Short-timescale Chemo-mechanical Effects and Their Effect on the Transport Properties of Fractured Rock

By

Derek Elsworth, Hide Yasuhara, Amir Polak², and Jishan Liu³

Contributors: Abraham Grader, Phil Halleck, Chris Marone, Peter Rose¹ Department of Energy and Geo-Environmental Engineering Penn State University ¹EGI, University of Utah; ²The Technion, Haifa; ³University of Western Australia

> Supported By: DOE-BES-DE-FG02-00ER15111 & DOE-Geothermal-DE-FG36-04GO14289

What is the importance?

What are the roles of:

Stress fields and paths [M] Thermal fields and paths [T] Chemical potential fields and paths [CB] In the evolution of fluid transport [H] behavior? Specifically..... where fractures are present – what is the transmission sensitivity?... and ... Specifically..... whether fracture permeabilities increase or decrease with net dissolution/precipitation, pressure-solution,?And how quickly do they do this?

..... and what are the controls on these processes?

Typical Modes of Analysis for THMC Systems:

THM - GeoMechanics Direction of Flow $\sigma_x = 0 MPa$ $\sigma_v = 0 \text{ MPa}$ \square $\sigma_x = 5 \text{ MPa}$ $\sigma_v = 5 \text{ MPa}$ $\sigma_x = 20 \text{ MPa}$ $\sigma_v = 5 \text{ MPa}$

THC - GeoChemistry

e.g. K.-B. Min (2004)

[Courtesy: E. Sonnenthal]

What is the form of the THMC linkage C-to-M?.... And is it important?

Road Map

Overview

Observations of anomalous C-M coupling Constrained experiments Observed response Constraints on behavior Mechanistic models for response Lumped Parameter Models Granular systems Fractures Scaling relations in space and time **Distributed parameter models** Conclusions

Experimental Configurations

	Novaculite	Limestone
Matrix Porosity	<0.01%	<0.01%
Temperatures, °C	20-150	20
Effective Stress, MPa	3.5	3.5
Permeants	DI	G/w & DI
Diss. Rate, k ₊ [Mol.m ⁻² .s ⁻¹]	~10 ⁻⁹	~10 ⁻⁶
Precip. Rate, k [Mol.m ⁻² .s ⁻¹]	~10 ⁻⁷	

Experimental Arrangement

...

Arkansas Novaculite (99.5% Si; n<0.01%)

Typical Response

Hydraulic Measurements of db/dt

Mineral-Mass Measurements of db/dt

Imaging-Derived Aperture Changes

- •Observed mean aperture change of 10 µm
- •Resolution of 37 μ m too low
- In areas of large absent chip, aperture changes are of the order 100 µm
- •This amplification results from core rotation around a fulcrum

Road Map

Overview Observations of anomalous C-M coupling **Constrained experiments Observed** response Constraints on behavior Mechanistic models for response **Lumped Parameter Models Granular systems Fractures** Scaling relations in space and time **Distributed parameter models** Conclusions

Dissolution Processes Approaches to Determine Δk or Δb

Component Model

•Interface Dissolution

$$\frac{dM_{diss}}{dt} \approx \dot{\varepsilon}_{diss} \frac{d}{\omega} \rho_g \left(\frac{\pi}{4} d_c^2 \omega\right)$$

$$= \frac{3\pi V_m^2 \sigma_{eff} k_+ \rho_g d_c^2}{4RT}$$

$$\frac{dM_{diss}}{dt} = \frac{3\pi V_m^2 (\sigma_a - \sigma_c) k_+ \rho_g d_c^2}{4RT}$$

$$\sigma_c = \frac{E_m \left(1 - \frac{T}{T_m}\right)}{4V_m}$$

•Interface Diffusion
$$J = -D_b \frac{dC}{dx}$$
 $J_m = -2\pi r \varpi D_b \left(\frac{dC}{dr}\right)_{r=d_c}$

$$J_m = \frac{dM_{diff}}{dt} = \frac{2\pi \omega D_b}{\ln \left(\frac{d_c}{2a}\right)} \left(C_{\text{int}} - C_{pore}\right)$$

Pore Precipitation

$$\frac{dM_{prec}}{dt} = V_{pore} \frac{A}{M} k_{-} \left(C_{pore} - C_{eq} \right)$$

[Yasuhara et al., JGR, 2003]

Mass Transfer Modes – Essential Components

arbitrarily open or closed systems

[Experimental data from Elias and Hajash, 1992]

Constraint on Fracture Apertures and Fluid Concentrations

$$< b >= b_r + b_{\max} Exp[(R_c - R_{c0})/a]$$

Modeling Results - Novaculite

[Yasuhara et al., JGR, 2004]

Road Map

Overview Observations of anomalous C-M coupling **Constrained experiments Observed** response Constraints on behavior Mechanistic models for response Lumped Parameter Models Granular systems Fractures Scaling relations in space and time **Distributed parameter models** Conclusions

Projected Response of Novaculite

Define projected behavior for varied temperatures

....and mean stress magnitudes

Fractured Limestone – Features of Response

Fractured Limestone – Features of Response

Novaculite – 20 week response

....and Lumped Parameter Prognostic Model for Novaculite ...

.....and CT Observations.....

Road Map

Overview Observations of anomalous C-M coupling **Constrained experiments Observed** response Constraints on behavior Mechanistic models for response Lumped Parameter Models Granular systems Fractures Scaling relations in space and time **Distributed parameter models** Conclusions

Distributed Parameter Models – Applied to Novaculite ...

3. Dissolution at contact area and free-face (reaction)

Iteration

 \rightarrow Obtain concentration distribution + Modify aperture distribution due to dissolution

$$\frac{dM^{PS}}{dt} = \frac{3\pi V_m^2 \rho_g k_+ (\sigma_a - \sigma_c) A_e}{4RT}; \qquad \frac{dM^{FF}}{dt} = 2A_e k_+ \frac{C_{eq} - C_i}{C_{eq}}$$

4. Lagrangian-Eulerian method (Advection-diffusion)

 \rightarrow Obtain concentration distribution within and out of domain

Distributed Parameter Model – Results for Novaculite ...

 Numerical model is capable of better replicating experiment – multiplier on k₊ is greatly reduced over lumped parameter case.

Reynolds' Flow Vectors and Measured/Predicted Aperture Distribution in Sample

Observations

- 1. Transport properties change in sometimes surprising modes as controlled by:
 - Stress
 - Thermal
 - Chemical-potential
 - Advective flux

Fields and paths

- 2. Coupled Mechanical and Chemical feedbacks can be both significant and relatively rapid especially for systems far-from-equilibrium
- 3. Locations of mass redistribution exert a fundamental control on the form and strength of permeability change
- 4. These fields and paths exert strong control on bulk transport [and mechanical] properties related mechanical properties are manifest as a creep-like response (visco-elastic/plastic)
- 5. Understanding these complex interactions seem a prerequisite to predicting behavior at prototype scales