Soil Washing

Physical Mechanisms

Soil washing is a process of scrubbing soils to separate contaminants from soils

Commonly done in one of two main methods

Dissolving or suspending contaminants in a wash solution using a reagent

By concentrating the solids, and attrition scrubbing

Which method you decide to use depends on characteristics of the soil, and of the contaminant

Physical Mechanisms (reagents)

 $\Delta {\rm G}{=}\sigma_{\rm ow}{+}\sigma_{\rm sw}{+}\sigma_{\rm os}$

When ΔG is negative, this indicates that the particles will separate from each other.

Adding reagents help by reducing surface tension between the contaminant and the particle, causing them to release

Same idea as using dish soap to remove grease from cooking pan

Physical Mechanisms (attrition scrubbing)

Attrition scrubbing is more effective when separating organics from soils

Relies on friction between particles to separate contaminants

Once freed from each other, particles can be further separated using another method

Similar to washing pan with only a sponge

Influencing Factors (Physical Characteristics)

How will these characteristics limit or make soil washing useful during this remediation?

Examine characteristics of the contaminant and aquifer physical properties

Specific characteristics influence specific types of soil washing

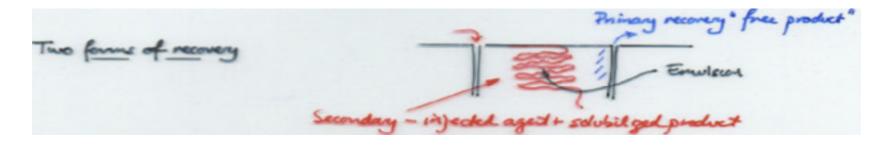
Alkali Soil Washing

Cosolvent Soil Washing

Surfactant Soil Washing

Water Flooding and Groundwater Extraction (Pump and Treat)

Effectiveness controlled by phase equilibrium beterogeneity fluid properties


Media Characteristics

Isotropic Media

Front Stability Controlled by - Mobility Ratio, M<1 - Gravity Number

VILLOWS

Heterogeneous Media complicates the issue

Alkali Soil Washing Influencing Factors

Enhance NAPL removal by "saponifying" the organic acids and produce natural surfactants which decreases the surface tension

Strong Alkali reacts with NAPL results in natural surfactant

Surfactants adsorb onto aquifer mineral material

NAPL wettability (Surface tension non-wetting x 1000)

DNAPLs do not contain acidic components

Alkalis reduces water viscosity

Compatibility Issues

Cosolvent Washing Influencing Factors

Stability of each front (M<1), adsorption, expansion, soil and aquifer properties

Action of gravity makes downflow most effective (front stable)

Solubility enhancement of hydrocarbons in soils

Alkali agents, surfactants, and polymers to improve mobility

Interfacial Instability (M>1) for large differences in viscosity

Heterogeneities largely influence behavior

Clay materials may cause desiccation to slug due to cosolvent reaction

Consideration for density

Surfactant Soil Washing Influencing Factors

Surfactant Concentration

Salinity

Temperature

Hydraulic Gradient

Interfacial Tension

DNAPL

Toxicity and recovery are key

Low Surface Tension

Water Flooding and Groundwater Extraction Influencing Factors

Low pumping rates

Stratigraphic depressions

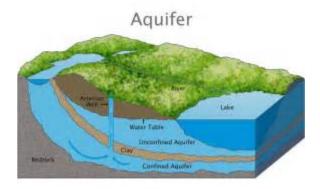
High NAPL Conc

DNAPL (Low specific gravity)

Volume

Applied at EPA Superfund Record of DecisionBrodhead Creek Site, Stroudsburg PA4.28 acres, approx 418,000 gallons of coal tar

Aquifer Influencing Factors

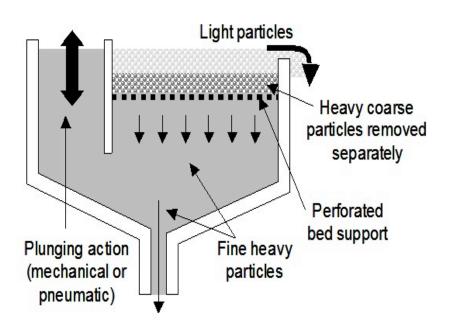

Unconfined

Confined

Storage Transmission Viscosity Porosity Conductivity Permeability

Density Bulk Modulus Specific Yield Specific Retention Pressure Head

Water Table Transmissivity Storativity Stress Compressibility


Soil Washing Lab Experiment

- **3 Main Processes in a Soil Washing Plant:**
 - **1. Soil Preparation**
- 2. Soil Washing
 - a. Washing, Rinsing
- **3. Wastewater Treatment**

