

Nuclear Energy

Gabrielle Reese, Sri Pisupati, Emily Phipps

1895-1945

- Atomic radiation, atomic changes, and nuclear fission
- 1939- Hahn and Strassman
 - Fission released a lot of energy
 - Released additional neutrons causing fission in Uranium nuclei
 - Possible self-sustaining chain reaction
- 1942-World's first nuclear chain reaction

1939-1945

- Atomic bomb
- Physicists Peierls and Frisch
 - Concepts of atomic bomb
 - How bomb can be denotated, how U-235 can be produced, radiation effects
- Agreement between Britain and US

First Atomic Device

- http://www.youtube.com/watch?v=Ru2PWmGloB8
- July 16, 1945
 - Alamogordo, New Mexico
- Used Platonium

1945- Attention Shift

- Focused on harnessing energy for naval purposes and making electricity
- **3** 1951
 - An experimental breeder reaction in Idaho produces world's first electric power from nuclear energy

http://www.euronuclear.org/

1957

- First large scale nuclear power plant in the US
- Shippingport, PA

http://www.eoearth.org/

Since 1965

- Focus on technological evolution of reliable power plants
- Westinghouse designed first pressurized water reactor
 - Started in 1960 and operated until 1992

http://www.storenuclearfuel.com/

Fun Facts

- Generally, nuclear electricity is generated using two types of reactors (developed in the 1950s)
- Four generations of nuclear reactors first has been phased out
- 13% of worldwide electricity production comes from nuclear sources

Components of Nuclear Reactors

- Fuel: Uranium Uranium oxide rods form fuel rods
- Moderator: Slows down the neutrons in the reaction so that more fission occurs
 - Water, heavy water, and graphite
- Control Rods: control the rate of reaction/stop the reaction.
- Coolant: fluid that circulates around the core
 - LWR moderator also is primary coolant
 - Secondary coolant where water becomes steam (except BWR)

Components of Nuclear Reactors

- Pressure Vessel/Tubes: steel vessel that contains the core and moderator
- Steam Generator: part of the cooling system where the primary coolant is used to make steam for the turbine
- Containment: structure around the reactor and protects it from the surroundings and contains radiation is there is a malfunction

Types of Reactors

- Pressurized Water Reactor (PWR):
 - Used in the US, France, Japan, Russia, and China
 - Coolant: Water
 - Moderator: Water
- Boiling Water Reactor (BWR):
 - **5** Used in US, Japan, Sweden
 - Coolant: Water
 - Moderator: Water
- Pressurized Heavy Water Reactor (PHWR)
 - Used in Canada
 - Coolant: Heavy Water
 - Moderator: Heavy Water

Types of Reactors

- Gas- Cooled Reactor (AGR, MAGNOX)
 - **Used in UK**
 - © Coolant: CO2
 - Moderator: Graphite
- Light Water (RBMK, EGP)
 - **Used in Russia**
 - Coolant: Water
 - Moderator: Graphite
- Fast Neutron Reactor (FBR)
 - Used in Russia
 - Coolant: Liquid Sodium
 - Moderator: None

PWR vs. BWR

- In a BWR, the reactor core heats water, which turns to steam and then drives a steam turbine
- In a PWR, the reactor core heats water, which does not boil. This hot water then exchanges heat with a lower pressure water system, which turns to steam and drives the turbine.
 - Safest water leaving the reactor does not touch nuclear components
 - Built in safety system (water is a moderator, steam is not)

Moderation

- Graphite Moderators: use carbon as a neutron moderator
 - Most famously known because of Chernobyl
- Heavy Water Moderation: Heavy water, D²O, is water in which both hydrogen atoms have been replaced with deuterium, the isotope of hydrogen containing one proton and one neutron
 - Allows for natural uranium to be used (eliminates need for expensive enrichment facilities)
 - Heavy Water is expensive
 - Risk of nuclear proliferation due to byproducts
- Light Water Moderation
 - Uses normal water as a coolant and for moderation
 - The most common type of moderation
 - Requires enriched fuels (expensive enrichment facilities required)

Generations

- Generation 1:
 - Early power plant designs
 - Have been decommissioned
- Generation 2:
 - Built until the beginning of the 1990s
 - Original design life of 30-40 years extended to 50-60 years
 - Most current reactors
- Generation 3:
 - Improved fuel technology, thermal efficiency, safety systems, and reduced maintenance and capital costs
 - 60-120 year lifespan
- Generation 4+:
 - Mostly prototypes

Nuclear Fuel

- Preparing uranium for use in a nuclear reactor involves mining and milling, conversion, enrichment and fuel fabrication
- Used fuel still contains about 96% of its original uranium
- Reprocessing separates uranium and plutonium from waste products
- There are no disposal facilities (as opposed to storage facilities) in operation in which used fuel, not destined for reprocessing, and the waste from reprocessing, can be placed
- The general consensus favors its placement into deep geological repositories, about 500 meters down

Efficiency

Average Operating Efficiency* by Source of Electricity, 2011

Source: Ventyx / U.S. Energy Information Administration

*Operating efficiency is measured by capacity factor, the ratio of the amount of electricity produced by a plant to the amount of eletricity that could have been produced if the plant operated all year at full power.

