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3:1 Single porosity flows - Finite Element Methods [2:1]   
  
https://youtu.be/46QiOhaC47c    
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3:2 2D Triangular Constant Gradient Elements [2:3]    
    
http://youtu.be/a_8VZejdgTA  
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3:3 Transient Behavior - Mass Matrices [2:6]     
 
https://youtu.be/fl5AVItg51E  
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3:4 Transient Behavior - Integration in Time [2:7]    
 
https://youtu.be/no5Y6dCXcyE  
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3:5 Dual-Porosity-Dual-Permeability Models [6:1]   
Lecture       
https://youtu.be/key0TuOSDBU  
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4:1 Mechanical properties 
 
http://www.ems.psu.edu/~elsworth/courses/geoee500/GeoEE500_1.PDF 
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A TRIBI.TTE TO MAURICE A. BIOT

Mauricc A. Biot (190!19t5)

In presenting Mauricc Anthony Biot with the Timoshenko Medal in 1962, R. D. Mindlin,
the eminent Professor at Columbia University, wrote: "Fundamentally, Tony Biot has a
strong consciousness of the physical world around him. He has a kecn insight which enables
him to recognize the cssential features of a physical phenomenon and build them into a
mathematical model without blindly including non-essentials. Then he has, at his fingertips,
a vast array of the tools of mathematical analysis and analytical methods of approximation
which he uses skillfully to extract, from the model, predictions of the hitherto unpredictable.
They are all too few such men these days." These words by Mindlin accurately portrayed
M. A. Biot as an intuitive engineer, who could master the advanced tools of a physical
scientist, and as a scientist who did not lose sight of the physical world.

Mauricc Biot was born in Antwerp, Belgium on May 25th 1905. The war in l9ltl-I918
and the siege of Antwerp caused the Biot family to travel first to london, then Paris, and
finally settling in Chamb€ry, France. Thesc moves matured the young Biot and exposed
him to scveral languages.

I:ter returning to Antwerp, M. Biot concluded his sccondary school. In 1923 he enrolled
at a school in Brussels for preparatory oourses in mathematics, and in 1924 was admitted
at the Universit6 catholique de Louvain. It was at this time that Biot showed his insatiable
appetitie for knowledge. While pursuing his studies in Engineering, Biot also attended
oourses in Philosophy (he was awarded a Bachelor degree in Philosophy in 1927) and
Economics. He obtaincd a Mining Engineering degrce in 1929, and an Electrical Engineering
degree in 1930.

After defending his thesis cntitled "Theoretical studies on induced electrical currents",
Biot was awarded a Doctor of Sciencc degree in 1931. The sponsorship of the Belgian
American Educational Foundation allowed Biot to spcnd the next two years in the U.S.
(1931-1933) at the California Institute of Technology in Pasadena. It was at Cal Tech
where he first met and worked with Theodore von Krirm6n, who had arrived in the U.S. in
1929. Biot acquired a Ph.D. in Aeronautical Sciences in 1932 by defending his work
"Concept of responsc spectrum based on the earthquake acceleration." The methodology
brought great simplifications to the analysis of structures under transient loading and has
since been used as a tool in earthquake-proof design. It was during the same period that he
published his first papers on a new approach to the nonlinear theory ofelasticity accounting
for the effect of initial stress. By that time he had published about a dozen rientific papers
and patented his first three inventions.

.l5l 5



45t6 A tributc to Mauricc A. Biot

After a few months at the University of Michigan, Biot returned to Europe. In 1933 and
1934, the Belgian National Scientific Research Foundation granted him the opportunity to
travelto Delft, Gdttingen, and Zurich. With such sharp intelligence he was soon recognized
by the university community. [n 1934, Biot started his academic career as a teacher of
applied mathematics at Harvard University. In June 1935, he rcturned to Pasadena as an
Advanced Fellow of the Bclgian American Educational Foundation. By 1936, Biot was
elected to the faculty at his Alma Mater, the Universit€ catholique de Louvain, where he
taught Elasticity and Analytical Mechanics. From 1937 to 1946, Biot was a Professor of
Theoretical Mechanics and Physical Mathematics at Columbia Univenity. In 1946 Brown
University offered him the position of Professor in Applied Physics and Scienoes, which he
held until 1952.