- After site Excavation
- Coarse and Oversize Material Removed
- Techniques
 - Screening, Jigging, Hydrocyloning
- Large Rocks Removed
 - Usually impermeable

- If contaminated will be crushed to fines.

Jig Processor

Screening

190 Wills' Mineral Processing Technology

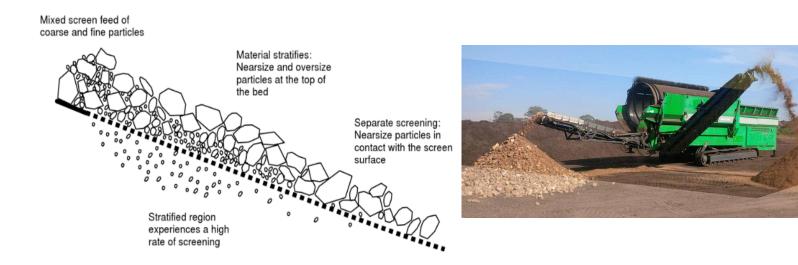
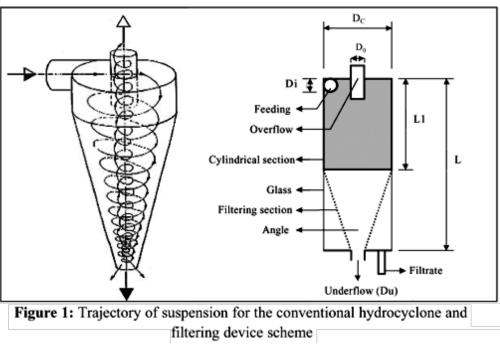



Figure 8.3 Stratification of particles on a screen (Courtesy JKMRC and JKTech Pty Ltd)

Hydrocyclones

Parameter	Purpose and Comment	<u>k</u>	ey Chemical	
Key Physical Particle size distribution: >2 mm 0.25-2 mm 0.063-0.25 mm <0.063 mm	Oversize pretreatment requirements Effective soil washing Limited soil washing Clay and silt fraction—difficult soil washing		Organics Concentration Volatility Partition coefficient	Determine contaminants and assess separation and washing efficiency, hydrophobic interaction, washing fluid compatibility, changes in washing fluid with changes in contaminants. May require preblending for consistent feed. Use the jar test protocol to determine contaminant partitioning.
<u>Other Physical</u> Type, physical form, handling properties Moisture content	Affects pretreatment and transfer requirements Affects pretreatment and transfer requirements		Aetals Iumic acid	Concentration and species of constituents (specific jar test) will determine washing fluid compatibility, mobility of metals, posttreatment. Organic content will affect adsorption characteristics of contaminants on soil. Important in marine/wetland sites.
	requirements	р	Other Chemical oH, buffering apacity	May affect pretreatment requirements, compatibility with equipment materials of construction, wash fluid compatibility.

