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Spectrum of Behaviors: Hydrothermal => SGRs => EGS
SedHeat Initiative

http://geothermal.tcu.edu
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Can EGS ever be Viable?

Economic viability – 100 kg/s/well
 
!H = !M fΔTf cf
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Induced Seismicity
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Basic Observations of Permeability Evolution and IS

Challenges
• Prospecting (characterization) 
• Accessing (drilling)
• Creating reservoir
• Sustaining reservoir
• Environmental issues

Observation
• Stress-sensitive reservoirs
• T H M C all influence via effective stress
• Effective stresses influence

• Permeability
• Reactive surface area
• Induced seismicity

Understanding T H M C is key:
• Size of relative effects of THMC(B)
• Timing of effects
• Migration within reservoir
• Using them to engineer the reservoir

Permeability
Reactive surface area
Induced seismicity

Resource
• Hydrothermal (US:104 EJ) 
• EGS (US:107 EJ; 100 GW in 50y)
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Key Questions in SGRs and EGS 

Needs
• Fluid availability

• Native or introduced
• H20/CO2 working fluids?

• Fluid transmission 
• Permeability microD to mD?
• Distributed permeability

• Thermal efficiency
• Large heat transfer area
• Small conduction length

• Long-lived
• Maintain mD and HT-area
• Chemistry

• Environment
• Induced seismicity
• Fugitive fluids

• Ubiquitous
[Ingebritsen and Manning, various, in Manga et al., 2012]

 
H = M fΔTf cf
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Thermal Drawdown EGS –vs- SGRs

   

!Hsolid ~ AλR

dT
dx

~
VλRΔT

s2

!H fluid ~ Qf ρW cWΔT    

!H f

!Hs

~
ρW cW

λR

Qf s
2

V
= QD

   

EGS :
!H f →∞
!H f
!Hs →∞

QD →∞
   

SGRs :
!Hs → 0

!H f
!Hs → 0

QD → 0

 Ti

  t0

  T0

 x tn  Ti

  T0

 x

  t0  tn

 Ti

  T0

 
tD =

ρW cW

ρRcR

Qf t
V 1W

at
er

 T
em

p 
(a

t 
ou

tl
et

)

Ro
ck

 T
em

p 
(in

 r
es

er
vo

ir
)

 2

Thermal Output:

In-Reservoir Water Temperature Distributions:
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Thermal Recovery at Field Scale
Parallel Flow Model Spherical Reservoir Model
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[Elsworth, JVGR, 1990]

[Gringarten and Witherspoon, Geothermics,1974] [Elsworth, JGR, 1989]

[Note: not linear in log-time]

Spacing, s, is small

Spacing, s, is large
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Key Questions in EGS and SGRs 
Needs
• Fluid availability

• Native or introduced – fluid/geochemical compatibility
• H20/CO2 working fluids? – arid envts.

• Fluid transmission 
• Permeability microD to milliD? – high enough?
• Distributed permeability 

• Characterizing location and magnitude
• Defining mechanisms of perm evolution (chem/mech/thermal)
• Well configurations for sweep efficiency and isolating short-circuits

• Thermal efficiency
• Large heat transfer area – better for SGRs than EGS?
• Small conduction length – better for SGRs than EGS?

• Long-lived
• Maintain mD and HT-area – better understanding diagenetic effects?
• Chemistry - complex

• Environment
• Induced seismicity - Event size (max)/timing/processes (THMCB)
• Fugitive fluids – Fluid loss on production and environment – seal integrity

• Ubiquitous

 
H = M fΔTf cf
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THMC Models - Rate-Limiting Processes

THMC-S – Linked codes Spatial Permeability Evolution

Temporal Permeability Evolution
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Induced Seismicity

[Elsworth et al., Science, 2016]
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Pohang (South Korea) Earthquake (2017) Mw~5.5

EGS Stimulation Related?

[Grigoli et al., Science, 2018]

Anatomy of the EQ
15th century EQs Mw~7

Mw<5 since instrumental 
recording in 1903

Mw~5.5 ~30km south of EGS
Mw~5.5 Pohang ~4km depth

Same strike-slip fault

Data         Model InSAR
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Maximum Event Magnitude – Equivalent Porous Medium

Moment Magnitude 
(Deviatoric)
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Maximum Anticipated Moment Magnitude – M or M_dot?
MGross or MNet? Triggered –vs- Induced?
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Possibility of Soft Stimulation (Pohang)?

[Hoffmann et al., GJI, 2019]

Stepped and Oscillating Injection WHP and Flowrates

Observed Seismicity
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Some Key Issues in Hydraulic Fracturing

[Elsworth et al., Science, 2016]

How Can We:
Maximize Recovery:

1. Longest/tallest/widest?
2. Highest proppant charge?
3. Most complex?
4. Best matched fluids?
5. Utilize natural natural fracture network?