It was in l9zt0 that the monograph Mathematical Methods in Engineering was written
with Th. von Kdrmdn. Its translation into nine languages is evidence of its influence on
scveral generations of engineers. Later in his career he wrote two more books: Mechanics
of Incremental Deformations (1955) and Variational Principles in Heat Transfer (1970).

The U.S. fascinated Biot, who found in it an environment conducive for research. Biot
became an American citizen in 1941. The war in Europe came to Biot as a major distress
and he took an active role in it. On lcave from Columbia University, he worked at the Cal
Tech Aeronautical Laboratory on problems of vibration and flutter, on the dynamic
stability of projectiles and also on anti-submarine shell impact. During the war, as a
Lieutenant Commander in the U.S. Navy, Biot headed the Structural Dynamics Scction of
the Bureau of Aeronautics in Washington, D.C. (1943-1945), and later conducted technical
missions in Europe with combat troops.

By 1951, Biot had produced a large number of scientific works for Shell Development
Co., Cornell Aeronautical Laboratory, and for the U.S. fur Force. After 1952 Biot worked
largely alone as a consultant for various governmental agencies and industrial laboratories.
From 1969 to 1982, Biot was a consultant for Mobil Research and Development Cor-
poration in Dallas, in the area of Rock Mechanics.

Relocated in Brussels since 1970, Maurice Biot continued his research until his last day.
It was on one of his last trips to the U.S. that Biot felt the early signs of his il lness that
would suddenly depnve him of his life on the l2th of Septembcr 1985, at the age of eighty.

The work and original contribution which distinguished Biot's career cover an unusually
broad range of science and technology including applied mechanics, sound, heat, ther-
modynamics, aeronautics, geophysics, and electromagnetism. The level of his work has
ranged from the highly theoretical and mathematical to practical applications and patented
inventions.

Aeronautical problems and fluid mechanics were the objects of most of his efforts during
the 1940s. He developed the thrcedimensional aerodynamics theory of oscillating airfoils
along with new methods of vibration analysis based on matrix theory and generalized
coordinates. This led to widely applied design proccdures of complex aircraft structures in
order to prevent catastrophic flutter. He also patented an electrical analogue flutter predictor
based on a simple circuit design which simulates aerodynamic forces. After the war he
continued work on non-stationary aerodynamic instability of thin supersonic wings, and
on the first evaluation ofthe transonic drag ofan accelerated body.

In the 1950s, Biot's work was concerned primarily with problems in solid mechanics,
porous media, thermodynamics, and heat transfer. He developed a new approach to the
thermodynamics of irreversible proccsses by introducing a generalized form of the free
energy as a key potential. The formulation was associated with new variational principles
and Lagrangian-type equations. The results with the introduction of internal coordinates
provided the thermodynamics foundation of a general theory of anisotropic viscoelasticity
and thermoelasticity. He later gave a systematic presentation of this work in a monograph
Variational Principles in Heat Transfer in 1970 and indicated its applicability to many other
problems such as those of elastic aquifers or neutron diffusion in nuclear reactor design.

Biot's interest in the mechanics of porous media dated back to 1940 with a fundamental
paper in soil mechanics and consolidation. He returned to the subject in the 1950s in the
more general context of rock mechanics in connection with problems in the oil industry.
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OD thc basis of his earlier work ia thcrmodynamics, he extcnded his thcory to the acoustics
in porous media and showcd that thcre cxistcd thrcc typcs of acoustic wavcs in such media.
In anothcr contribution hc was the first person to corrcctly provide the solution of the so-
callcd Stoncley wave, i.c. an interface wavc between a fluid ovcrlaying an elastic solid half-
rpace which, as some have argued, should more appropriatcly bc named after him.

For a short period in thc middle 1950s Biot bccame involved with rocket radio-guidancc
problems and the question of disturbance from ground rtflections. He showed that the
rcflection of elcctromagretic and acoustic waves from a rough surface may bc rcplaced by
a smooth boundary condition. He also introduced a new approach to pulsc generated
transient waves based on a continuous spoctrum of normal coordinates. The combination
of thc two methods providcd the only practical solution at that time of rcme important
problems.