1

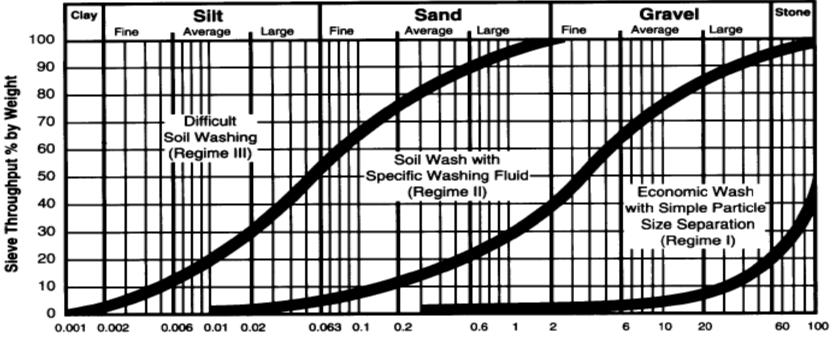


Figure 1 Soil Washing Applicable Particle Size Range

Diameter of Particle in Millimeters

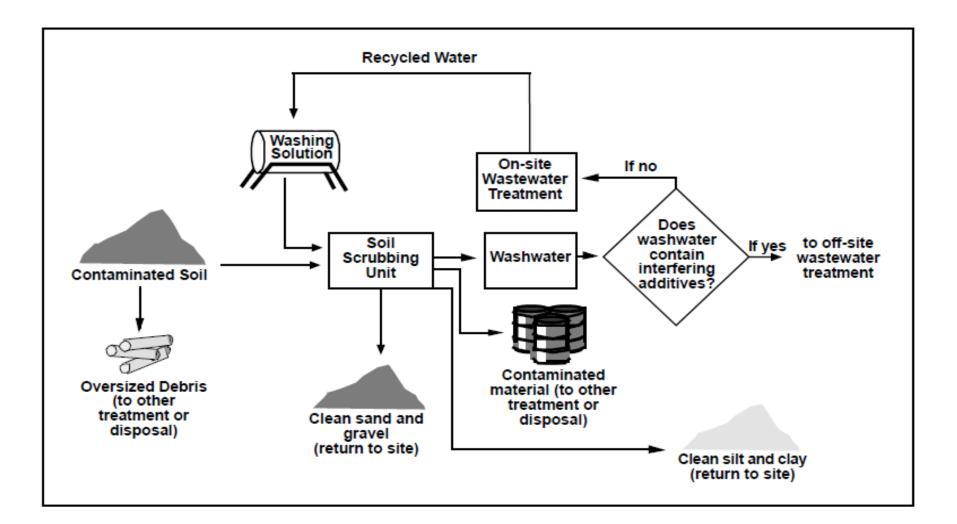
Table 1 Applicability of Soil Washing on General Contaminant Groups for Various Soils

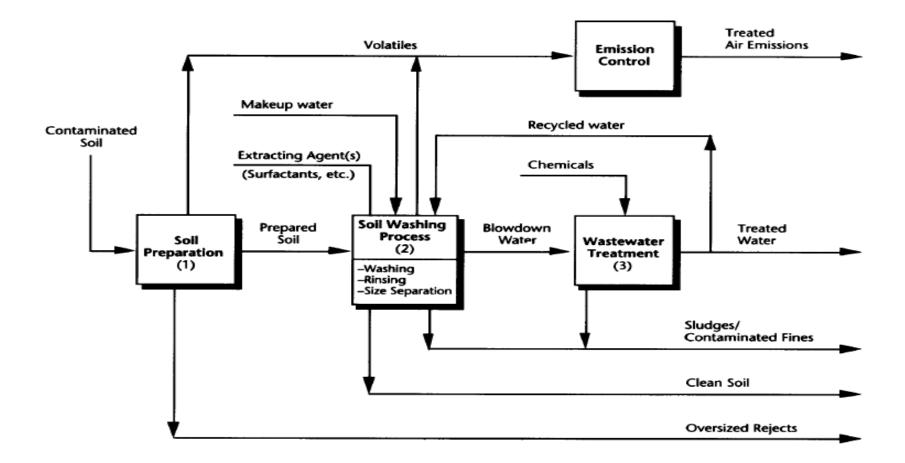
		Ma	trix
Contaminant Groups		Sandy/ Gravelly Soils	
	Halogenated volatiles		•
	Halogenated semivolatiles	•	•
	Nonhalogenated volatiles	=	•
2	Nonhalogenated semivolatiles		•
Organic	PCBs		•
ę	Pesticides (halogenated)	· · ·	•
1	Dioxins/Furans		•
	Organic cyanides	· · ·	•
	Organic corrosives	•	▼

Volatile metals		•
Nonvolatile metals		•
Asbestos	D	o i
Radioactive materials	▼	•
Inorganic corrosives	•	•
Inorganic cyanides	•	•
Oxidizers	•	•
Reducers	•	•
	Nonvolatile metals Asbestos Radioactive materials Inorganic corrosives Inorganic cyanides Oxidizers	Nonvolatile metalsImage: Constraint of the second seco

 Good to Excellent Applicability: High probability that technology will be successful

Moderate to Marginal Applicability: Exercise care in choosing technology


Not Applicable: Expert opinion that technology will not work


Primary Extraction				
Chemical solvents	Effective For	Application/Limitations		
Inorganic Salts	Thorium, Radium	Large Solution to Solid Ratio		
<u>Mineral Acids</u> Sulfuric Acid Nitric Acid Hydrochloric Acid	Radium, Thorium, Uranium	High Cost, Waste Stream difficult to clean		
Complexing Agents EDTA CTA Citrate	Radium	Expensive, low concentrations needed.		

