundary
conditions are effectively condensed out and no equations re-
quire to be set up in the following coupled solution of the
finite element and boundary element geometric conductance
matrices [Elsworth, 1986b]. Equation (20) represents the geo-
metric conductance matrix for a single multinoded element.
The conductance matrix may be directly substituted into stan-
dard finite element matrix assembly routines.as a single multi-
noded element with appropriate nodal connections. For linear
flow, the matrix entries for the boundary element domain are
invariant and require to be evaluated only once.

Matrix Symmetry

No particular problems arise in coupling boundary and
domain methods if the boundary solution matrices are asym-
metric, although the procedure may be expedited if both
system matrices are symmetric. If a variational formulation is
adopted the geometric conductancé matrix (equation (20))
may be made symmetric after formation according to the
method of Zienkiewicz et al. [1977]. In generality, different
functional variation may be chosen for normal velocities v n
and heads ¢ along the boundary of the domain. If heads and
velocities are defined by shape functions H* and H? relative to
the entire boundary of the domain then

¢ =H¢

v-n=Hbv.n

2
23)

Nodal fluxes v - n at the boundary are related to heads by
the geometric conductance relationship of (20) such that
v-n=[®" V] (20)

The total potential n of the region may be given for the case
where nodal heads only are prescribed as

555
1
== I w-nT¢ dr (24)
2 T
which on substitution of (20), (22) and (23) gives
T= %¢TI [[®~'V]"H*"H® dT']¢ (25)
T

and may be minimized appropriately to give a revised geo-
metric conductance matrix K

K= % j [(@~'V)HTHY)T + (@~ 'V)HTH] T (26)
T

where symmetry is guaranteed. The functional variation over
individual elements enforced in the current formulation is
identical for head and normal velocity and therefore H* = HP.
To guarantee matrix symmetry in the boundary element for-
mulation, a surrogate to (26) is invoked [Baneriee and Butter-
field, 19817 such that

K=1[®"'V)" + (@7'V)]

to avoid the integration enforced within (26). This approach
has been found to be entirely adequate as is illustrated in the
following validation exercises.

@7

VALIDATION

Analytical solutions for linear and nonlinear flow within
simple domains are used to examine the accuracy, versatility,
and utility of the proposed coupled formulation.

Linear Flow

The performance of the coupled procedure is first examined
for the case of a concentrically holed, circular, porous disc
containing both embedded and fully penetrating finite element
domains. The ability to prescribe boundary conditions on a
node by node basis for both the finite element and boundary
element domains provides no particular differences in meshing
and execution for embedded or penetrating domains. Disc ge-
ometries are illustrated in Figure 3 for the two individual
cases with inner radius r = a. The variation in hydraulic po-
tential with radius is shown in Figure 4. Excellent agreement
is maintained between analytical and numerical solutions even
for relatively modest nodal coverage. The presence of perpen-
dicular corners at the interface between boundary element and
finite element domains are shown not to adversely affect re-
sults.

In the case of a semi-infinite domain, the coupled solution
procedure may similarly be shown to perform satisfactorily.
The solution for a pressure tunnel within a saturated porous
half space is used (J. W. Bray, personal communication, 1980).
In this example, the direct boundary element procedure re-
quires that the solution domain remains finite but may be
expanded to considerable dimension without computational
penalty. The expanded representation of the half space
domain is illustrated in Figure 5. The problem geometry com-
prises a single circular tunnel of radius 5 m present at a depth
of 40 m below the ground surface. The piezometric surface to
the domain is coincident with the ground surface and unit
head is applied in the tunnel annulus. The boundary element
discretization comprises 48 interior and 32 exterior nodes di-
vided between 40 three-noded elements. For the finite element
domain, 8 nine-noded Lagrangian elements are used totaling
45 nodes. Zero flux boundary conditions are applied to the
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(b)

Boundary element domain

Finite element domain

()

Fig. 3. Circular concentrically perforated disc with (a) embedded and (b) fully penetrating finite element domains.

lower and side elements of the boundary element exterior with
the result that the conductance matrix derived from the
boundary element discretization retains only 57 degrees of
freedom. The assembled finite element—boundary element pro-
cedure has a total of 84 degrees of freedom. The variation in
hormalized hydraulic potential for the solution geometry is
illustrated in Figure 6. The nodal potentials along sections
A-A’ and B-B’ are shown to yield excellent agreement wth the
analytical solution. This excellent agreement is maintained de-
spite use of relatively sparing nodal coverage in the finite ele-
ment domain. Similarly, the large discrepancy in physical
magnitude of the boundary element and finite element do-
mains, as illustrated in Figure S has not affected solution accu-
racy.

In addition to being capable of representing conditions of
porous media flow, the coupled model may be used in fracture
flow applications. Analytical solution is vailable for the case of
an infinite porous medium traversed by a single fracture of
finite length and infinite hydraulic conductivity [Gringarten,

1.0
B —— analytical
% O fully penetrating
; | O embedded
o
3
=
- L
[
»
2 L
[
6
z
0.0 | 1
1.0 2.0 3.0 4.0

Radius ratio r/a

Fig. 4. Variation in normalized hydraulic head with radius for per-
forated disc geometries.
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1500 m

600 m
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Fig. 5. Discretization geometry used for a pressure tunnel problem (to scale).

1974]. The [racture is symmetrically disposed about a central
wellbore from which an infinite reservoir is pumped. The
boundary element diseretization of the truncated infinite
domain is illustrated in Figure 7a; the internal crack is divided
into 21 nodes and 10 elements, and the external boundary is
devided into 16 nodes and 8 elements. The external constant
potential boundary is arbitrarily located at a distance of 50 m
to simulate the infinite domain. The domain external nodes
are all equally spaced on the circumference although the large
hydraulic gradients and velocities manifest at the crack tip are
best reproduced if nodal concentrations are located at the
fracture tip. The discretization density is illustrated in Figure
7a where individual elements cover 0.56, 0.24, 0.12, 0.06, and
0.02 m of the fracture half length. In accordance with a vali-
dation example reported by Shapiro and Andersson [1983], the
surrounding porous medium is represented by a formation
conductivity of 1 m/d and central well discharge of 1 m?/d.
The boundary element model used in this procedure uses
internal slit elements to represent the internal fracture. The
essential component of this element is that it allows discharge
into the element from the surrounding medium on either side.
The formulation of the element has been adequately described
elsewhere [Elsworth, 1986a] and no further explanation will
be given here. With the slit element in place within the bound-
ary solution domain, the relevant matrix identities may be
assembled and inverted to yield the geometric conductance of
the system. To this condensed system, fracture line elements
representing the internal fracture are added and the system
solved in finite element format using a central producing well-
bore. In agreement with the example completed by Shapiro

and Andersson [1983], fracture conductivities of 10* m/d are
ascribed to the vertical fracture to simulate “infinite” conduc-
tivity. Using this conductivity contrast, excellent agreement
between the analytical results of Gringarten [1974] and the
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A=Y
3
h-3
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[T
r-
(]
0
° F
§ A-K
s /
c
Q
E =1
a
—— Analytical
B Numerical
o0 B-5—”

0.4 \ '

1.0 2.0 3.0 4.0

Dimensionless radius r/a

Fig. 6. Variation in total hydraulic head with radius for pressure
tunnel geometry.
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Fig. 7. Geometric representation of a fracture within a pseudo infi-
nite porous medium (a) and results for the isoparametric model (b).

model formulated in this work are obtained. The results are
illustrated in Figure 7b.