Production Costs = Operations and Maintenance Costs + Fuel Costs. Production costs do not include indirect costs and are based on FERC Form 1 fillings submitted by regulated utilities. Production costs are modeled for utilities that are not regulated.

Source: Ventyx Velocity Suite Updated: 5/12

Video

http://www.youtube.com/watch?v=MSFgmLW1Crw

Economics

- Cost of Fuel
 - Uranium must be processed, enriched & fabricated into fuel elements
 - *About half the cost is due to enrichment and fabrication
 - Total fuel costs are about 1/3 that for coal fired power plants, and 1/4-1/5 for a gas combined-cycle plant
 - Advantage: Uranium is a highly concentrated source of energy
 - Easily & cheaply transportable
 - 1 kg of natural uranium will yield about 20,000 x as must energy as same amount of coal
 - If fuel is reprocessed and the recovered plutonium and uranium is used in mixed oxide fuel (MOX), more energy can be obtained
 - Costs for this can be large but are also offset by not needing enrichment, and by there being smaller amounts of high level wastes

- **6**
- Important to distinguish between the economics of nuclear plants already in operation and those at the planning stage
- Existing plants operate at a very low cost
 - operations, maintenance, fuel costs, used fuel management

http://www.world-nuclear.org/ info/Economic-Aspects/ Economics-of-Nuclear-Power/

New Generating Capacity

- Understanding Costs
 - Capital costs: the bare plant cost, the owner's costs, cost escalation and inflation
 - Financing costs: depends on rate of interest on debtequity ratio, how capital costs are recovered
 - Operating costs: include operating and maintenance, fuel costs (includes used fuel management) and final waste disposal
 - These costs are internal for nuclear power, usually external for other technologies.

- An update in 2009 by MIT (of a 2003 study) says that "The estimated cost of constructing a nuclear power plant has increased at a rate of 15% per year heading into the current economic downturn."
 - This is based off of actual builds in Japan and Korea
 - Capital costs for coal and natural gas have increased as well, but no as much
- US Energy Information Administration 2010 report "Updated Capital Cost Estimates for Electricity Generation Plants".
 - The US cost estimate for new nuclear was revised to a value of \$5339/kW for 2011
- Construction costs vs operation costs, do the very low operation costs for nuclear outweigh production costs of new facilities?
 - Current facilities along with other combinations of energy (natural gas + renewables)

Reserves/ Resources

- Uranium is a relatively common metal, found in rocks and seawater
 - The world's known uranium resources increased 15% in two years due to increased mineral exploration
 - It is a common metal in the Earth's crust
 - Constituent of most rocks and the sea
 - Typical concentrations...

Very high-grade ore (Canada) - 20% U	200,000 ppm U
High-grade ore - 2% U,	20,000 ppm U
Low-grade ore - 0.1% U,	1,000 ppm U
Very low-grade ore* (Namibia) - 0.01% U	100 ppm U
Granite	3-5 ppm U
Sedimentary rock	2-3 ppm U
Earth's continental crust (av)	2.8 ppm U
Seawater	o.oo3 ppm U

http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/ Uranium-Resources/Supply-of-Uranium/

- Orebody: an occurrence of mineralisation from which the metal is economically recoverable
 - Relative to both costs of extraction and market prices

- Measured resources of uranium (the amount known to be economically recoverable from orebodies) are relative to costs & prices
 - Also dependent on past exploration and what is known about what is in the Earth's crust
 - "Epistemology rather then geology"

Known Recoverable Resources of Uranium 2011

	tonnes U	percentage of world
Australia	1,661,000	31%
Kazakhstan	629,000	12%
Russia	487,200	9%
Canada	468,700	9%
Niger	421,000	8%
South Africa	279,100	5%
Brazil	276,700	5%
Namibia	261,000	5%
USA	207,400	4%
China	166,100	3%
Ukraine	119,600	2%
Uzbekistan	96,200	2%
Mongolia	55,700	1%
Jordan	33,800	1%
other	164,000	3%
World total	5,327,200	

Australia

- Uranium has been mined since 1954, and four mines are currently operating. More are planned.
- Australia's known uranium resources are the world's largest 31% of the world total.
- In 2011-12 Australia produced 7700 tonnes of uranium oxide concentrate. It is the world's third-ranking producer, behind Kazakhstan and Canada.
- Australia uses no nuclear power

* Uranium has not been mined on a commercial scale in New Zealand

US Reserves

- The US Energy Information Administration came out with it's estimates in 2008 of US uranium reserves
 - At a maximum forward cost up to \$100 / pound
 - Reserves totaled 1,227 million pounds
 - Up to \$50/ pound
 - 539 million pounds
 - At 1999-2008 consumption rates, at \$100/pound reserves estimated to last 23 years