Secondary Extraction				
Method	Extractants	Application/Limitations		
Precipitation and	Gaseous Ammonia, NaOH	Adjustment of pH, costly		
Coprecipitation	H2O2, Magnesia	operation		
Solvent-solvent Extraction	alkyl phosphoric acids	Transferring radionuclides		
	tri-n-butyl phosphate	from aqueous leach liqueur to		
	tioctyl phophine	no aqueous dilutant. Can't be		
		used with Carbonate solutions		
Ion Exchange	Sulfuric Acid	Uranium and Radium		
Fixed bed	Carbonate Leach Solution	Recovery. Impurities may		
Moving Bed	Chloride	overload circuits		
Resin-in-pulp	Nitrate			
	bicarbonate			
ACT*DE*CON	Chelant and Oxidant	Contaminants dissolved and		
		recovered by ion exchange or		
		evaporation		

Field Implementation: Site Requirements

- Access Roads
- 20 ton/hour unit
- 4 acres
- 130,000-800,000 gallons of water per thousand cubic yards of soil
- Cannot be done in winter, cold weather affects chemical processes

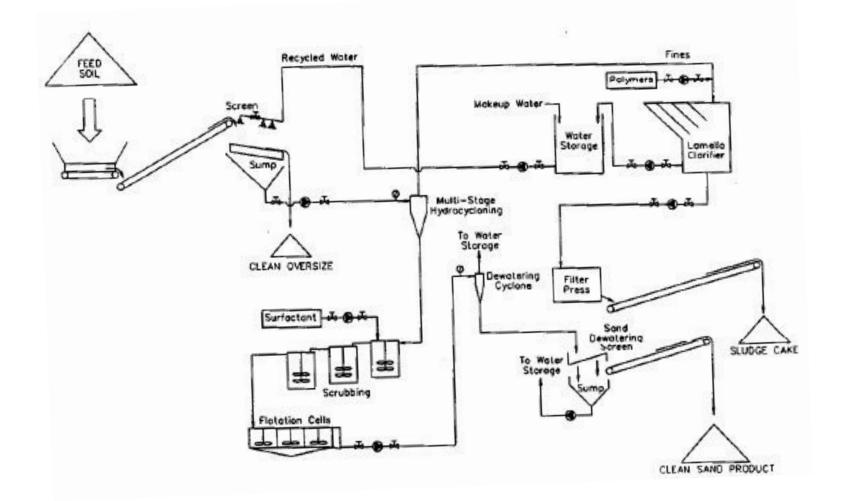
Field Implementation: Video

https://www.youtube.com/watch?v=mwlWaZXoZZ4

https://www.youtube.com/watch?v=k18kPpJc1is

Case Study #1: King of Prussia Technical Corporation Superfund Site, Winslow Township, NJ

- King of Prussia Technical Corporation processed 15 million gallons of industrial waste in 6 lagoons from 1971 to 1974
- 11 metals contaminated the soil after the industrial waste facility was shut down


- S	uperfund Site desig Contaminant	nated by the US EPA Original Soil Concentrations (mg/kg)	Regulatory Requirements (mg/kg)
	Chromium	500 - 5,000	483
	Copper	800 - 8,000	3,571
	Nickel	300 - 3,500	1,935

Source: U.S. EPA "Remediation Case Studies Thermal Desorption, Soil Washing, and In Situ

- Alternative Remedial Technologies, Inc. designed and operated the soil washing plant in 1993
- Selective excavation: used X-ray fluorescence (XRF) to determine which soil needed to be treated

Photos Source: ART Technologies, Inc. "Soil Washing at King of Prussia (KOP) Superfund Site