A second solution procedure may be applied to the problem
whereby more note is made of the true character of the central
fracture of infinite conductivity. The infinite conductivity of
the fracture implies that head losses along the fracture length
will be zero. Thus the only compatible solution to the problem
is one in which n?gal potentials along the internal slit are
constant. Similarly, normal (to the fracture) mass fluxes must
total 1 m?/d when integrated over the fracture length. There-
fore the problem may be solved iteratively satisfying these two
internal constraints of constant potential and prescribed total
normal flux. Solution by this procedure yields identical results

Finite element

ELswoRTH: PorOUS AND FRACTURED MEDIA FLOW

to those previous. Clearly, the fracture to porous medium con-
ductivity contrast of 4 orders of magnitude used in the alter-
nate problem treatment is sufficient to represent the infinite
conductivity of the fracture. Comparison of the results from
this model with those of the analytical solution illustrates the
ability of the formulation to faithfully represent the high flux
gradients at the crack trip. The crack tip flux is recorded at
11.7 m/d representing an assymptote set at approximately ten
times the height of the figure vertical axis.

Nonlinear Flow

Radial flow within a single circular fracture pierced cen-
trally by a well bore is a problem for which an analyical
solution is avalable (B. Amadei, personal communication,
1983). For validation, an axisymmetric geometry is chosen
with domain external and internal radii of 6.0 and 0.25 m
respectively. Finite element discretization reaches to a radius
of 2.0 m. The combined bour.dary element-finite element mesh
illustrated in Figure 8 is used. The domain comprises 51 finite
element nodes and 20 boundary element nodes. The boundary
conditions for the boundary element domain are such that
only six active degrees of freedom are retained in the con-
densed geometric conductance matrix. For a nominal fracture
aperture b of 1.0 cm, fracture relative roughness k/2b of 0.5,
fluid kinematic viscosity v of 1.8 x 107® m?/s, and a head
differential across the system of 0.022 m, the nonlinear flow
results are illustrated in Figure 9. Excellent agreement is ob-
tained between the analytical and numerical results. The nu-
merical results are completed using two point Gauss quadra-
ture in evaluating the nonlinear conductance matrix integrals.
For this particular example, the results following eight iter-
ation cycles are graphically indistinguishable from those of
over 20 iterations duration. Acceptable results are normally
obtained after 10 iterations. It is apparent from these simple
validation exercises that the proposed formulation is capable
of returning satisfactory results to a variety of linear and non-
linear potential flow applications.

CONCLUSIONS

A coupled solution procedure is presented that is capable of
representing linear and nonlinear flows in porous and frac-
tured media. The coupling is performed in a straightforward
manner through noting respective nodal conductance associ-
ations. This procedure allows arbitrarily embedded or located
nonlinear zones to be easily analyzed. The boundary element
domain miay be simply considered as a single multinoded
finite element and accommodated appropriately.

The boundary element procedure is particularly suited to
representing volumetrically large or pseudo infinite domains
where system matrix size or solution stability is, within reason,
unaffected by domain dimension. Where prescribed flux nodes
are included on the boundary element edge contour, the corre-
sponding system equations are not retained at the global level.
Depending on mesh specific details, this results in considerable
computational saving both at the stage of reducing the bound-

Y |

[ — —— enun m |

Boundary element —/

Fig. 8. Discretization of turbulent radial flow within a planar rock fracture.
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ary element domain and later in global system matrix as-
sembly and solution.

The use of quadratic functional variation for both the finite
element and boundary element domains ensures compatibility
in the strictest sense. This facet appears especially useful in
accurately representing regions of high gradient within the
flow domain at crack tips and other singularities.

Nonlinear flow effects are accommodated most effectively
where the nonlinearity is confined within the finite element
domain. This allows the domain and integral methods to op-
erate to maximum advantage. Since nonlinear effects, such as
turbulence, are commonly of limited areal extent, coupled pro-
cedures provide a viable method of analysis. This is especially
true where the zones of expected turbulence may be delimited
a priori, say, by the known presence of highly conductive
fractures. In other instances, where turbulent areas cannot be
identified before analysis, some form of self-adaptive capability
in the analysis would clearly be an advantage. Such concerns
are not addressed herein. The proposed procedure is also ap-
plicable to other nonlinear flow problems.

The resulting matrix identities for the boundary element
domain may be made positive definite and symmetric. This
facet allows execution using readily available finite element
coding arrangements accommodating storage of geometric
conductance matrix terms above, and including, the leading
diagonal only.

NOTATION

hydraulic conductivity.

equivalent hydraulic conductivity.
equivalent nonlinear hydraulic conductivity.
geometric conductance matrix (FEM).
medium hydraulic conductivity tensor.

line source or sink strength.

LT

Reynolds number, critical Reynolds number.
Vi, j), ®(i, j) kernel terms.
V, ® matrices of integrated kernel terms.
aT vector of basis function derivatives in

global coordinates.
b Forchheimer equation constants.
b fracture aperture.
e Missbach equation constant, Missbach
equation exponent.
free term.

g gravitational acceleration.

h” vector of element basis functions.
fracture absolute roughness.

1 iteration count.

n domain unit outward normal.
discharge, vector of nodal discharges.
radius of separation of kernel functions.
Darcy flow velocity, vector of nodal flow
velocities.

Cartesian coordinates.
turbulent flow exponent.
Kronecker delta.

total hydraulic head.
domain area.

domain external contour.
local coordinates.

fluid kinematic viscosity.

Re, Re,

~

&

-

v,

X
R <

™

(-

e
«ex 10D

REFERENCES

Bachmat, Y., J. Bredehoeft, B. Andrews, D. Holtz, and S. Sebastian,
Groundwater Management: The Use of Numerical Models, Water
Resour. Monogr. Ser., vol. 5, edited by P. van der Heijde et al.,
AGU, Washington, D. C., 1980.

Banerjee, P. K., and R. Butterfield, Boundary Element Methods in
Engineering Science, McGraw-Hill, New York, 1981.

Brady, B. H. G., and A. Wassyng, A coupled boundary element-finite



560 ELSWORTH: POROUS AND FRACTURED MEDIA FLOW

element method of stress analysis, Int. J. Rock Mech. Min. Sci., 16,
235-244, 1981.

Chen, H. S., and C. C. Mei, Oscillations and wave forces in a man-
made harbor in open sea, paper presented at Proceedings, 10th
Symposium on Naval Hydrodynamics, MIT, Cambridge, Mass.,
1974.