In a scries of papers starting in 1957, Biot extended his carlier work in the mechanics of
initially stresscd solids, developing a mathematical theory of folding instability of stratified
viscous and viscoclastic solids. He verified the rcsults in the laboratory and applied them
to cxplain the dominant fcatures of geological structures. In particular, he brought to light
the phenomenon of internal buckling of a confined anisotropic or stratified medium under
compressive stress and provided a quantitative analysis. He applied the theory with the
same suooess to problems of gravity instability and salt dome formation. ln a later period
he presented a systematic treatment of the mechanics of initially stressed continua in the
monogtaph Mechanics of Incremental Deformations, published in 1965. In the 1970s Biot's
formulation of the variational principle of virtual dissipation in the thermodynamics of
irreversible processes along with a new approach to open systems led to a synthesis of
classical mechanics and irreversible thermodynamics. He applied these new theories to
directly obtain the field equations in systems where deformations are coupled to thermo-
molecular diffusion and chemical reactions. On this basis he also further developed the
theory of porous media including heat and mass transport with phase changes and adsorp-
tion effects.

The honors that Biot reccived during his lifetimc included the Timoshcnko Medal of the
American Society of Mechanical Engineers (1962), the Th. von KArmdn Medal of the
American Society of Civil Engineers (1967), and an Honorary Fellow of the Acoustical
Society of America (1983). He was also a member of the U.S. National Academy of
Engineering.

(Compilation based on the "Note on Maurice Anthony Biot" by A. Delmer and A.
Jaumotte published in 1990 by the Acad€mie Royale de Belgique, and on material supplied
by Madame M. A. Biot.)

A. H.-D. Crcnc
E. Derotnxrv

Y. AsouslerurN



General Theory of Three-Dimeusional consolidation*
Mevnrcr A. Bror

Columlio (Jnhtcrsitl, Ncu York, Nctts Yorh
(Received October 25, 1940)

The settlement of soils under load is caused by a phenomenon called consolidation, whose

mechanism is known to be in nany cases identical with the process of squeezing water out of

an etastic porous medium. The mathematicat physical consequences of this viewpoint are

established in the present paper. The number of physical constants necessaq'to determine the
properties of the soil is derived along with the general equations for the prediction of settle-
mentr and stresses in three-dimension-al problems. Simple apptications are treated as examples'
The operational calculus is shown to be a powerful method of solution of consolidation
problems,rpor temperature
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INrnooucrtoN

f T is well known to engineering practice that a
I soil under load does not assume an instan-
taneous deflection under that load, but settles
gradually at a variable rate. Such settlement is
very apparent in clal's and sands saturated with
water. The settlement is caused by a gradual
adaptation of the soil to the load variation. This
process is known as soil consolidntion A simple
mechanism to explain this phenomenon was first
proposed by K. Terzaghi.t He assumes that the
grains or particles constituting the soil are more
or less bound together by certain molecular
forces and constitute a porous material with
elastic properties. The voids of the elastic skel-
eton are filled with water. A good example of
such a model is a rubber sponge saturated with
water. A load applied to this system will produce
a gradual settlement, depending on the rate at
which the water is being squeezed out of the
voids. Terzaghi applied these concepts to the
analy'sis of the settlement of a column of soil
under a constant load and prevented from lateral
expansion. The remarkable success of this theory
in predicting the gettlement for many types of
soils has been one of the strongest incentives in
the creation of a science of soil mechanics.

Terzaghi's treatment, however, is restricted to
the one-dimensional problem of a column under a
constant load. From the viewpoint of mathe-
matical physics two generalizations of this are

possible: the extension to the three-dimensional
case. and the establishment of equations valid for

. any arbitrary load variable rvith time' The
theory was first presented by the author in rather
abstract form in a previous publication'2 The
present paper gives a more rigorous and complete
treatment of the theory which leads to results
more general than those obtained in the previous
paper.