Key EGS Challenges:
1. Induced seismicity
2. High temperature (proppants/well-hardware)
3. Eliminating thermal short-circuits
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Adaptation of HF to EGS?
Key Concepts of Recovery from Tight 
Formations

[Nature, 2011]

Key Need in EGS – relate to:

Constraints on Adapting Shale Revolution:
1. Open wells
2. High temperature

1. Smart wells and casing
2. Survivability of proppants

3. Hydraulic/thermal short-circuiting
4. ……..

Possible Contribution to EGS:
1. Horizontal/in-zone drilling
2. Hydraulic fracturing
3. Better hedge against IS?
4. ………

Potential use of HF and smart wells to 
maximize surface area and control short-
circuiting

 
H = M fΔTf cf
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Anticipated Thermal Stressing in EGS
For a closed system in thermal equilibrium: 
Heat carried by water: 

Heat in closed system:

Volume*Temperature Product: 

Event magnitude: 

Injected volume:

For an open and circulating system (last term loses the preceding porosity):
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Fluid Pressure –versus- Thermal Stressing-based Reactivation

Recurrence time
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Shear Offset Scaling – Seismic Only

[Zangeneh et al., 2013]

M~5.8
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Permeability and Elastic Softening

F	

[Elkhoury	et	al,	Nature,	2006]		
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[Shokouhi, Pers. Comm. 2016]

[Scuderi et al., Nature Geosc, 2016]

During the Seismic Cycle
Seismic waves trigger transient 

changes in elastic properties
Elastic softening coincides with 

increased permeability 
Lab observations of precursors to 

earthquake-like failure (i.e., 
elastic wave speed)

Monitoring to assess the critical 
stress-state in Earth’s crust

Potential for management of 
induced seismicity to 
maximize geothermal energy 
production
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Subduction Zone Megathrusts and the Full Spectrum of 
Fault Slip Behavior

Ide et al., 2007; Peng & Gomberg, 2010

  

Annual Fossil Fuel Budget

~ 15TW → 5×1020 Joules [500 EJ ]
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Requirements for Instability
1. Shear strength on the fault is exceeded 

– i.e.

2. When failure occurs, strength is 
velocity (or strain) weakening - i.e.

2. That the failure is capable of ejecting 
the stored strain energy adjacent to 
the fault (shear modulus  and fault 
length )  - i.e.

4. That effective normal stresses evolve 
that do not dilatantly harden the fault 
and arrest it via the failure criterion of 
#1 – i.e.

    τ > µσ 'n

   a −b < 0

    
G
l

< Kc = (b−a)σn '
Dc

    
1 >> vD = w2

k
vsη

KsDc
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Seismic – Aseismic Transition
Full Spectrum of Slip Behaviors
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Aseismic-Seismic Transition

Scale Dependence – the need for URLs and 
constrained experimentation at meso
scale.

Roles of:
Pressurization 
Deformation ahead of the fluid front
Mineralogical controls

[Guglielmi et al., Science, 2015]
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Rate-State Friction [1]

3 3

0 0

(1 ) (1 )bk
H
H

k b
= + = +

D D

   

ΔH
H

≅ Δφ = −ε ln( v
v0

) = −ε ln(
v0θ
Dc

)

Velocity Steps

R-S Friction

Dilation

Permeability Evolution

Multiple Velocity Steps

Single Velocity Step

[Samuelson et al., 2009]
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Rational Linkages: Rate-State Friction, Porosity and 
Permeability
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Frictional Stability-Permeability Experiments
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Frictional Stability-Permeability Observations
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v Seismicity-Permeability Linkages – Natural Samples
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Healing – Necessary Component of the Seismic Cycle
Shear Stress and Permeability Evolution
• Increasing shear stress peak is observed with increasing hold 

time (Frictional Healing)
• Permeability declines overall with temporal response to shear 

events
• Permeability decline is fast at initial stage then become slower

�

�
�� � � �

�

Experimental Notes
• Permeability of Green River shale #600 

grit became unresolvable after initial 
shear

• Westerly granite #150 grit stopped at 
~150 min due to limited pump capacity

• 8th shear applied to Westerly granite 
#600 grit after 5000 seconds
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WG #150 grit
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Shear Permeability Enhancement
Shear Induced Permeability Enhancement
• Later stage shear slip + Incremented duration of prior slip à Significant 