Elsworth, D., Coupled finite element/boundary element analysis for
nonlinear flow in rock fractures and fracture networks, in Pro-
ceedings of the 26th U.S. Symposium on Rock Mechanics, pp. 633
641, Balkema Publishers, Rotterdam, 1985.

Elsworth, D., A hybrid boundary element-finite element analysis pro-
cedure for fluid flow simulation in fractured rock masses, Int. J.
Numer. Anal. Method Geomechan., 10(6), 569-584, 1986a.

Elsworth, D., A model to evaluate the transient hydraulic response of
three-dimensional sparsely fractured rock masses, Water Resour.
Res., 22, 1809-1819, 1986b.

Gringarten, A. C,, H. J., Ramey, and R. Raghavan, Unsteady state
pressure distributions created by a well with a single infinite con-
ductivity vertical fracture, Soc. Petr. Eng. J., 14, 347-360, 1974.

Irmay, S., On the theoretical derivation of Darcy and Forchheimer
formulas, Eos. Trans. AGU, 30, 702-707, 1958.

Jaswon, M. A,, and G. T. Symm, Integral Equation Methods in Poten-
tial Theory and Elastostatics, Academic, Orlando, Fla., 1977.

Kellog, O. D., Foundations of Potential Theory, Dover, Mineola, N.
Y., 1953.

Leps, T. M., Flow through rockfill, in Embankment Dam Engineering,
edited by S. G. Poulos, pp. 87-107, John Wiley, New York, 1973.
Louis, C,, A study of groundwater flow in rock and its influence on
the stability of rock masses, Rock Mech. Res. Rep., 10, Imperial

Coll.,, London, September 1969.

.

Neuman, S. P., Saturated-unsaturated seepage by finite elements, J.
Hydraul. Eng., 99(HY12), 2233-2251, 1973.

Shapiro, A. M., and J. Andersson, Steady state fluid response of frac-
tured rock: A boundary element solution for a coupled discrete
fractured continuum model, Water Res. Res., 19(4), 959-969, 1983.

Shaw, R. P., Coupling boundary integral equation methods to other
numerical techniques, in Recent Developments in Boundary Element
Methods, Southhampton University, 1978.

Silvester, P., and M. S. Hsieh, Finite element solution of 2D exterior
field problems, Proc. Inst. Electr. Eng., 118(12), 1943-1947, 1971.

Stroud, A. H, and D. Secrest, Gaussian Quadrature Formulas,
Prentice-Hall, Englewood Cliffs, N. J., 1966.

Volker, R. E., Nonlinear flow in porous media by finite elements, J.
Hydraul. Eng., 95(HY6), 2093-2114, 1969.

Volker, R. E., Solutions for unconfined non-Darcy seepage, J. Irrig.
Drain. Div. Am. Soc. Civ. Eng., 101(IR1), 53-65, 1975.

Zienkiewicz, O. C., D. W. Kelly, and P. Bettes, The coupling of the
finite element method and boundary element procedures, Int. J.
Numer. Meth. Eng., 11, 355-375, 1977.

D. Elsworth, Department of Mineral Engineering, Pennsylvania
State University, 104 Mineral Sciences Building, University Park, PA
16802.

(Received September 11, 1985;
revised December 12, 1986;
accepted December 24, 1986.)



8

Alternative
Solution
Methods
[Cont’d]



[8:1] Alternative Solution Methods [Cont’d]
SPH — Smoothed Particle Hydrodynamics
LBM — Lattice Boltzmann Methods
DEM — Distinct Element Methods
XFEM — Extended FE Method



.375G

1977MNRAS.181.

Mon. Not. R. astr. Soc. (1977) 181, 375-389

Smoothed particle hydrodynamics: theory and
application to non-spherical stars

R. A. Glngold and J. J. Monaghan* Institute of Astronomy,

Madingley Road. Cambridge, CB3 OHA

Received 1977 May 5, in original form February 2

Summary. A new hydrodynamic code applicable to a space of an arbitrary
number of dimensions is discussed and applied to a variety of polytropic
stellar models. The principal feature of the method is the use of statistical
techniques to recover analytical expressions for the physical variables from a
known distribution of fluid elements. The equations of motion take the form
of Newtonian equations for particles. Starting with a non-axisymmetric distri-
bution of approximately 80 particles in three dimensions, the method is found
to reproduce the structure of uniformly rotating and magnetic polytropes to
within a few per cent. The method may be easily extended to deal with more
complicated physical models.

1 Introduction

Many of the most interesting problems in astrophysics involve systems with large departures
from spherical symmetry. This may occur either because the initial state lacks spherical
symmetry, as in the case of a protostar forming from a dense interstellar cloud, or because
non-spherical forces arising from rotation or magnetic fields, as in the case of the fission of a
rotating star, play an important part in the dynamics. Frequently these sources of non-
spherical symmetry will be found combined.

Because of the complexity of these systems numerical methods are required to follow
their evolution. However, the standard finite difference representations of the continuum
equations are of limited use, because of the very large number of grid points required to
treat each coordinate on an equal footing. If, for example, 20 points along the radial direc-
tion give adequate accuracy for a spherical polytrope, we may require (20)® such points to
give the same accuracy for a highly distorted polytrope. This difficulty is mirrored in the
evaluation of multiple integrals.

For the astrophysical problems a numerical method which allows reasonable accuracy for
a small number of points is required. Ideally it should also be simple to program and robust.
An early attempt to provide such an alternative to the standard finite difference method was
made by Pasta & Ulam (1959). They replaced the continuous fluid by a fictitious set of

* Permanent address: Mathematics Department, Monash University, Clayton, Victoria 3168, Australia.
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particles with inter-particle forces designed to mimic the true pressure and other body
forces. The weakness in this method is that transport processes are difficult to include
correctly.

A better method is to make use of the Lagrangian description of fluid flow which auto-
matically focuses attention on fluid elements. In the discrete version, parcels of fluid move
according to the Newtonian equations with forces due to the pressure gradient and other
body forces: gravity, rotation and magnetic. The central feature of our analysis* is the
method we use to determine the forces from the current positions of the fluid elements.

For fluid elements of equal mass, the number per unit volume must be proportional to
the density. In addition, unless special symmetry is introduced from the start, the positions
of the elements will be random because of the complicated motion which is inevitable for
large N-body systems. We therefore make the assumption that, at any time, the positions of
the fluid elements are randomly distributed according to the density. To recover the density
from the known distribution of elements is then equivalent to recovering a probability distri-
bution from a sample. Statisticians have given two methods for doing this which are well
suited to the fluid problem. The first is the smoothing kernel method (Bartlett 1963; Parzen
1962), and the second is the delta spline technique (Boneva, Kendall & Stepanov 1971). Both
methods may be thought of as an approximation to an integral determined according to the
Monte Carlo procedure. Since the Monte Carlo method is known to give reasonable estimates
of multiple integrals with fewer points than finite difference methods often require, it is
plausible to expect a reduction in work if the statistical smoothing methods are used. We call
this method smoothed particle hydrodynamics (SPH).

