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Steam enters a turbine with a velocity of 30 m/s and enthalpy, A,, of 3348 kI/kg (see Fig.
E5.20). The steam leaves the turbine as a mixture of vapor and liquid having a velocity of
60 m/s and an enthalpy of 2550 kJ/kg. If the flow through the turbine is adiabatic and changes
in elevation are negligible, determine the work output involved per unit mass of steam
through-flow,

Control volume

[R——— Steam turbine —
Section (1)
V), = 30 mis
hy = 3348 klikg Wena = 7 Section (2)
Vo = 60 mfs
hp = 2550kikg B FIGURE E5.20
§oLuTioN

We use a control volume that includes the steam in the turbine from the entrance to the exit
as shown in Fig. E5.20. Applying Eq. 5.69 to the steam in this control volume we get

0 (elevation change is negligible)
0 (adiabatic flow)

. vi-v? . .
miby = b+ S 80 £ 2) | = P+ Wanan ()
n net in
The work output per unit mass of steam through-flow, wg., can be obtained by dividing
net in
Eq. 1 by the mass flow rate, s, t)o obtain
Wihaft 2 2
net in V2 - Vl
= —= - +
W:r;?fitn " hy =k, T (2)
Since Winasnetout = — Wshatt netins WE OD12IN
VZ _ V2
Wanae = By — by + ———2
net out 2
or 4
Waan = 3348 kJ/kg — 2550 kJ/kg
net out
[(30 m/s)? ~ (60 m/s)?][1 J/(N-m)]
2[1 (kg'm)/(N-s*)1(1000 J/kJ)
Thus
Waare = 3348 kJ/kg — 2550 kJ/kg — 1.35 kl/kg = 797 kJ/kg (Ans)

net out

Note that in this particular example, the change in kinetic energy is small in comparison to
the difference in enthalpy involved. This is often true in applications involving steam turbines.
To determine the power output, W, we must know the mass flowrate, .




[ 507 |

§.117 A pump transfers water from one large
reservoir to another as shown in Fig. P5.117a.
The difference in elevation between the two res-
ervoirs is 100 ft. The friction head loss in the
piping is given by K,V 3/2g, where V is the av-
erage fluid velocity in the pipe and K is the loss
coefficient, which is considered constant. The re-
lation between the total head rise H across the
pump and the flowrate Q through the pump is

given in Fig. 5.1176. If K, = 20, and the pipe §
diameter is 4 in., what is the flowrate through the -
pump? & 200
Pl wf-i,-""‘lp-‘-'-%"‘ﬁl*'éz.*hg gloo
¥ 3 H
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Q. t3/s
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FIGURE P5.117
fpr the flow Hom sechon (1) +fo Sechon (2 ) EZ 5.2Y leads +v
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ﬁam F/"9, PSN7bE we conclude that
= 200 - /00

/,P (9] (2)
From the problem statement
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h o= __K_:._Q_z,_ - zo)a ¥) .t = Y0780 ft ()
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Comé/'m}y E’S- /1,2 and 3 we obtasn
40.73 Q + 100@ -100 = O (4)
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GROUNDWATER HYDROLOGY

Darcy’s Law
The flow of fluids in porous and fractured media are governed by Darcy’s Law that states flow
rate, v, is directly proportional to the driving gradient of total head, 4. This is described as,

v -=kLaﬁ
ax

where x is the longitudinal direction of flow and & is the hydraulic conductivity of the porous medium.
The parameter, v, is often referred to as the Darcy velocity. The mean discharge, Q, across a plane of
area A, oriented perpendicular to the direction of flow (x - axis) is defined as,

dh
=Ak—
e ox
or when the partial derivatives are written as finite derivatives,
Ah
=Ak—.
© Ax

In this the total head, &, is the sum of elevation and pressure head, and velocity head is assumed
negligible. The total head at any point is given by the elevation of that point above an arbitrary datum,
plus the pressure head that is experienced at that point.

