Silica in Geothermal

EGEE 497
By: Patrick McGinn
Mercury Energy (NZ)

- Five geothermal power stations:
 - Kawerau
 - Mokai
 - Rotokawa
 - Ngatamariki
 - Nga Awa Purua

- Run at full capacity around 95% of the time
- Recently drilled four new make-up wells to replenish fuel supply
- Note: roughly 15% of New Zealand's total power generation is geothermal ~900MW (with an additional 1000 MW possible)
Geo40

- Established in 2010
- Startup in New Zealand working on silica extraction
Geothermal process

- Fluids are extracted between 200-300 degrees Celsius
- Fluid must be pumped into the well or exist naturally
 - Usually incorporate both for better efficiency
- Fluid is heated through natural fractures in the rock, or the fractures must be created
- There are three types of plants: Dry Steam, Flash Steam, Binary Cycle
Dry Steam

- Emits only excess steam and minor amounts of other gases
Flash steam

- Most common process
- Temperatures greater than 182°C
- Pumped at high pressure to a tank of the surface at a much lower temperature
- Changes in pressure cause the fluid to “flash” or vaporize
- Vaporized fluid is then sent through the turbine
- Any excess fluid in the tank is sent to another tank to undergo the process again
Binary cycle

- Fluid is around 150°C
- Fluid from the geothermal reservoir never comes into contact with the turbine
- Fluid from the reservoir is used to heat a secondary fluid which has a much lower boiling point
- Closed loop system where nothing besides water vapor escapes the system
- Main use is for heating and other manufacturing applications
Problem

- Silica precipitating from the solution causes fouling/scaling in the system
- Also causes corrosion of the well
- Currently have to add sulfuric acid to keep the silica suspended in the fluid

\[
\text{H}_4\text{SiO}_4 \rightarrow 2\text{H}_2\text{O} + \text{SiO}_2
\]
Silica Precipitation

- Silica precipitation requires a pH of 8.2
- Using an electromagnetic field, the pH can be reduced to 7.3-7.8 and the settling rate is increased
- Settling rates were found to be from 7.1-9.7 cm/min at 100°C and 3.4-4.6 cm/min at 40°C
 - Compared to 1.3 cm/min where the silica was only alkalized
- This is why in New Zealand they add sulfuric acid back into the fluid
Heat exchangers

- Works through reverse osmosis
- Creates water and a concentrated brine
- Brine is then pumped into a reactor where chemicals are added to extract the silica
- The brine can then be pumped through other processes to extract other metals before the fluid is sent back for reinjection

Figure 5: Extraction of silica from geothermal fluid (Parker, 2005)
U.S. Potential

Figure 3: Temperature distribution throughout the USA for use of geothermal (Green and Nix, 2006)
Conclusion

- Silica extraction provides another avenue for profit
- Example: two 50 MW power plants in CA
 - Silica extraction could provide $10.2-12.9 million per year
- Extraction can reduce costs through no longer needing to add excess sulfuric acid
- Causes a reduction in fouling/scaling and increase well life
- Can extract more than just silica
 - Once the silica is extracted other metals like gold, silver, lithium, manganese, zinc can be extracted
Figure 4: Idealized thermally enhanced heap leach (Trexler, et al 1990)
Sources

- https://www.mercury.co.nz/about/sustainability/renewable-energy/geothermal-generation
- https://geo40.com/about
- https://www.energy.gov/eere/geothermal/electricity-generation
- https://pdfs.semanticscholar.org/e3a9/0aa4f45cfd535c78064d77c264f767350e3.pdf