In this paper we first give a detailed description of the smoothing method and establish
conditions which guide the choice of the smoothing kernel. Static spherical polytropes are
then studied by relaxing from an initial non-spherical configuration with a damping term in
the equations of motion. The free non-spherical oscillations of polytropes are then examined.
Finally the departures from spherical symmetry produced by uniform rotation and magnetic
fields in polytropes are determined and compared with results from perturbation theory.

2 Recovering distributions and body forces
2.1 THE DENSITY DISTRIBUTION

The equation of motion of the jth element of fluid with volume Av;, centre of massr; and
density pjis

d*r
p; A ;2’ = —Av; VP +p; Av; F;, (2.1)
or
dzl‘j
2o vp +F;, (22)
dt pj

where F; is the body force acting on the element of fluid and VP is the pressure gradient at
1j. Since in our approximation the element of fluid is described dynamically by a point, we
shall call it a particle, and (2.2) the equation of motion of the jth particle.

It is convenient to begin our analysis by considering the calculation of a smoothed

* Leon Lucy has proposed and experimented with a similar method. See the acknowledgment.
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density from a set of points, the various r; distributed according to the density. Following
Parzen (1962), we consider a smoothed density p¢(r) defined by

o) = |W(x—1) o(r) dr, (2.3)

where W is a function satisfying the condition
fW(r) dr=1, 2.4)

where the integration is over all space.

If p(r") is unknown, (2.3) cannot be evaluated, but if we have a set of N points (ry,15, ... ,
ry) distributed according to p, the integral can be evaluated by the Monte Carlo method
(Hammersley & Handscomb 1964). Thus, defining pn(r) by

M N

@) ==Y W(r—r), (2.5)
N &

where

M =fp(r)dr, (2.6)

we find, with £ denoting the expectation
Elon@) =7 [-+-[ox(0) T ptedti= o0 @)

In our numerical procedure only one sample distribution is produced each time. The
equality (2.7) is therefore to be understood as implying that if we were to create an
ensemble of models, each starting with a different array of points consistent with the initial
conditions, then the ensemble average of p(r) would be pg(r).

The error involved in replacing pg(r) by pp(r) is +o, where o is defined by

=E [(on(r) — p5(r))*]
M? 1M 2
=— ) Wir—r; ——-[—ZW r—r-] 2.8
Iz ]Z (r—1)) mnE: (r—1) (2.8)
To complete the chain of analysis it is necessary to show that a W(r) can always be

chosen so that, as NV increases, pg(r) becomes a better approximation to p(r). We establish
this result in the next section.

2.2 CHOOSING THE KERNEL W(r)

Intuitively it seems reasonable to expect that W(r) can be made more like §(r) as NV becomes
larger. If this is the case then

ps(r)=>p(r) as N—>oo,
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To make this result more precise it is convenient to write W(r) in the form

1
W(r) = 3 K(x/h), (2.9)
where £ is a parameter with the dimensions of length and the space is assumed to be three
dimensional. By an easy generalization of a theorem due to Parzen (1962) we find that if
h—>0as N>

and if K(u) is a Borel function satisfying
JK(u)du =1, [u’K(u)| >0 as |u| > oo, fIK(u)ldu< co

where the integrals are over all space, then
pn(r) =>p(r) as N—>oe.

[t proves convenient to choose W(r) to be an even function. Typical examples of kernel
functions in three dimensions are

3H(L=Irl/R) _S(lel/h)
— s i)/

. —1 3/2 s .
(1)(77112) exp (—r¥h*) (i) 3

(2.10)
where H is the Heaviside step function and S is the spherical delta spline discussed in
Appendix 1. Each of the functions in (2.10) is a member of a sequence of functions which
represents the delta function.

In addition to requiring pp(r) - p(r) we require that o should be as small as possible. To
satisfy these conditions we choose 4 by minimizing the functional

L(r) = {E [on(0] = p(0)}* + E [(pn(x) - p5(1r))?]

2.11)
= E[(on(r) —p (1))
Using (2.5) we find
2
L(r) =%J‘W2(r —r) p(tdr' + (1 ——]N) [fW(r —t) p(r) dr']
+p%(r)—2p (r)jW(r —1) p(c)dr. (2.12)

Since W(r—rt') is strongly peaked at r=r', we can expand p(r') about r. Keeping only the
dominant terms, we find

M r ' Vzp N 12 gt 2
L(r)~—A}p(r)fW2(r)dr +{—6— W(r)r dr} . (2.13)
Using (2.9) the minimum of L(r) is found to occur at |
2
2 Mp fK (u)du

N (7% {J‘K(u)uzdu}z.

7

(2.14)
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Since p is unknown (2.14) cannot be used directly except to infer

h o< 1/NY" and Ly, < 1/NY7.

We find an appropriate choice of & to be given by

h=b ((r? —(r?*)"?, (2.15)

where b is adjustable and

fpcdr

1
e () - = %:c(r]).

In the problems we consider, the derivative of the smoothed function is required to be
continuous. For this reason the second of the kernel functions in (2.10) is not useful. Of the
other possible kernel functions we have concentrated on the Gaussian and spline functions.

To decide between the Gaussian and the spline kernels we took a known distribution and
distributed a set of points. The goodness of fit [p(r) —o(r)] * was then evaluated for various
values of b. For forty points there is negligible difference between the two kernels, but for
80 points the Gaussian was much more accurate. For this reason we prefer the Gaussian
kernel and use if for the results reported here.

For our stellar models we choose b by requiring the smoothed particle model to fit the
known density of the spherically symmetric hydrostatic model. More elaborate procedures
could be used but we have found those described to be successful for the models considered.

2.3 THE GRAVITATIONAL POTENTIAL

We use the gravitational potential ¢ defined by

¢=—-G M- (2.16)

[r—r|

Using (2.5)

W(t' —t;)dr'
=—— }: W —xdr. (2.17)
lr—r'|
W(' —r,)dr’
p- [0, 2.18)
le—r}|
can be evaluated easily noting that
V21i=~4TTW(l'*l‘]'). (219)
We find
GM N 47 ruj
vp=—— 3 { f W(u) uzdu}Vu,-, (2.20)
N = u?
j=1 KAl
where
u]' = r—r;.
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‘For the Gaussian W defined by (2.10) (i) with £ = 1/a?
GM N 2 1/2 1 u;
Vop=—— 3 — (I) [exp (—fu}) - —f ]exp (—fu® du] Vu; (2.21)
N j=1UjAm UjJo

and

2 1/2py.
Ij=— (z) J. ! exp (—fu?) du.

uj m 0

The equivalent formulae for the delta spline W involve polynomials, and are easier to
evaluate.

