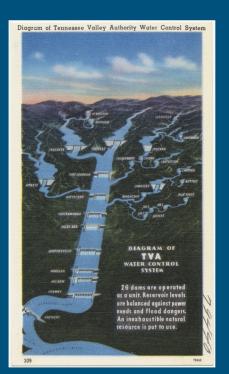
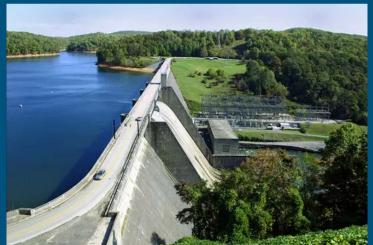
Cascaded Hydropower


A Beckman presentation

Hydropower in the U.S.


History

- Started early 1880's to provide lighting
- First AC power plant 1893 in California
- 1920s Army Corps core of engineers starts building plants
- 1933 Tennessee Valley Authority (TVA) established
 - Great Depression
 - Government infrastructure economic stimulus
- 1936 Hoover dam project

Today

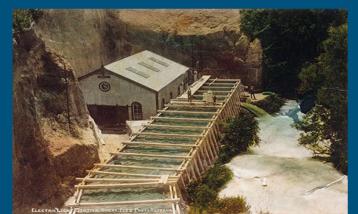
- TVA operates 29 dams on one river system
- In total US gets 6.3% of electricity from hydropower
- 2021 net summer capacity about 80 GW
- Many dams in the US are for purposes other than electricity (flood control)

Major and notable Rivers

Colorado River: Hoover dam (2GW), Glen canyons dam, etc

Columbia River: Grand Coulee dam (6.8GW) and Chief Joseph dam (2.6GW)

Tennessee River: Kentucky dam 223 MW



Hydropower in New Zealand

History

- First industrial plant built 1885 for a mine
- First hydro power station (Okere Falls) built near Rotorua 1901
- Hydro schemes built as early as 1903 (Waipori) and 1914 (Coleridge station)
- Waikato River Cascade built between 1953 and 1970 (7 stations)

Today

- Hydro supplies 62% of nations energy needs
- Long distance DC cables connect the islands
- Capacity of over 5GW
- Many retrofits of existing plants

Arapuni Dam

Major Notable Rivers and Schemes

- Waikato river: Cascade setup
- Tongariro power scheme: Water collected from tributaries and mountains feeds three stations
- Lakes Pukaki and Tekapo: System of dams and power plants

The Science: (Why can't we build infinite

dams?)

Topography

- Elevation change
- Narrowing
- Favorable materials (type of soil,rock,etc)
- Open flood plains wouldn't work

Energy

- Finite amount of energy in the river
- Blocked river flow
- Infinite number of dams is impossible
- Some river have more usable energy than others

Kinetic & Potential Energy

$$KE = \frac{1}{2} mV^2$$
 PE = mgh

Cleut.intps.//www.google.mv //url?sa=i&url=https%3A%2f %2Fwww.youtube.com%2Fw atch%3F/%3DDyaVgHGssos &psig=AOvVaw37ePqw0AqYencldYPe2FF&ust=16 81493479731000&source=in ages&cd=vfe&vd=0CBIQjhxc FwoTCJDcqL6xp_4CFQAAAA AdAAAAABAE

Turbine Size

New Zealand:

- Limited space on rivers (width)
- Construction limitations
- Road infrastructure for machinery
- Smaller plants

US:

- More space
- Larger plants = less needed

Environmental

Flooding

US:

- -wetlands
- -towns (voluntarily)
- -more development along rivers

New Zealand:

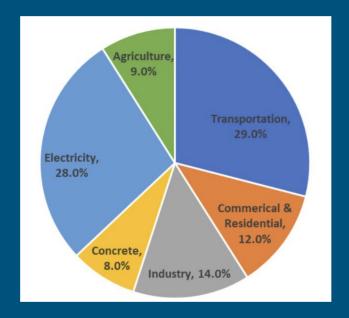
- -planned dams will raise lakes
- -protested
- -more of an effect on natural lands