Flow Nets

Despite the increasing use of computer methods, graphical methods remain an important, rapxd
and robust method of computing pressure dxstnbutlons and flow rates in nominally homogeneous
bodies. Flow net methods apply to flow in two-dimensional sections under steady state conditions. The
material may be porous or porous-fractured providing it may be represented by an equivalent isotropic
(k. =k,) or anisotropic hydraulic conductivity( k,=k,). The method requires that a net of orthogonal
trajectories is drawn to cover the saturated flow domain representing, respectively, streamlines and
equipotentials.

Streamlines trace the path of a individual particle of fluid (in an average sense) as it transits the

system.

Equipotentials locate a locus of constant total head, 4. It can further be demonstrated that the
streamlines represent boundaries that no fluid may cross, and therefore the groundwater surface is
a streamline. .PP Any orthogonal grid of streamlines and equipotentials that simultaneously
satisfy the boundary conditions of the flow system and the requirements for orthogonality also
satisfy the conditions for groundwater flow. A simple example is illustrated in the Figure 1 where
a net of curvilinear quadrilaterals is drawn that satisfies the constant head boundary conditions of
heads k¢ and hy. The phreatic surface (groundwater surface) represents the topmost streamline
dropping uniformly between equipotentials such that Ax=Ays, etc. The lowermost streamline
corresponds to a prescribed no-flow boundary beneath the system. It may be noted that the
equipotentials remain orthogonal to the upper (phreatic) and lower bounding streamlines, and also
to all intermediate streamlines.
From Darcy’s law, the unidirectional flow confined between streamlines (characterized by the
inset of Figure 1) may be represented as

0 10712

where Q is the volumetric flow rate of a single streamtube. Noting the equidimensionality of the
system as dw=dl then it follows that

Q 12=k (h1—h2)



and further realizing that fluid cannot leave the streamtube, then Q 1,=0Q3, and the head drops between
streamtubes must be uniform, as h,-h=h,~h;, etc. Consequently, the total head along any equipotential
may be evaluated. For equipotential &, the corresponding head is given as

5
h=(his —hau)m"’hau

where Np, is the number of potential drops in the system. This is 9 for this particular example. Total
flow rate may also be determined by summing the contribution of each of the streamtubes. Due to the
orthogonality of the flow net the flux contribution of each streamtube is identical. Consequently, for a
total of Ng streamtubes, the total flow, Q,,., is given as

Ns o b
Qtotal'ND ( in =i ow)

This extremely simple technique is powerful and versatile, and gives surprisingly good estimates of
pressure distributions and flow rates.

Flow Nets in Anisotropic Media

Where the system is described by different hydraulic conductivities in the x~ and y - directions,
the method may be extended. The following procedure must be adopted.

1  Redraw the flow section with the original (x,y) coordinates scaled to (¥,y) where ¥=xvk,/k;.
2. Draw a flow net in the distorted geometry described in 1., above.

3. The head distribution is determined by applying the reverse distortion of 1. and 2. to retum the
geometry to its real form.

4. The flow rate may be evaluated from
N.
Qo= VT, (i ~hew)

In groundwater environments, where conductivity magnitudes and distributions are commonly
poorly defined, or potentially indeterminate, approximate analysis by flow net sketching is of eminent
use.
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[9:3] Dimensional Analysis
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T 47
7.47 The drag on a 2-m-diameter satellite

dish due to an 80 km/hr wind is to be determined

through a wind tunnel test using a geometrically \

similar 0.4-m-diameter model dish. Assume stan- —
dard air for both model and prototype. (a) At —
what air speed should the model test be run? (b) ——n

With all similarity conditions satisfied, the mea-
sured drag on the model was determined to be

170 N. What is the predicted drag on the pro-
totype dish? TA—C ¢

() From £4.7.19, Reynolds number similanty is reguirfo( . Thus,

Voo VD
U v

Where D 15 the dish diameter. It fllows Tt
. Vm D
7 -

and with Y [y =1

th) From E§.7./%,

Tl D 2P VD
So Tmat (with /0

- ¢7 7‘:) (2m)"
7 (‘%D ‘%‘,)1 (0,‘//»11)1
(!Vo*e Tat B =L, in s problem, since from The Condition

of l?eyno/o's num ber .s/'m,'/am'v‘y) vVwr= DO, /Dt This 1s net
+rue n gtneral.)
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Pipe Flow [10-11]

