7_1 Exploration and Characterization - Geological Setting

Recap:

- 1. Dissolution/precipitation important within reservoirs and external plant
- 2. Equilibrium chemistry defines modes of precipitation/dissolution
- 3. Reaction rates determine rates of precipitation/dissolution

Movies: You now know enough to benefit from these

Reservoir Characteristics - Interpreting Temperature and Pressure Measurements from Wells Rick Allis, Utah Geological Survey https://www.youtube.com/watch?v=fClumFc3n5Y&t=2312s

Predicting and Detecting Natural and Induced Flow Paths for Geothermal Fluids in Deep Sedimentary Basins - Stuart Simmons, EGI, University of Utah https://www.youtube.com/watch?v=ZOJWIWzWLDg&t=2997s

```
Others as on the syllabus - at the Penrose SedHeat Meeting:
https://www.youtube.com/channel/UCBHQHy4hVyBJQFogrKvKUAg/videos
```

Resources: WG6

Motivation:

1. Motivation [10%] Provide context for the topic. *Use of relevant public domain videos* are a useful method for this. Why is this particular topic or sub-topic important in the broad view of geothermal energy engineering?

Quality of resource defined by Thermal_power = Mass_rate * c * delta_T Therefore prospect for:

(i) High Mass_rate/permeability/overpressure and

(ii) High T at shallow depth

Less crucial in "engineered" systems - "EGS" and "GSHP"

Scientific Questions:

2. Scientific Questions to be Answered/Outline [10%] What questions arise from the motivation. What are the sub-topical areas that address these scientific questions.

- 1. What geological habits/characteristics are indicative of geothermal reservoirs?
- 2. What methods are available to discover them and characterize the resource?
 - A. Geology/Geophysics
 - B. Drilling/Instrumentation
 - C. Well completion/Testing

GEOLOGY

- 1. What geological habits/characteristics are indicative of geothermal reservoirs?
 - A. Analysis of geology at a variety of scales plate boundary to local
 - a. Reports
 - b. Surface features remote sensing and imagery
 - c. Drilling records
 - B. Initiate local investigation
 - a. Geochemical signatures
 - b. Geophysical investigation
 - c. Drilling and sampling
 - d. Well completion then well testing

Classification of Geothermal Systems - Regional Perspective (WG6)

TABLE 6.1 Geological Settings That Host Geothermal Systems

Type of System	Topography	Depth to Resource (m)	Surface Manifestations	Permeability
Isolated continental volcanic centers (A)	Mountainous	Moderate to deep (2000 to >4000)	Hot springs, pools	Low to moderate
Andesitic volcano (B)	Mountainous	Moderate to deep (2000 to >4000)	Restricted, depending upon depth and groundwater level	Low to moderate, but fracture permeability can be high
Caldera (C)	Rugged ring fractures, gentle floor	Shallow to moderate (1500–2500)	Springs, pools, geysers, mud pots common	High permeability in tuffaceous units, some fault permeability
Extensional sedimentary basin and spreading centers (D, E)	Rugged on horsts, gentle in grabens	Usually deep (>2500 m)	Normally along bounding faults	Mainly along bounding faults or transverse faults
Oceanic basaltic provinces, hot spots (F)	Rugged	Shallow (<2000 m)	Lava flows, hot springs common	High horizontal permeability along flow units/breccias, etc.; low vertical, mainly fractures

Source: Paul Brophy, pers. comm.

A. Isolated continental volcanic centers (e.g. The Geysers)

B. Andesitic volcanoes (e.g. Cascade volcanoes incl. Newberry, Montserrat, BWI)

C. Calderas (e.g. Valles Caldera, NM (Fenton Hill), Yellowstone, Crater lake, OR, Long Valley, CA)

C. Yellowstone & Long Valley

A. The Geysers

B. Soufrière Hills Volcano, BWI

D. Fault-bounded sedimentary basins (e.g. Rhine graben France/German and Soultz EGS, Salton Sea, CA)

E. Fault bounded extensional complexes (e.g. Taupo Volcanic Zone, NZ, East Africa Rift)

F. Oceanic basaltic provinces (e.g. Hawaii, Canary Islands, Azores, Iceland)

These geological settings control the location of largely hydrothermal resources

What determines the optimal placement of wells? What methods are available to de-risk exploration

What about EGS in widespread locations and sedimentary aquifers

Figure 1 | A Conceptual Representation of Risks and Costs during the Different Stages of a Geothermal Development

Source: Adapted from Geothermal Handbook (ESMAP 2012).