24 GENERAL DISTRIBUTIONS

To find the smoothed version of any other scalar (or vector) field A(r), we define the
smoothed field 44(r) by

A(r) =fW(r —r)A(r)dr, (2.22)
where, in general, the kernel differs from that in (2.3). Then an estimate of A¢(r) is
M N A(ry)
An@® ==Y Wr-r) —L. (2.23)
= " o)
The error in this estimate is + ¢ where now
M? Ax(r) 1
or=— Y Wir—1;) —L ——A42,. 2.24

The approximations involved become better when A(r) is distributed similarly to the
density. This is the case for temperature and entropy, but for the magnetic field it is not in
general true. To deal with this case importance sampling is useful and we discuss its applica-
tion in the next subsection. Where the field has known symmetry properties antithetic
variables can be used to improve the accuracy.

2.5 THE MAGNETIC FIELD AND CURRENT

According to the prescription given in Section 2.4 an estimate of the magnetic field is given

by

M N B,
By (r) = Y Wi-r) Pt (2.25)
j=1 i

and an estimate of the current by

M B;
In(r) = goc? ~ Y. VW x ;’ (2.26)
j j

However it is usually the case that there is field inside and outside the star and (2.25) is
then a poor approximation to By(r), and (2.26) is an even poorer approximation to J4(r). To
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improve the approximation we use importance sampling (Hammersley & Handscomb 1964)
in the form

B,(r) = By (r) +fW(r —1') [B(r') — Bo(x)] ar’, (2.27)
where Bo(r) is an approximation to B(r). To obtain this approximation we solve

€02V x By =JIp(1), (2.28)
in the form

1 jJN(r) x (r—r)dr

Bo= Bey; +
0 ext [r.,rlls

) 2.29
4meqc? (2.29)

where By is any superimposed external field. It could, for example, be the field permeating
an interstellar cloud from which a star is forming. Substituting (2.26) into (2.29) we find

By(r) = Boyt ——— — . —)|— ——B;W(r—ry 2.30
0( ) ext AnN lgl Pj or al'j Pj 7 ( ]) » ( )

where I; is defined by (2.18).
For the Gaussian kernel (2.10) (i) with f= 1/h?, the approximate field becomes

(Bi 1 ru )
1 [exp (—fu®) = f exp (—fo?) v2dv]
M (f)3/2 Pj Udo
By(r) = By +— — 2.31
o) = Bexe N g i§ { Bju\[3 " 2 exp (—fu?) & )
+ul— 7J exp (—fu)vidv — ——
pju 1 Lu*Jo u )
whereu=uw;=r —r;.
The field we use is
M W(l‘*l‘,’)
By(r) = Bo(r) +; Z {B(rj) — Bo(r))} (2.32)
J )
and the current is obtained from the curl of (2.32). Thus
606‘2M VW
In(r) = N Z—;— x{2B(1j) — Bo (1)} + Jext(r), (2.33)
i J :

where Joy is the current associated with Bey. This procedure, as we show later, gives a
good fit to the current and the field.

3 Equations of motion

The equations of motion of the fluid particles for a uniformly rotating polytrope of index n,
with an internal magnetic field B are

dzl']‘ dl'] Un—-1 (1+n) dl']’ JxB .
—L = gt — Vp — Vp-Qx(Q@x1)-2Qx — + —, j=1,2,....N
dr? dt n dt p

(3.1)
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where the pressure P=Kp!*" Q is the angular velocity, B the magnetic field and J the
current. The damping term I'drj/dt has been introduced to allow static models to be
calculated. For the rotating models considered here only the static structure is required,
and the Coriolis term can be dropped. Using the dimensionless variables xj, D, 7, b defined

by

p=AD, 1= ax;, t=pr, B=Bb (3.2)
where
1/n—1 2
o£2=(n+1)K)\ . a‘n ’ (3.3)
4nG KA1 +n)

find A and B can be chosen for convenience. (3.1) becomes, on dropping the Coriolis term,

d*x; dx; n (Vxb)xb
—;’=~7—-’ =D}V UD - — VO — wlix (ix X)) +n ———, (3.4)
dr dr 4n D;

where v is a new damping constant
(47rG)\ )1/2 . eoc’nB?
wi, N=———"—
AnG A% a?

(3.5)
n

and @ is the scaled gravitational potential where

6 _ 90

P = =
G\o® GM

and we have chosen the value of Q = fD(x)dx such that were the representations of integrals
by sums in Section 2 to be exact, then D(0) would equal unity and A would be the central
density. Our scaled variables are therefore similar to the usual polytropic variables
(Chandrasekhar 1939). However, since in our models D(0) # 1, our length scale is related to
the polytropic variable § by & = D(0)* ~ /21 x|

For the models considered here the magnetic field variation is calculated in the flux
freezing approximation

o

where d/dt is a derivative following the motion. To integrate this equation forward we
replace v by the smoothed velocity field. Equation (3.6) has the advantage that it automatic-

ally generates the quantity B/p required at each fluid element to produce the smoothed
field.

4 Numerical tests — spherical models
4.1 CONSTRUCTION OF STATIC MODELS

To construct a static model we follow the damped motion of a set of particles from some
initial distribution of position and velocity until the system comes to rest. Typically the
particles were initially at rest, distributed in space either according to a random Gaussian
distribution or alternatively on a spherically symmetric cubic lattice. In the former case the
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Figure 1. The central density D(0) as a function of time 7 for two damped hydrodynamic sequences.
The initial configurations are given in the text.

initial coordinates of the particles were adjusted so that the centre of mass was at the centre
of the coordinate system. As a check, the position and velocity of the centre of mass were
monitored throughout the calculations.

The approach to equilibrium for two initial configurations with different degrees of
damping is illustrated in Fig. 1 for a polytrope of index 1. The solid line represents the
behaviour of D(0) as a function of the scaled time 7, in a sequence that commences with 33
particles on a cubic lattice and vy = 0.05. The broken curve shows a sequence, with y = 0.15,
commencing with 40 particles distributed normally about the origin.

The models finally obtained are found to be nearly independent of both the damping,
the initial configuration, and the number of particles. These model sequences commence, of
course, with a good deal of spherical symmetry. Quite irregular initial distributions can also
be successfully treated. Fig. 2(a) shows the density profile in the (X, Y} plane of an initially
non-spherically symmetric distribution which leads to the symmetric distribution of Fig.
2(b) representing a polytrope of index 1.

42 STATIC STRUCTURE

Polytropes of index 1 and 1.5, constructed using about 40 particles and a wide range of
smoothing constant b (defined by equation 2.15) were found to have density profiles which
matched the true density to within a few per cent over the bulk of the star. The density
profile in the outermost 10 per cent of the polytropic radius for the polytrope of index 1,
however, reflects the nature of the smoothing function rather more than it does the actual
distribution of matter. The size of this region can be decreased by employing a larger
number of particles.

Sequences that commenced with a high degree of spherical symmetry yielded similarly
highly symmetric polytropes. The departure from spherical symmetry in other cases was less
than 2 per cent.

Polytropes of index 2.5 were also constructed employing both a range in the number of
particles and in the value of the smoothing constant b. In Fig. 3 we display the appropriately
scaled density profiles of two such models. The curve represents the true density for n=2.5
while the filled circles show the density profile of a model constructed with V= _80. Since
this model is highly symmetrical the density profile along only one axis is shown. Also

13
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4

Figure 2. An example of initial and final smoothed density in the x,y plane for a polytrope of index 1.
The initial state was a superposition of two Gaussian density distributions.