Screening

Dewatering

Hydrocyclone

Flotation

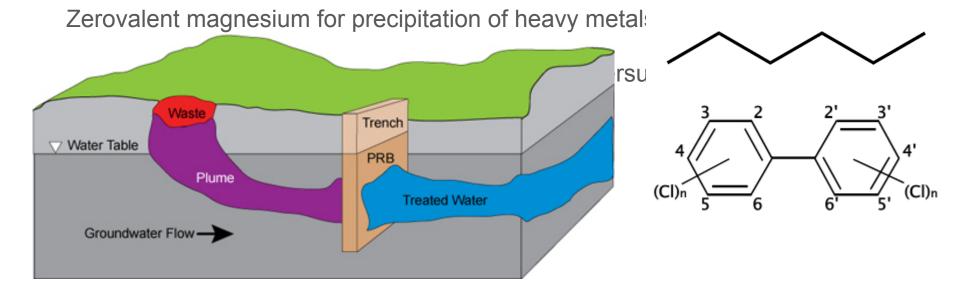
- The soil washing process successfully reduced all 11 metal concentrations well below regulated limits
- Final project costs were \$7.7 million

Contaminant	Original Soil Concentrations (mg/kg)	Regulatory Requirements (mg/ kg)	Clean Sand Product Concentrations (mg/ kg)
Chromium	500 - 5,000	483	73
Copper	800 - 8,000	3,571	110
Nickel	300 - 3,500	1,935	25

Case Study #2: A Washing Procedure to Mobilize Mixed Contaminants from Soil

Combination of cosolvent and surfactant soil washing

Simultaneous removal of PCB and heavy metals


High permeability and low water retention soils with history of organic pollutant and heavy metals contamination

1. Ehsan, S., S. O. Prasher, and W. D. Marshall. 2006. A Washing Procedure to Mobilize Mixed Contaminants from Soil . J. Environ. Qual. 35:2084-2091. doi:10.2134/jeq2005.0475

Ultrasonic mixing

Centrifuging of soil

Dissolution of PCB in aqueous hexane

Surfactant	First extraction $(n = 15)$	Second extraction $(n = 6)$	Third extraction $(n = 4)$	Sum	Cumulative PCB mobilized
		mg kg ⁻¹ \pm RSD \dagger (%)		mg kg $^{-1}$	%
Brij 98	28 ± 2 (60)	8 ± 7 (18)	2 ± 9 (4)	38	83
Triton X-301	27 ± 3 (58)	6 ± 10 (12)	0.8 ± 11 (2)	34	71
Triton XQS-20	24 ± 7 (52)	6 ± 14 (14)	1 ± 12 (3)	31	68

Table 4. Mean cumulative mobilization of PCBs for three successive washes of the soil (3 g) with the same charge of EDTA plus surfactant (30 mL L^{-1}).

† Relative standard deviation.

Table 5. Mean cumulative PCB mobilization for three successive washes of the soil (3 g) with EDTA plus surfactant (30 mL L^{-1}) using fresh reagents each time.

Surfactant	First extraction $(n = 3)$	Second extraction $(n = 3)$	Third extraction $(n = 3)$	Sum	Cumulative PCB mobilized
		mg kg ⁻¹ \pm RSD \dagger (%)		$mg kg^{-1}$	%
Brij 98	27 ± 5 (59)	9 ± 2 (20)	4 ± 6 (8)	40	87
Triton X-301	27 ± 8 (58)	8 ± 9 (17)	3 ± 14 (6)	38	81
Triton XQS-20	24 ± 2 (51)	8 ± 6 (18)	3 ± 5 (6)	35	76

† Relative standard deviation.