permeability enhancement
• Permeability continuously decreases during hold (Pressure solution?)
• Prior slip permeability recovery took 70 minute after slip ⑦,  WG #600 grit case
• Permeability increase appears to be linear to slip distance
• The enhancement is least apparent with rougher surface granite (WG #150 grit)
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Pressure solution 
• Permeability reduction due to pressure solution in all cases seems to 

follow power law decay                 with power p =-0.37  
• The enhancement can be significant after extremely long (natural scale) 

holds
• Can this be applied to natural hydraulic systems?
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Magnitude of Permeability Enhancement
Absolute perm increase: rougher granite > smoother granite > shale
Normalized perm increase: shale > smoother granite > rougher granite
Shear permeability increase with duration of prior hold time for 
Westerly granites
Shear permeability slightly decreases with prior hold time for Green 
River shale
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Key Issues in EGS and Sedimentary Geothermal Reservoirs (SGRs)
Spectrum of Behaviors EGS to SGR 
Homogeneous Permeability Flow Modes

THMC Controls on Permeability Evolution
Reinforcing feedbacks 

Induced Seismicity
Induced versus Triggered seismicity
Late-time seismicity

Linking Induced Seismicity to Permeability Evolution
Controls on seismicity – the aseismic-seismic transition
RSF – for permeability evolution
Controls on stability and permeability
Dynamic stressing - permeability

Reservoir Scale Response
Anomalous seismicity – Newberry Project
Permeability scaling – Newberry Project

Summary

Key Complex Process Couplings and Challenges in the Effective Recovery of 
Deep Geothermal Energy

Derek Elsworth (Penn State), Quan Gan (PSU), Yi Fang (PSU), Josh Taron (USGS), Ki-Bok Min (SNL), 
Hide Yasuhara (Ehime), Yves Guglielmi (LBNL/Aix-Marseille), Kyunjae Im (PSU), Chaoyi Wang (PSU), 

Takuya Ishibashi (AIST/PSU), Atsushi Sainoki (Kumamoto), Thibault Candela (TNO)
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Anomalous Seismicity – The Missing Zone
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Questions:
• What is the mechanism of this 

anomalous distribution of 
MEQs? 

• What does the anomalous 
distribution of MEQs imply? 

Wellbore Characteristics
• 0-2000m: Casing shoe
• 2000m-3000m: open zone
Spatial Anomaly
• Bimodal depth distribution
• Below 1950 m, only a few MEQs 

occurred.
• Between 500m and 1800m, 90% 

MEQs occurred adjacent to the 
cased part.

Temporal Anomaly
• Deep MEQs occurred within 4 

days and diminished after that 
time.

• Shallow MEQs occurred since the 
4th day.
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Constraints on Frictional Slip
1. Shear Failure Analysis

(a-b > 0)
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2. Friction Experiments

1. Shear Failure
Analysis suggests that
if seismicity occurs at
great depth, it should
occur continuously up
the rock column, and
not with a gap.

2. Frictional
Experiments are
performed to explore
the frictional stability
with depth and to
explore the
mechanisms of the
unexplained seismic
gap.
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RSF Properties

RSF Properties

• Weakly velocity 
weakening

• Seismic slip
• a is close to b, low 

stress drop

Friction (a-b) at 15-45 MPa

weakening

weakening

strengthening
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Linking MEQs to Permeability Evolution

Observed MEQs
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Workflow:
1. MT -> Orientation, mode of disp.
2. Magnitude, stress drop -> fracture size
3. Size -> roughness and dilation
4. Dilation/mode -> permeability evolution

1. Seismicity induced by hydroshearing is controlled by the Mohr-Coulomb
shear criterion.

2. The frictional coefficient evolves during seismic slip.
3. Two types of fractures:

- Velocity-weakening/seismic fractures and,
- Velocity-strengthening/aseismic fractures (fracture size smaller than

the critical length).
4. Fracture interaction is ignored – consequently variations in the orientations

of principal stresses are negligible

Seismic Events vs. Depth
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Seismicity-Permeability Validation
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Conclusions
Heat/Energy Recovery is a/the Key Parameter Defining Viability

Indexed via:
Sensitivity spectrum of response: Hydrothermal->SGR->EGS

Key Challenges - Complex THMC Interactions Influence Reservoir Evolution
1. Induced/Triggered Seismicity
2. Permeability evolution (also heat-transfer area)

Seismicity
Events can be large
Driven by both dp and dT (and dC?)
Triggered –vs- Induced events control M_w

Permeability
Evolution linked to seismicity via RSF
Implies key controls on permeability, e.g. –

mineralogy, dynamic stressing, sealing/healing 
Seismicity-Permeability Linkage 

Deciphering anomalous responses
Potential for reservoir creation, management and control

 
H = M fΔTf cf