Fish

- Dams can destroy habitat
- Cause stagnation and harm oxygenation
- Cause algal blooms (from excess nitrogen and phosphorus)
- Limit migration

US:

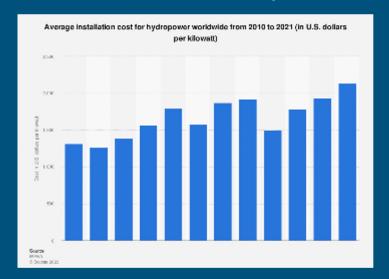
- Salmon migrations
- Less food from natural flooding


New Zealand:

- Less variety of fish after the dam
- Large effect on eels
- Less of a problem for salmon (farmed commercially)

Concrete

- Example: Hoover dam uses 4,360,000 cubic yards of concrete
- 1 cubic yard is 3900 pounds
- 1 cubic yard creates 400 pounds of co2
- New Zealand has access to limestone
- Similar costs



Economics

Capital Costs (US)

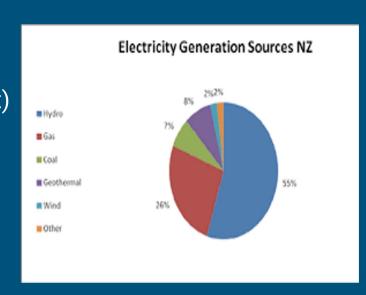
- A large dam can cost Billions of Dollars today (\$1000-\$6000 per KW)
- Hoover dam cost was around \$750 Million (inflation adjusted)
- Construction time up to a decade

LCOE (US)

Table 4b. Value-cost ratio (unweighted) for new resources entering service in 2027

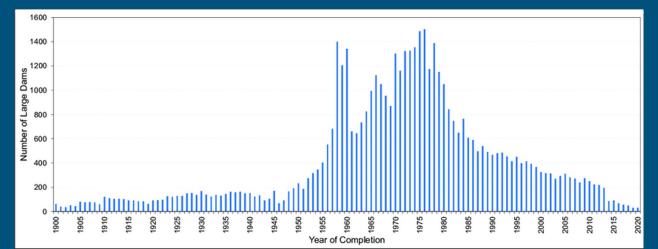
Plant type	Average unweighted LCOE ^a or LCOS ^a with tax credits (2021 dollars per megawatthour)	Average unweighted LACE ^a (2021 dollars per megawatthour)	Average value-cost ratio ^b	Minimum ^c	Maxi
Dispatchable technologies					
Ultra-supercritical coal	\$82.61	\$38.69	0.47	0.40	
Combined cycle	\$39.94	\$39.54	0.99	0.91	
Advanced nuclear	\$81.71	\$38.42	0.47	0.41	
Geothermal	\$37.62	\$45.11	1.20	1.08	
Biomass	\$90.17	\$39.84	0.45	0.28	
Resource-constrained techno	ologies				
Wind, onshore	\$40.23	\$34.54	0.88	0.60	
Wind, offshore	\$105.38	\$36.00	0.34	0.27	
Solar, standalone ^d	\$33.83	\$32.85	0.98	0.72	
Solar, hybrid ^{d,e}	\$49.03	\$45.53	0.93	0.64	
Hydroelectric ^e	\$64.27	\$37.87	0.60	0.45	
Capacity resource technologi	es				
Combustion turbine	\$117.86	\$101.74	0.86	0.61	
Battery storage	\$128.55	\$101.01	0.79	0.52	

New Zealand Levelized Costs per MWh


Geothermal: \$70 (limited resource/best sites are used first)

Gas:\$85 (with carbon costs)

Coal: \$110 (with carbon costs)


Wind:\$80 (limited resource/best sites are used first)

Hydro:\$75-\$100 (long construction times)