0-2

T

-3 -2 -1 0 1 2 3

X

Figure 3. Density profiles for a polytrope of index 2.5. The Emden density is shown: ; the
80-partic1e.SPH is shown: « .« .. The variation in density for a given X along the x,y,z axes is indicated
by the size of the filled circle. The analogous variation for 40 particles is shown by the bar.

indicated in Fig. 3 is the less symmetrical density profile of a model constructed with one
half as many particles. The range in density at points on each of the three coordinate axes
for this model is indicated by the vertical bars. The density profiles in this case fit the true
density more closely than might appear from the figure. Along each of the coordinate axes
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Table 1. Parameters of polytropes of index 2.5.

N 40 40 40 40 40 80 200 200 200
1/b? 0.5 1.0 1.5 2.0 2.5 2.0 1.6 2.0 3.0

1/h? 0.35 0.60 1.05 1.69 2.81 1.01 0.67 0.79 1.19
D(0) 0.72 1.22 1.97 2.97 4.92 1.52 1.06 1.08 1.34
ED 1.17 1.88 215 227 231 2.55 2.47 2.65 3.01

the density profile is quite good, but the peak value is offset from the origin. Nevertheless,
the improvement achieved by increasing the number of particles from 40 to 80 is remarkable
and surpasses the /N improvement we would expect in Monte Carlo integrations. This is
probably due to 40 particles being intrinsically too few.

Some brief details of various models for n=2.5 are given in Table 1. In each case the
sequence commenced with a Gaussian distribution of particles about the origin. Although
the final values of D(0) vary with both the smoothing parameter and the number of
particles, in each case the density profile after dividing by D(0) is similar. Also displayed in
Table 1 are the mean squared radial position of the particles given by

1
(Ez>=ﬁ Y&? zfpzzdv/ o dv.

These values are smaller than the value of 4.8 obtained by performing the integrations using
the density profile in the above expression. This discrepancy is not surprising since the
integrand p£* has a sharp maximum beyond the position of the bulk of our particles.

4.3 UNDAMPED OSCILLATIONS

Several hydrodynamic sequences were followed with damping excluded. These were found
to oscillate in a mixture of modes reflecting the initial state of the model. In each case a
dominant period of oscillation of the central density was manifest. This matched the periods
of oscillation of polytropes of index n in the range 1-2.5 given by Kopal (1938) to within
10 per cent for N~40. This error can be reduced by using more particles. During extended
runs over many cycles of large amplitude oscillations (6§ D(0)/D(0)~ 0.3) the total energy F
of systems with N~ 40 was found to oscillate with |8 E/E|<0.1. This error is consistent with
replacing integrals by sums according to the Monte Carlo procedure.

5 Numerical tests — non-spherical models
5.1 UNIFORMLY ROTATING POLYTROPES

Uniformly rotating polytropes were studied to determine the accuracy with which the
technique reproduced a non-spherical structure.

In Fig. 4 the polar and equatorial density profiles are shown for a rapidly rotating poly-
trope of index 1.5 for which w?=0.024. The figure also shows the density profiles for the
same model obtained using the approximation technique of Monaghan & Roxburgh (1965).
It is clear that the agreement is good. All models were found to be symmetric about the
rotation axis and the equator to within 5 per cent.

Because our models do not have D(0)=1, the parameter a of Monaghan & Roxburgh is
related to our w? by a = 2w?/mD(0). The model shown is therefore on the verge of breakup.
Since our method does not produce fluid particles near the edge, the critical w corre-
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T T T T

Dx

1 2 x 3 4
Figure 4. The density profiles for a uniformly rotating polytrope of index 1.5. The SPH results are shown
thus: polar density: lower curve; equatorial density: upper curve. Perturbation analysis (Monaghan &
Roxburgh 1965) shownby * * ***and aaaa.

sponding to breakup cannot be determined accurately. Of course, with more particles, and
therefore a smaller 4, the critical w can be calculated as accurately as desired. Alternatively
test particles could be introduced.

5.2 MAGNETIC POLYTROPES

The static structure of polytropes with both poloidal and toroidal fields was studied by
starting with a static, non-rotating, polytrope and then superimposing the field. The poly-
trope was then allowed to relax to a static structure. Because the main purpose of this study
was to explore the numerical method we chose initial fields which were known solutions of

3 T T T

(] 1 1

1 2 X 3
Figure 5. Poloidal magnetic field and current in a polytrope of index 1. Perturbation analysis (Monaghan
1965) shown thus: . The smoothed initial field and current shown thus; ------ . The final static

field and current shown thus:
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Figure 6. Density profiles for a polytrope of index 1 with a dipole poloidal field. Perturbation analysis
(Monaghan 1965) shown thus: polar density: @ ¢ ® ®; equatorial density: = » m. The SPH density shown
thus: . The full field smoothing method has been used.

the first-order perturbation equations. The poloidal field was taken from Monaghan (1965)
and the toroidal field from Roxburgh (1966).

In Fig. 5 we show the initial field and current on the x axis calculated from the analytical
expression for a dipole field in a polytrope of index 1. Also shown is the initial and final
smoothed field and current calculated according to the procedure of Section 2.5. The agree-
ment between the initial field and its smoothed equivalent is very good. We believe it could
be further improved by adjusting the smoothing parameter b, or by adopting a different
value of this parameter for each component of the magnetic field.

The analytical equilibrium field is based on a first-order perturbation analysis which
assumes the field can be constructed from a non-perturbed density. Since we find density
perturbations of ~10 per cent, we expect the final field to differ from the first-order pertur-
bation results by quantities of this order. The difference between the initial and final field
and current shown in Fig. 5 is therefore not unexpected.

In Fig. 6 the equatorial and polar density profiles are shown for both the present
numerical calculations, and for the first-order perturbation results. Since our models have
D(0)# 1, and a field and current which differ from the analytical one by approximately a
scale factor, the relation between 1 and the factors w and k of Monaghan (1965) is approxi-
mately

n computed B,(0) )2
( analytical B,(0)/

The agreement between the first-order perturbation results and our numerical results is
very good. Small changes, of the order of 10 per cent of the deviations from the unperturbed
density, are to be expected because of errors in the perturbation method, but this has a
negligible effect on the density profiles.

The toroidal field investigated is zero outside the polytrope and the smoothed field can
be obtained satisfactorily without using the importance sampling device of Section 2.5.
With 40 particles in a polytrope of index 1 the initial smoothed field reproduced the
analytical field to within <5 per cent.

During the calculations the constancy of the magnetic flux was monitored and found to
remain constant to within 2 per cent.