Air Emissions

- DO NOT emit carbon dioxide, sulfur dioxide, or nitrogen oxides during power generation
- During mining, transport, fuel fabrication,
 enrichment, reactor construction, decommissioning
 & waste management fossil fuels are emitted
- Most power plant reactors are placed inside a containment building to contain all the radioactive elements that might be released

Clear Air Act

- Defines the EPA's responsibilities for protecting and improving the nation's air quality and the ozone layer
- Amendments that will prevent over 230,000 early deaths in 2020

http://green.autoblog.com/

Water Resource Use

- Use large quantities of water for steam production and cooling
- Remove water from lakes or rivers, which could affect fish & other aquatic life

http://www.cnn.com/

Water Discharges

- Heavy metals and salts build up in the water used
- Higher temperature discharged from the power plant can affect the water quality and aquatic life
- To cool water plants use cooling towers or cooling ponds
- A cooling pond has temperatures that are 30 degF larger where the water is discharged
 - Surface warming

Water Discharges

- Can discharge small amounts of tritium and other radioactive elements
 - Tritium: a radioactive isotope of hydrogen that emits a low-energy beta particle (drinking water)
- Waste from uranium mining operations and water runoff
 - contaminate groundwater and surface water with heavy metals and traces of radioactive uranium

Spent Fuel

- Every 18-24 months plants must shut down to remove and replace "spent" uranium fuel
- Waste is stored in steellined, concrete vaults filled with water
 - OR aboveground steel or steel-reinforced concrete containers with steel inner canisters

Spent Fuel

- Methods for final burial in deep stable geological structures have been suggested
 - No country has been successful
 - Too expensive
 - Yucca Mountain- years of controversy and legal problems
- Fuel can be reprocessed at a reprocessing plant
 - Major source of radioactive environmental contamination
- Obama administration has disallowed reprocessing of nuclear waste due to proliferation concerns

Radioactive Waste Types

- Regulated waste types:
 - Low-level waste: radioactivity contaminating protective clothing, tools, etc produced through the process of purifying the water
 - Waste secondary to reprocessing refers to certain waste byproducts that result from spent fuel
 - High-level waste: nuclear reactor fuel
 - Uranium left behind after the processing of natural ore to extract uranium and thorium

Radioactive Waste Generation

- During an accident, plant releases large amounts of radioactive material
 - Radiation sickness
 - Three Mile Island, Chernobyl
- Closed plant
 - Waste stored for 20-30 years

Thermal Pollution

Nuclear power plant discharges 50% more waste heat than fossil-fuel plant

http://en.wikipedia.org/

Within United States

- As of February 2009, NRC requires:
 - Design of new power plants ensure that reactor containment would remain intact, cooling systems could still operate, and spent fuels still protected if an aircraft attacked

Current- United States

- 103 licensed to operate nuclear power plants
 - **68 pressurized water reactors**
 - 35 boiling water reactors
- Generate 9% of the nation's electric

Locations of Nuclear Power Plants in US

Where are we headed?

http://www.eia.gov/

Current- New Zealand

- Nuclear free zone!
- 1968 Plan
 - Need for nuclear plant in next decade
 - Site reserved at Oyster Point
 - Maui gas field was discovered and coal reserves
 - Project abandoned by 1972

Current- Australia

- No current nuclear facilities
- Australia has 31% of the world's uranium deposits
 - Third largest producer of Uranium
- Legislation to ban nuclear power
 - Bill did not pass

Works Cited

- Nuclear Energy Institute (http://www.nei.org)
- World Nuclear Association (http://www.world-nuclear.org)
- U.S. Energy Information Administration (http://www.eia.gov/)
- http://www.world-nuclear.org/info/Current-and-Future-Generation/Outline-History-of-Nuclear-Energy/#.UUnv7q-DnTo
- http://www.huffingtonpost.com/2012/06/13/timeline-nuclear-power-history-fukushima_n_1593278.html

Works Cited

- http://www.epa.gov/cleanenergy/energy-and-you/affect/nuclear.html
- http://www.iaea.org/Publications/Magazines/Bulletin/Bull202/20205083242.pdf
- http://www.nrc.gov/reactors/power.html
- http://www.epa.gov/air/caa/
- http://www.nei.org/resourcesandstats/documentlibrary/protectingtheenvironment/factsheet/nuclearenergyandtheenvironment/
- http://en.wikipedia.org/wiki/Environmental_impact_of_nuclear_power
- http://greenliving.nationalgeographic.com/one-better-environment-coalnuclear-20469.html
- http://en.wikipedia.org/wiki/Nuclear_power_in_Australia

Sources

- http://www.world-nuclear.org/info/Economic-Aspects/Economics-of-Nuclear-Power/
- http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Uranium-Resources/Supply-of-Uranium/
- http://www.world-nuclear.org/info/Country-Profiles/ Countries-A-F/Australia--Uranium/
- http://www.eia.gov/cneaf/nuclear/page/reserves/ ures.html