The following basic properties of the soil are
assumed: (1) isotropy of the material, (2) re-
versibil i ty of stress-strain relations under final
equil ibrium conditions, (3) l inearity of stress-
strain relations, (4) small strains, (5) the water
contained in the pores is incompressible, (6) the
water may contain air bubbles, (7) the water
flows through the porous skeleton according to
Darcy's lau'.

Of these basic assumptions (2) and (3) are
rnost subject to crit icism' Hos'ever, we should
keep in mind that they also constitute the basis of
Terzaghi's theory, which has been found quite
satisfactory for the practical requirements of
engineering. In fact it can be imagined that the
grains composing the soil are held together in a
certain pattern by surface tension forces and tend
to assume a configuration of minimum potential
energy. This would especially be true for the
colloidal particles constituting clay. It seems
reasonable to assume that for small strains, when
the grain pattern is not too much disturbed, the
assumption of .reversibility will be applicable'

The assumption of isotropy is not essential andI Publication assisted bv the Ernest Kempton Adams
Fund fc Phvsical Research of Columbia University'- I f . Terz.Lhi, Erilboumcclanih ouf Bofunphysikalischcr
Gruidlopc tt-Aoiie F. Deuticke, 1925); "Principle of soil
mechani-cs,''' Etig.-New. Record (1925), a series of articles'
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t M. A. Biot, "Le problime de la .Consolidltion des
Maiieres:.isil.l"et "dut une charge," Ann' Soc' Sci'
Bruxel les 855, 110-113 (1935).
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anisotropy can easily be introduced as a re6ne-
ment. Another refinement which might be of
practical importance is the inffuence, upon the
stress distribution and the settlement, of the
state of initial stress in the soil before application
of the load. It was shown by the present authorr
that this influence is greater for materials of low
elastic modulus. Both refinements will be left out
of the present theory in order to avoid undue
heaviness of presentation.

The first and second sections deal mainly witJr
the mathematical formulation of the physical
properties of the soil and the number of constants
necessary to describe these properties. The
number of these constants including Darcy's
permeability coefficient is found equal to five in
the most general case. Section 3 gives a dis-
cussion of the physical interpretation of these
various constants. In Sections 4 and 5 are
established the fundamental equations for the
consolidation and an application is made to the
one-dimensional problem corresponding to a
standard soil test. Section 6 gives the simplified
theory for the case most important in practice of
a soil completely saturated with water. The
equations for this case coincide with those of the
previous publication.2 In the last section is
shown how the mathematical tool known as the
operalional calculus can be applied most con-
veniently for the calculation of the settlement
without having to calculate any stress or water
pressure distribution inside the soil. This metlod
of attack constitutes a major simplification and
proves to be of high value in the solution of the
more complex two- and three-dimensional prob-
lems. In the present paper applications are
restricted to one-dimensional examples. A series
of applications to practical cases of two-dimen-
sional consolidation will be the object of subse-
quent papers.

1. Soll Srnessrs
Consider a small cubic element of the con-

solidating soil, its sides being parallel with the
coordinate axes. This element is taken to be large
enough compared to the size of the pores so that
it may be treated as homogeneous, and at the

I M. A. Biot, "Nonlinear theory of elasticitl' and the
linearized case for a body under initial stress."
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same time small enough, compared to the scale of
the macroscopic phenomena in which we are
interested, so that it may be considered as
infinitesimal in the mathematical treatment.

The average stress condition in tJle soil is tien
represented by forces distributed uniformly on
the faces of this cubic element. The corresponding
stress components are denoted by

o2 T' T'

r ,  c r r  12  (1 .1 )
7J 7'  C7

They must satisfy the well-known equilibrium
conditions of a stress field.

0o,  0r ,  0r"-+-+- :0 ,
6x 0y 0z

6r ,  0o"  0r ,_+_+_:0,
Ex 0y 0z

( r .2 )

0ru 0r ,  6o,_+_+_:0.
0x 6y 0z

Physically rve may think of these stresses as
composed of two parts; one which is caused by
the hydrostatic pressure of the water filling the
pores, the other caused by the average stress in
the skeleton. In this sense the stresses in the soil
are said to be carried partly by the water and
partly by the solid constituent.