2 2
— pV f, hzuzjor — f(L)V—, hP _ Power
8 D 2g 70

TW

2 2
V, \% Z . .
&+_1+Zl+hP:p2 +22 +Zz+ hzn410r+ E hznmar
g

y 2g Y
2
hzninor — KL V_, l‘:ninor — KLD’ KL — Ap -
2g ¢ / 3PV
) . C 44 £
Non-circular: Laminar: [ f = ——;D, = ?] Turbulent: [Use Moody; f = ¢(—)]
Re;,
Series: hy =h, +h, +..+h; ; Parallel: n, =h, =..=h,

Flow meters: Q = C4 fz(pl—_’f), B= D,
P-4 Dy

D,



ENnNGRGY CoWS IDERATIONS

2
-P—'—G-"(,\_/'_-G-E,:_Pi"""'z\_/f-(-et“"hl—
&L = | andl. fn‘_ = wviscous losses.

o constfont gceciin pee f(pvu V.= 1 a~d

( E‘; +- 21): L% -g-‘Z:z,)-(- Ll.__ kl_.-—- Z_tw_’(»
Y r

h, = 4 Tu

¥ D

A'P’pl&i«s ezywv% well B (aecusa-
d Toarbotot.

Subshivhiy § = %’_%» frm —c..,=f>_*_f")c

P -
\__/ . S
”‘l..= :F(—S);j

Equakin Ok for laminar and Furbulot
;(.(:F) (s Aiiraneel Corﬂdﬁ.

(Moot ).



EXAMPLE C(CALCULATIONS

Baswe Catcuanony TYPES

GEOMGTRY FronsRans Pressces DEuP
TYPE —
b,iff/_b d}_ov\/ APav- ‘1,_
T — - b-e‘frw\-lﬂ-{.
lkradeie. (1T - Deterniac =
sdlh.. : _
Sinica T Delirmune - =
]2., V.D,,\? Atl otte~ Pwu.m‘:.:a-:r gcm/éwu |
.

BAsSIC EQuATIONS

2
@ i+&l£+%l+hf>=?z+’<7'ﬁ'+%z_+h
v <4 Y 24
=
i.
OLI = | F« +U"6M ﬁh«: ’wf‘r/
L\L_ = L“Q.&L LOSS

| «L VL L , (4 N

P,iz secteeric

AL. = Z K_ XL F" A""d“/ e/’b’”"f
2'3 valwesr oz

\ Uma;wv-" losw. a J




47

= -

Re f

Tvanschomal ange

LI L O 0 8 04 e w . T
0.00R¢ L 7 1Whon)} turbulgntflowj ; i’*ﬁ};;ﬂz:; -L:‘:;wi“_ 1
0.00 gt }!' ;"1[- *ui: TI,!‘.,-}**E;_.IH[,‘ EREEESiEs
007 TS il ’ 5 = = I

.
{ -
P .
: - » - i 4 -
sl A 4 : ‘
&
e - . 1

l,_,_L
Ol
-

0.015

0.03Frr— 2 A S 2 18] 21143 ] I Pt i
) X P =T 1 el o , g L
0.025F4 11— AHIHHE B 5L THRE 2 S ?;{.Ei'r,i;;
165 S ol W ek o ] e S 2 L | 1 == = g =
:J'.j_*_..._‘;p\"; HOH ! i L e | i
002_1:_ :_f_* HORTES il (P o= e . J 1 o0 0 19 v m T
SR R fren e ;

il -241

J D g
L L

¢

= 0.01 { - :If--—.F HHITS
it Ji Rh 1} NN £

_ _L, ST ‘.;;-..:,.,, N
o.oogﬁ-g?“jl H S e 4 st T
0.008L T 1 ihf»ﬁ’!}:fiﬂllg I I il . Nﬂ‘*‘ﬁ
2(103) 4 68| 2(104) 4 68l 2(105) 4 68| 2(106) 4 68| 2(107) 468
10% 105 106 107
pVD

Re = ——
N

® FIGURE 8.23 Friction factor as a function of Reynolds number and relative roughness for round pipes—the
chart (Data from Ref. 7 with permission).
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