	Cumulative metal mobilized					
Analyte	Recycled EDTA	Fresh EDTA	Recycled EDTA–Triton QSX-20	Fresh EDTA–Triton QSX-20	Recycled EDTA-Brij 98	Fresh EDTA-Brij 98
			%	± SD†		
Al	7 ± 0.3c‡	16 ± 0.9a	9 ± 0.2b	16 ± 1a	9 ± 0.8b	16 ± 0.8a
Cd	$42 \pm 4a$	49 ± 7 a	$42 \pm 3a$	$49 \pm 5a$	$41 \pm 0.8a$	$49 \pm 0.8a$
Cr	$4 \pm 0.3c$	$10 \pm 0.4b$	4 ± 0.04c	$11 \pm 4a$	5 ± 0.4c	11 ± 0.4a
Cu	57 ± 4c	71 ± 4ab	57 ± 4c	$72 \pm 6ab$	64 ± 4bc	78 ± 4a
Fe	$2 \pm 0.1c$	$10 \pm 0.6b$	$2 \pm 0.1c$	$12 \pm 0.7a$	$3 \pm 0.3c$	12 ± 0.3a
Mn	$33 \pm 3b$	38 ± 0.4 a	30 ± 2b	36 ± 0.4a	31 ± 2b	37 ± 2 a
Ni	$20 \pm 2d$	$33 \pm 0.1b$	$20 \pm 0.8d$	31 ± 0.6c	$19 \pm 1d$	36 ± 1a
Pb	78 ± 5b	85 ± 4ab	77 ± 0.8b	88 ± 2ab	84 ± 0.8ab	92 ± 0.8a
Zn	$51 \pm 4b$	62 ± 4a	47 ± 5b	65 ± 3a	$52 \pm 2b$	69 ± 2a

Table 5. Mean cumulative metal recoveries in the supernatant fraction after equilibration of soil (3 g) with the same charge (recycling mode) of EDTA (2 mmol) or with fresh reagent each time.

† Standard deviation based on three replicate trials.

 \ddagger Numbers in the same row followed by the same letter are not significantly different (P = 0.05).

Applicability

The soil washing process is used for soils that are contaminated with:

Semi volatile Organic compounds

Fuels

Heavy metals

Some selected Volatile organic compounds

Pesticides

Limitations

Soil washing does not clean the soil, it separates the contaminated fraction from the clean fraction, hence minimizing the amount of soil need to be cleaned.

It is a technique of concentrating contaminants through separation Soil washing does not destroy or immobilize the contaminants

Limitation (cont)

Sometimes soil washing alone does not clean the polluted soil enough (therefore other methods must be used after) If there is a high organic content in the soil, it may require pretreatment.

Since it does not destroy or immobilize the contaminants the resulting contaminated soil must be disposed of carefully.

Cost and Availability

Initial Costs

Studies and Pre-Tests

Operational Costs

Labor, Equipment, Fuel

Set-up and Break-down Costs

Permits, Design

Chemical Analysis

Sou Disposal Coststz. "Soil Washing." Soil Washing | Geoengineer.org. N.p., n.d. Web. 27 Mar. 2017.

Cost and Availability

\$150-\$250 per ton

Most effective with large quantities

Not effective with silty soils

Low-cost alternative for separating waste and volume reduction

Hardware readily available

Source: United States Environmental Protection Agency (USEPA). (1996, April). "A Citizen's Guide to Soil Washing." EPA 542-F-96-002

Cost and Availability

Cost less with higher volume

RACER PARAMETERS	Scenario A	Scenario B
RACER FARAMETERS	Small Site	Large Site
Remedial Action:		
Media/Waste Type	Soil	Soil
Contaminant	SVOC	SVOC
Approach	Ex situ	Ex situ
System Definition:		
Volume (CY)	10,000	200,000
Density (Lbs/CY)	2,600	2,600
Quantity (Tons)	13,000	260,000
Size of Soil Washing Plant (Tons/Hr)	50	100
Mobilization Distance (Mi)	100	100
Safety Level	D	D
Additives:		
Surfactant Additive Rate (Lbs/ton)	4	4
Soil Type	sand-silt/sand clay mixture	sand-silt/sand clay mixture
Supply Water Temperature (°F)	55	55
Process Water Temperature (°F)	55	55
Make up Water (GPM)	50	100
Boiler Capacity (MBH)	0	0
Operation:		
Hours of Operation per Day	16	16
Hours of Downtime per Day	2	2
Days of Operation per Week	5	5
Weeks of Operation per Year	42	42
O&M:		Ξ
Years of O&M		
Additional Costs:		
O&M	\$0	\$0
Remedial Design (10% or 10K)	\$129,147	\$960,991
Soil Washing Marked-Up Costs	\$1,291,468	\$9,609,909
TOTAL MARKED-UP COSTS	\$1,420,615	\$10,570,900
COST PER CUBIC FOOT	\$5	\$2
COST PER CUBIC METER	\$187	\$70
COST PER CUBIC YARD	\$142	\$53