2. SrnerN Rer,erep ro Srnrss awo
\\IerBR Pnrssune

We now call our attention to the strain in the
soil. Denoting by a, v, w the components of tle
displacement of the soil and assuming the strain
to be small, the values of the strain components
are

6u 0w 0v
Cr : - t  ' t r - - + -

6x 0y 0z
0a 0u 0w

€v:-- ,  ?r:1-* , - ,  (2,1)
0y 0z 0x
0w 0v Eu

Az : - ,  ? r : - - l - - ,
0z - 0x _0y

In order to describe completely the macroscopic
condition of the soil we must consider an addi-
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tional variable giving tie amount of water in the
oores. We therefore denote by d the increment of
iater volume per urtit volume of soil and call this
quantity the sorietion itt water contenl. The
inrremenl oJ wotcr pressure will be denoted by a'

I-et us consider a cubic element of soil. The
water pressure in the pores may be considered as
uniform throughout, provided either the size of
the element is small enough or, if this is not the
case, provided the changes occur at sufficiently
slow rate to render the pressure differences
negligible.

It is clear that if we assume the changes in tJre
soil to occur by reversible processes the macro-
scopic condition of the soil must be a definite
function of the stresses and the water pressure
i.e.. the seven variables

e, Clt e, 7x 'Yr 'f, 0

must be definite functions of the variables:

6 7  6 t  6 t  7 t  7 !  T t  O '

Furthermore if we assume the strains and the
variations in water content to be small quantities,
the relation between these two sets of variables
may be taken as linear in first approximation'
We first consider these functional relations for
the particular case where o:0. The'six com-
ponents of strain are then functions only of the six
stress components 62 cy c2 r, r" r,' Assuming the
soil to have isotropic properties these relations
must reduce to the well-known expressions of
Hooke's law for an isotropic elastic body in the
theory of elasticity; we have

, , :2-L6o*o, ) ,
E E
6 r ' r , \

ee : -  - - \ 6  t t ox )  t- E E

,, :2-L6,*o"),
E E

'Yr:7./G,

'ly: rt/G,

'Y':  f  ' /G'

In these relations the constants E, G, I may be
interpreted, respectively, as Young's modulus,

Vol,uuB lz, FEBRUARY, t9+r

the shear modulus and Poisson's ratio for the
solid sketeton. There are only two distinct
constants because of the relation

E
G-- .

2( r*v)
(2.3)

Suppose now that the effect of the water pressure
c is introduced. First it cannot produce any
shearing strain by reason of the assumed isotropy
of the soil; second for the same reason its effect
must be the same on all three components of
strain e, c, c,. Hence taking into account the
influence of o relations (2.2) become

6 3 y o
e , : - - - (o " *  o , ) *=- ,-  

E  E . .  3 H

6 J  ' ,  
|  \ r  

d

ey :=-= \o t to , ) - t7 - ,
E E  3 H

o.  t
e, :---(o"+oy)+-_,

E E  3 H

1t: r ' ' /G'

'Yy: ry/G,

^Y ' :T ' /G '

where I/ is an additional physical constant.
These relations express the six strain components
of the soil as a function 6f the stresses in the soil
and the pressure of the water in the pores. We
still have to consider the dependence of the
increment of water content 0 on these same
variables. The most general relation is

0:  agr*azo"*o$r loar ,
*o { " *osr " *ozo '  (2 .5 )

Now because of the isotropy of the material a
change in sign of r' r" t, cannot affect the water
content, therefore or:oL:ol:0 and the effect

(2.2) of the shear stress components on d vanishes.
Furthermore all three directions r, y, z must have

. equivalent properties o1:@2:sr. Therefore rela-
tion (2.5) may be written in the form

(2.4)

1 o
0:- : (o,*a"{a, )* - ; ,  (2 .6)

3Hr J<

where Ilr and R are two physical constants.