Conclusion

- Hydro power has become expensive
- Can cause flooding and harm fish
- Limited resource potential (location and available energy)
- New Zealand has access to fewer alternatives

Sources

https://www.energy.gov/eere/water/hydropower-basics

https://www.eia.gov/energyexplained/hydropower/where-hydropower-is-generated.php

Hydroelectricity - Te Ara Encyclopedia of New Zealand

Tongariro Power Scheme I Genesis NZ (genesisenergy.co.nz)

Hydronower | Flectricity | 2021 | ATR | NRFI

How Much Does It Cost To Build A Dam? (howmuches com)

Power prices could start to flatten out | Stuff.co.nz

https://www.fema.gov/sites/default/files/2020-08/fema_living-with-dams_p-956.pdf

https://www.fisheries.noaa.gov/insight/barriers-fish-migration#what-types-of-barriers-affect-fish-migration

 $\frac{https://niwa.co.nz/freshwater-update/freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-on-new-zealand-freshwater-update-64-february-2015/what-impacts-are-dams-having-freshwater-update-64-february-1015/what-impacts-are-dams-having-freshwater-update-64-february-1015/wha$

https://www.sciencedirect.com/science/article/pii/S0043135421012240

Picture Sources

https://www.google.com/uri?sa=i&uri=https%3A%2F%2Fkids.britannica.com%2Fkids%2Farticle%2FTennessee-Valley-Authority%2F353846&psiq=A0vVaw2BenRmVINOW

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.trgt.org%2Fstumpiump%2Fdonation-slot-for-rockcreek-stumpiump50k8psig=AOVVaw2Ur7dSLC92EKglxLef8upe&ust=16814929405680008source=images&cd=yfe&yed=0CBIOihxaFwoTCKicpr2vp

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.enchantedlearning.com%2Fusa%2Frivers%2F&psig=AOvVaw1fBCX8Ee6036ivCEF0-RPV&ust=1681492987241000&source=images&cd=yfe&ved=0CBiOihxgFwoTCICevdOvp_4CF0AAAAAdAAAABA&

https://www.google.com/url/sa=iiikurl=https%3A%2F%Pewww.kayak-newzealand.com%2Fnew-zealand-rivers%2Fkpsig=AQv/aw31SYiV9ek9vfhPFnKbSgACkust=1681493025284000&source=images&cd=vfe&ved=0CBAOiRxgFwoTCOD85uWvp_4CFOAAAAAdAAAABAF

https://www.google.com/ur/2sa=!kurl=https:%3%2F32Fwww.engineeringnz.org%2Forgrammes%2Fheritage#S2Fheritage#S2Fkgtage# S2Fkgtage#S2Fkgtag

https://www.google.com/url?sa=i&url=https%34%2F%2Fmypassionforscience.org%2Fperpetual-motion-machines-something-for-nothing%2F&psig=A0vVaw0f0muo_x2mHIWeRws

https://images.nationalgeographic.org/image/upload/t_edhub_resource_key_image/v1638882850/EducationHub/photos/vellow-river.ing

https://www.google.com/url2sa=i&url=https:%36%2F%2Fpsci.princeton.edu%2Ftips%2F2020%2F11%2F3%2Fcement-and-concrete-the-environmental-impact&psig=AOvVaw3iGi5q7F_upOOKr-FpMs9h&ust=1681493959797000%source=images&cd=vfe&ved=0CBiOihxqFwoTC.iiYqnOzo_4CF0AAAAAAAAAAT

https://www.google.com/url?sa=i8url=https:%34%2F%2Fwww.researchoate.net%2Ffgures/2Fannual-construction-of-large-dams-globally-since-1900-Data-source-ICOLD-WRD 2020 final 348754954880is-pa-OV/3491ing-175694165(GlobaReworl-Ewist=16514941400470008source-impaes/6649feWede-DG(GlobbaFeWorl-OFODhi m