6 Computational requirements

All of the sequences described in this paper were stored in 60—90K bytes of core storage in
an IBM360/165. A typical N=40 sequence with no magnetic field requires about 0.25 s per
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time step and about 200 time steps (50s) per model. The time step is fixed by calculating
the minimum of A/Umax, (B/Fmax)"? and h/DY?" where v,y is the maximum particle
velocity, Fax the maximum force and the last criterion is based on the speed of sound. The
minimum is then multiplied by a constant. If this constant is in the range 0.1-0.5 the
integration is stable without requiring excessive time. The time can be halved by storing the
current forces and densities at the particle positions. We are currently performing calculations
for dynamical sequences leading to fission. These require approximately four minutes of
computing time for an 80-particle configuration.

Conclusions

The results of this study show that the smoothed particle method is a simple technique
which gives satisfactory results for oscillating polytropes, and for polytropes which relax
from a non-spherical initial state to a spherical final state. Rotation and magnetic fields may
be included without difficulty, and the comparison with the perturbation results shows that
moderate distortion can be reproduced accurately. Structure on a finer scale or greater
accuracy can always be obtained by increasing the number of particles and by using the
devices known to improve Monte Carlo integration methods.
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Appendix

In one dimension the simplest representation of a sample is by a histogram. To smooth the
histogram the constraints of minimizing the slope, while retaining reproducibility of the
data, can be used. The resulting smoothing function is the delta spline of Boneva, Kendall
& Stepanov (1971).

In three dimensions there are various possible generalizations. Our experiments have been
based on the following.

Around a sample point construct the unit ball, i.e. the sphere of unit radius. This is one
generalization of the unit histogram. Surround the ball by concentric shells of radius r;=1.
Now construct the spherical delta spline S(r) by the rules

aS Fi+1

Fit+1 2
Min 4n J‘ (—) r’*dr with 4n J. Srldr=645 i=1,2,3.
. or ri
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These rules ensure minimization of the slope with the constraint that the integral over all
space is equal to the contribution from within the unit ball. The resulting set of equations is
easily solved and the spherical delta spline is found to oscillate with an exponentially
decreasing amplitude.

An alternative we haven’t experimented with is based on the subdivision of the space into
cubes. Then the function to be minimized is (3>S/0x3ydz)? and the delta spline becomes just
a product of one-dimensional delta splines.
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Abstract

In this review the theory and application of Smoothed particle hydrodynamics (SPH) since
its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the
analogy with particle dynamics and the numerous areas where SPH has been successfully
applied.
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1. Introduction

Smoothed particle hydrodynamics (SPH) is a method for obtaining approximate numerical
solutions of the equations of fluid dynamics by replacing the fluid with a set of particles. For
the mathematician, the particles are just interpolation points from which properties of the fluid
can be calculated. For the physicist, the SPH particles are material particles which can be treated
like any other particle system. Either way, the method has a number of attractive features. The
first of these is that pure advection is treated exactly. For example, if the particles are given
a colour, and the velocity is specified, the transport of colour by the particle system is exact.
Modern finite difference methods give reasonable results for advection but the algorithms are
not Galilean invariant so that, when a large constant velocity is superposed, the results can be
badly corrupted. The second advantage is that with more than one material, each described
by its own set of particles, interface problems are often trivial for SPH but difficult for finite
difference schemes. The third advantage is that particle methods bridge the gap between the
continuum and fragmentation in a natural way. As a consequence, the best current method for
the study of brittle fracture and subsequent fragmentation in damaged solids is SPH (see, e.g.
Benz and Asphaug (1994, 1995)). A fourth advantage is that the resolution can be made to
depend on position and time, which makes the method very attractive for most astrophysical
and many geophysical problems. Fifth, SPH has the computational advantage, particularly in
problems involving fragments, drops or stars, that the computation is only where the matter is,
with a consequent reduction in storage and calculation. Finally, because of the close similarity
between SPH and molecular dynamics, it is often possible to include complex physics easily.

Although the idea of using particles is natural, it is not obvious which interactions
between the particles will faithfully reproduce the equations of fluid dynamics or continuum
mechanics. One way of doing this was proposed by Bob Gingold and myself (Gingold and
Monaghan (1977) where the term SPH was coined) and independently by Lucy (1977). Gingold
and Monaghan derived the equations of motion using a kernel estimation technique, pioneered
by statisticians, to estimate probability densities from sample values (Rosenblatt (1956),
Parzen (1962) and, for a general discussion, see Boneva et al (1971)). When applied to
interpolation, this yielded an estimate of a function at any point using the values of the function
atthe particles. This estimate of the function could be differentiated exactly provided the kernel
was differentiable. In this way, the gradient terms required for the equations of fluid dynamics
could be written in terms of the properties of the particles. Because of its close relation to the
statistical ideas, Gingold and Monaghan (1977) described the method as a Monte Carlo method,
as did Lucy (1977) who had, in effect, re-discovered the statistical technique. However, in
subsequent papers (e.g. Gingold and Monaghan (1978)), it was discovered that the errors were
much smaller than the predicted probability estimates. Gingold and Monaghan realized that
the particle number density was not equivalent to a probability density because the fluctuations
predicted by probability theory require energy, which is not available from the equations of
motion. This is particularly easy to see in the case of static equilibrium as the system moves to
a minimum energy state in which large voids do not occur, since they require higher energy. In
a dynamical problem more disorder can occur but only to the extent allowed by the dynamical
equations.

The original papers (Gingold and Monaghan 1977, Lucy 1977) proposed numerical
schemes which did not conserve linear and angular momentum exactly, but gave good results
for a class of astrophysical problems that were considered too difficult for the techniques
available at the time. The basic SPH algorithm was improved to conserve linear and angular
momentum exactly using the particle equivalent of the Lagrangian for a compressible non-
dissipative fluid (Gingold and Monaghan 1982). In this way, the similarities between SPH and
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molecular dynamics were made clearer. Recent studies by Hoover (1998) and Hoover et al
(2004) explore the correspondence between SPH and molecular dynamics.

Since SPH models a fluid as a mechanical and thermodynamical particle system, it
is natural to derive the SPH equations for non-dissipative flow from a Lagrangian. The
equations for the early SPH simulations of binary fission and instabilities were derived from
Lagrangians (Gingold and Monaghan 1978, 1979, 1980). These Lagrangians took into account
the smoothing length (the same for each particle) which was a function of the coordinates.
More recent examples include Lagrangians which incorporate a resolution length for each
particle (Springel and Hernquist 2002, Monaghan 2002), a relativistic Lagrangian (Monaghan
and Price 2001), a Lagrangian for MHD problems (Price and Monaghan 2004a, 2004b) and a
Lagrangian for SPH compressible turbulence (Monaghan 2002). In addition, Bonet and his
colleagues (Bonet and Lok 1999, Bonet and Kulasegaram 2000, 2001) have used Lagrangians
for the SPH simulation of elastic materials. The advantage of a Lagrangian is that it not only
guarantees conservation of momentum and energy, but also ensures that the particle system
retains much of the geometric structure of the continuum system in the phase space of the
particles. This includes Liouville’s theorem and the Poincare invariants. In addition, as noted
by Dirac, basing the equations of motion on a Lagrangian allows new physical interactions to
be included consistently.

