History and Potential of Wind Power Development in New Zealand

Brendan Ekstrom

New Zealand Renewable Energy Background

- One of the earliest adopters of alternative energy technologies
 - Geothermal and Hydroelectricity
- Currently achieved a level of 60% total electricity generation from renewable sources

 - Pursuing a target of 95% by the year 2025
- Principal energy source has been Hydroelectricity
 - Power Generation from Southern Island
 - Consumption growth on North Island
- Geothermal springs have powered generators since the 1950's
- Energy use has doubled every 22 years over the past century
 - Dwindling gas reserves has led to the pressure of removing carbon dioxide emissions, and power crises caused by fluctuating hydro lake levels

Introduction to Wind Energy

- How Wind Energy works
 - Flow of wind turns turbine blades, which are connected to generators that convert the energy into electricity
 - Increase in wind speed = increase in blade speed = increase in electricity generation
 - Electricity is generated between a specific range of high and low wind speeds, which shuts down when wind exceeds turbine's maximum level
 - Maximum output is determined by blade size
- Turbine size ranges from 1 kW to 7 MW (Europe Offshore)
- Largest capacity wind turbines in New Zealand are 3
 MW (Tararua and Mahinerangi)

Background of Wind Energy in New Zealand

- Well endowed with wind potential by virtue of its location and topography
 - Region of strong westerly winds known as the "Roaring Forties"
 - Wind energy accessible through existence of central mountain ranges and long coastline with sea breezes
 - High country site winds tend to be more consistent than coastline winds
- Attracted attention in 1970's, specifically 1974 with the establishment of the Wind Energy Task Force
 - Led to low international oil prices
 - Took 20 years to develop first commercial wind turbine (226 kW) in Wellington
 - Test site chosen due to strong winds
 - Operated continuously for 15 years before repair
 - Larger scale capacity commencing from 2003

- The graph shown above displays the installed wind power capacity of New Zealand
 - As shown, capacity was expected to reach 615 MW by the year
 2011 with the completion of a new plant

Current Wind Energy in New Zealand

- 19 fully operational wind farms
 - Combined installed capacity of 690 MW
 - Generate same amount of electricity as 300,000 kiwi homes use in a year
- Approximately 2,500 MW of wind generation consented in New Zealand
 - Developers consistently exploring new sites across the country
 - Not all consented wind generation will be constructed

- Green turbine- represents wind farms under construction
- Orange turbine represents
 consented/proposed that have not yet been
 built

Current Wind Farms in New Zealand

Wind Farm	Operator	Region	No. of Turbines	Capacity (MW)	Comm- ission Date
<u>Brooklyn</u>	Meridian	Wellington	1	Turbine: 0.9 Farm: 0.9 Note: replaces original 0.23 MW turbine commis- sioned in 1993	2016
Flat Hill	Pioneer Energy	Bluff	8	Turbine: Farm: 6.8	2015
Mill Creek	Meridian	Wellington	26	Turbine: 2.3 Farm: 59.8	2014
Lake Grassmere	Energy3	Marlborough	1	Turbine: 0.66	2014
Lulworth	Energy3	Marlborough	4	Turbine: 0.25 Farm: 1.0	2011
<u>Te Uku</u>	Meridian	Waikato	28	Turbine: 2.3 Farm: 64.4	2011

<u>Mahinerangi</u>	Tilt Renewables	Clutha	12	Turbine: 3.0 Farm: 36.0	2011
Mt Stuart	Pioneer Energy	Clutha	9	Turbine: 0.85 Farm: 7.65	2011
Weld Cone	Energy3	Marlborough	3	Turbine: 0.25 Farm: 0.75	2010
Chatham Islands	CBD Energy/ Chatham Islands Enterprise Trust	Chatham Islands	2	Turbine: 0.23 Farm: 0.46	2010
West Wind	Meridian	Wellington	62	Turbine: 2.3 Farm: 142.6	2009
Horseshoe Bend	Pioneer Energy	Central Otago	3	Turbine: 0.75 Farm: 2.25	2009
Tararua (Stage 3)	Tilt Renewables	Manawatu	31	Turbine: 3.0 Farm: 93.0	2007
White Hill	Meridian	Southland	29	Turbine: 2.0 Farm: 58.0	2007

Current Wind Farms in New Zealand

Te Rere Hau	NZ Windfarms	Manawatu	97	Turbine: 0.5 Farm: 48.5	2006, 2008-2011
Southbridge	Energy3	Canterbury	1	Turbine: 0.1 Farm: 0.1	2005
Hau Nui (Stage 2)	Genesis	Wairarapa	8	Turbine: 0.6 Farm: 4.8	2004
Tararua (Stage 2)	Tilt Renewables	Manawatu	55	Turbine: 0.66 Farm: 36.3	2004
Te Apiti	Meridian	Manawatu	55	Turbine: 1.65 Farm: 90.8	2004
Tararua (Stage 1)	Tilt Renewables	Manawatu	48	Turbine: 0.66 Farm: 31.7	1999
Hau Nui (Stage 1)	Genesis	Wairarapa	7	Turbine: 0.55 Farm: 3.9	1996
Total all wind			490	690	

Pros and Cons of Wind Energy Implementation

Pros

- Windswept landscape creates one of the best wind resources in the world
- No production of greenhouse gas emissions
 - Generate Electricity
 - Easy to move
- Fast-to-build infrastructure
- No effect on health
- Popular amongst New Zealanders, in which ¾ support wind farms
- Long term stability
 - More stable than hydroelectric generation, which is less stable during dry periods
- Wind farms make New Zealand less vulnerable to power shortages
- Power companies benefit from carbon credits granted for the reduction of carbon dioxide emissions

Cons

- Objection of local community
 - Noise
 - Visual appearance of the wind farm on prominent ridgelines
 - Stricter building codes for farms and noise standards have made wind-powered generation guieter

Future Development and Potential of Wind Energy

- Large potential for wind to generate greater than the current 5% produced now
- As the construction of wind farms is low and there exists a close fit between wind and hydro generation, more wind farms are likely to be built with increasing energy demand
- Small Wind Turbines are essential as a part of a stand-alone power system
 - There do exist some potential issues
 - **■** Vibration Problems
 - Getting consent for masts in built-up areas
 - **■** Wind shielding from neighboring properties
 - Difference in value of imported and exported electricity
 - Unlikely to be used in urban settings

Final Thoughts

- As shown, the pros outweigh the cons with the implementation of wind energy systems in New Zealand
- With the increase of developing wind technologies and lowered prices, the future of wind energy development in New Zealand is bright
 - There exist a large amount of developing wind projects currently being consented throughout the country, which will be implemented in the future

References

- EECA. "Wind Energy." EECA, www.eeca.govt.nz/energy-use-in-new-zealand/renewable-energy-resources/wind/.
- Veronika Meduna, 'Wind and solar power Wind energy in New Zealand', Te Ara the Encyclopedia of New Zealand, http://www.TeAra.govt.nz/en/wind-and-solar-power/page-2 (accessed 21 April 2019)
- Kelly, Geoff. "History and Potential of Renewable Energy Development in New Zealand." Science Direct, Penn State Libraries, June 2011, www-sciencedirect-com.ezaccess.libraries.psu.edu/science/article/pii/S13640321110 00700#sec0030.
- 4. NZWEA. "Wind Right Here, Right Now, and the Right Technology." *New Zealand Wind Energy Association*, www.windenergy.org.nz/wind-energy.