The comments made by Von Neumann in 1944 (see Von Neumann (1944)), in connection
with the use of the particle methods to model shocks, are relevant to SPH. To paraphrase his
remarks:

The particle method is not only an approximation of the continuum fluid equations,
but also gives the rigorous equations for a particle system which approximates the
molecular system underlying, and more fundamental than the continuum equations.

When combined with a simple but effective viscosity, and a form of the thermal energy
equation that guarantees that the viscous dissipation increases both the thermal energy and
the entropy, a variety of shock problems have been studied (Monaghan and Gingold 1983,
Monaghan 1997, Price and Monaghan 2004a). The SPH algorithm gives very satisfactory
results for shocks though they are not as accurate as those obtained from well-designed
Riemann solvers and other modern techniques—although these have their own set of problems,
especially when approximate Riemann solvers are used (Quirk 1994). Sharpness is often
overated as a measure of the fidelity of simulations. Real shocks are only a few mean free
paths thick so that, in a typical shock tube of 2 m length, ~107 finite difference cells, in each
direction, would be required in a finite difference code to resolve the shock. However, most
codes can afford only 10? cells along each coordinate so that their numerical shock widths
are 10* times greater than the actual shock width. Therefore, the discussion about which
code gives the sharpest shocks is irrelevant; they are all outstandingly bad. What are relevant
are the pre- and post-shock values of the physical variables. SPH is able to obtain these as
accurately as desired in one dimension, but in two and three dimensions SPH shocks, using
current algorithms, can be noisy. In astrophysical problems, this should not be a cause for
concern because the flows are invariably turbulent and the noise created in an SPH shock is
small relative to that owing to turbulence.

In problems involving very small perturbations, the lower accuracy of SPH makes finite
difference methods preferable. However, it has advantages which show up in those fluid
problems where the perturbations are large. The first of these is that complex physics can often
be included with little effort and effective codes produced in days, whereas finite difference
codes would take many months or years to write. The second is that the SPH method can be
easily extended to include a resolution which varies in space and time. That is, each particle has
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its own resolution length (Gingold and Monaghan (1982), see their section 4). It is, therefore,
ideal for astrophysical problems where enormous variations in the relevant length scales are
common (see, e.g. the simulation of the formation of the Moon (Benz et al (1986), or the
star formation studies of Bate ef al (1995) and Bate ef al (2003) or the binary neutron star
collisions of Rosswog and Davies (2002)). Furthermore, the SPH method combines easily with
the particle methods used for star systems and is a natural tool for cosmological simulations,
in particular (see, e.g. Hernquist and Katz (1989), Couchman et al (1995), Springel and
Hernquist (2002) and Marri and White (2003)).

Because SPH is essentially a technique for approximating the continuum equations, it can
be used for a wide range of fluid dynamical problems. Although the initial applications were to
gas dynamic problems, it has also been applied to problems in incompressible flow by treating
that flow as slightly compressible with an appropriate equation of state (Monaghan 1994).
Using the same idea waves, breaking on arbitrary structures (Monaghan et al 2004, Colagrossi
and Landrini 2003) as well as the more classical problems of waves on beaches (Monaghan and
Kos 1999) could be simulated. Colagrossi (2004) has made a detailed study of the application
of SPH to breaking waves, where an accurate boundary element method could be used up to the
point where the wave curls over to touch the water surface in the front. The SPH calculations
agree with the boundary element method up to the point that it can be used, and thereafter the
SPH method gives good agreement with the experiment. Colagrossi (2004) also shows that
the SPH simulation of sloshing tanks and the bow waves produced by certain ship hulls are
in good agreement with the experiment. Simulations of liquid metal moulding (Cleary and
Ha 2002) also show good agreement with the experiment.

Another class of problems suitable for the SPH algorithm arise in elasticity and fracture.
Libersky and Petschek (1991) derived and applied the SPH equations for elasticity. Benz
and Asphaug (1994, 1995) showed how SPH could be applied to the fracture of brittle solids,
where it gives much better results than the finite element or the finite difference methods.
These methods have been applied to the breakup of planetesimals and the formation of asteroid
families (Michel et al 2004). In these simulations, the ease with which the SPH particles can
describe the transition from a continuum to a set of fragments gives it a computational edge
over other numerical methods. Commerical software packages (e.g. Dyna3D and Autodyn)
for simulating impact now incorporate SPH. Elastic SPH also provides a simple and robust
technique for simulating complex fracture in geological rock formations and in brittle materials
(Gray et al 2001, Gray and Monaghan 2004). SPH is also being used in virtual reality
surgery (see, e.g. the work of M Mueller, S Schirm and M Teschner at the Computer Graphics
Laboratory ETH, Zurich).

In many of these problems a priori estimates of the accuracy of SPH interpolation suggest
that the simulations would give results which would be too inaccurate for most problems.
As a consequence, a technique called Moving Least Squares (Dilts 1999) was developed to
produce a particle code with perfect linear interpolation. However, the disadvantages are that
conservation is lost and the method is considerably slower than the standard SPH. Furthermore,
in practice, as noted earlier, the low accuracy predicted from interpolation errors usually does
not occur. For example, Colagrossi (2004) shows that, for the complex evolution of a patch of
fluid, the SPH results are as good as those from the level set method, and often surpass them.
Part of the reason may be that, for non-dissipative problems, the equations follow directly from
a Lagrangian, which retains many of the properties of the original continuum Lagrangian.

In problems involving heat conduction, Cleary and Monaghan (1999) showed that the SPH
simulations, which conserve thermal energy and guarantee that the entropy increased, were
very accurate even though the particles’ positions were disordered and the thermal conductivity
discontinuous. These results together with those mentioned earlier show that if SPH equations
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are set up such that they satisfy the fundamental conservation laws, the results are much better
than would be deduced from consideration of the interpolation alone.

The reader may find the early reviews of SPH (Monaghan 1992, Benz 1990) useful. A
different aspect of SPH is detailed in the website www.nextlimit.com, which shows a wide
variety of SPH simulations of fluids for both scientific problems and for video and film special
effects (In the third film of the trilogy ‘Lord of the Rings’, Nextlimit used SPH to simulate
Gollum falling into the lava.)

2. Interpolation

The equations of fluid dynamics have the form

a4 f(A, VA, r) 2.1
- = ) »T), .
dr

where
d d
—=—+4v-V 2.2)
dt ot

is the Lagrangian derivative, or the derivative following the motion. It is worth noting that the
characteristics of this differential operator are the particle trajectories.

In the equations of fluid dynamics, the rates of change of physical quantities require spatial
derivatives of physical quantities. The key step in any computational fluid dynamics algorithm
is to approximate these derivatives using information from a finite number of points. In finite
difference methods, the points are the vertices of a mesh. In the SPH method, the interpolating
points are particles which move with the flow, and the interpolation of any quantity, at any
point in space, is based on kernel estimation.

2.1. Integral and summation inte