1 5 7



Relations (2.4) and (2.6) contain fivc distinct
physical constants. We are now going to prove
that this number may be reduced to four; in
fact that H:Ht if we introduce the assumption
of the existence of a potential energy of the soil.
This assumption means that if the changes.occur
at an infinitely slow rate, the work done to bring
the soil from the initial condition to its 6nal state
of strain and water content, is independent of the
*'ay by which the 6nal state is reached and is a
definite function of the six strain components and
the water content. This assumption follows quite
naturally from that of reversibility introduced
above, since the absence of a potential energy
would then imply that an indefinite amount of
energ'y could be drawn out of the soil by loading
and unloading along a closed cycle.

The potential energy of the soil per unit volume
is

U:i(o"e,* ore"* o,a,* r,"f ,
* r " 'y"*r ,1,*o0) .  (2.7)

In order to prove that H:Hr let us consider a
particular condition of stress Such that

6 z :  6 y =  6  z :  O t r

T " :  T y :  T  r : 0 ,

Then the potential energy becomes
g : | (oye*a0 )  w i t h  e :e . ! e r l e ,

and Eqs. Q.$ and (2.6)

3( l  -  2v)  o
c: - - - - - -  -or-F: ; ,  0 :ot /Ht*o/R.  (2.8)

E H

The quantity € represents the volume increase of
the soil per unit init ial volume. Solving for or
and o

e 0
Or t : - - - ,

RA HA

-€ 3 ( l - 2v )0
. (r-_*_,

H,A EA

3(t  -2v)  1
A : -

.ER HHT

The potential energy in this case
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We have thus proved that If:I/r and
write

t o
0-- (o,*ou*o,)* - .

3 H R

we may

(2.10)

Relations 12.4) and (2.10) are the fundamental
relations describing completely in 6rst approxi-
mation the properties of the soil, for strain and
u'ater content, under equilibrium conditions.
They contain four distinct ph1'sical constants
G, v, H and R. For further use it is convenient to
express the stresses as functions of the strain and
the water pressure o. Solving Eq. (2.4) with
respect to the stresses we find

. / ve \o . = Z G l e . * : - - - . - l - " o ,
\  1 - 2 v /

/ vc \
o u : 2 G l  q * -  l - o o ,

\  |  - 2 v /
t
iti
Li

i
:

o , :zG(e , * ; r ) - " , ,  (z . t r )

. 
Tx:G^fz,

r r :G7 r ,

r':G'Y'
u'ith

3 (L -2v )  H

(2.g) In the same way we may express
water content as

0 : a e * a / Q ,

1 l s
O R H

JorrRNAr, oF
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(2.r2)
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3. Psvslcel INrenPnBrlrIoN oF THE
Sott- CoNst.lurs

The constantJ E, G and Y have the same
meaning as Young's modulus the shear modulus
and the Poisson ratio in the theory of elasticity
provided time has been allowed for the excess
water to squeeze out' These quantities may be
considered as the average elastic constants of the
solid skeleton' There are only two distinct such
constants since tlrey must satisfy relation (2'3)'
Assume, for example, that a column of soil sup-
ports an axial load ps:-ot while allowed to
"*pand freely laterally. If the load has been
applied long enough so that a final state of
,"ttl"-"nt is reached, i.e., all the excess water has
been squeezed out and c:0 then the axial strain
is, according to (2.4),

sure. The two elastic constants and the constants
I/ and R are the four distinct constants which
under our assumption define completely the
physical proportions of an isotropic soil in the
equilibrium conditions.

Other constants have been derived from tlese
four. For instance c is a coefficient defined as

2 ( r *v )  G
"--ift-2,l,E (3.s)

According to (2.12) it measures the ratio of the
water volume squeezed out to the volume change
of the soil if the latter is compressed while
allowing the water to escape (o:0)' The coeffi-
cient l/Q defined as

(3.6)
Po,": -E

and the lateral strain

O R H

is a measure of the amount of water which can be
forced into the soil under pressure while the
volume of the soil is kept constant' It is quite

obvious that the constants a and Q wiil be of
significance for a soil not completely saturated
wlth water and containing air bubbles' In that
case the constants a and Q can take values

depending on the degree of saturation of the soil'
The standard soil test suggests the derivation

of additional constants. A column of soil supports
a load po: - o zand is confined laterally in a rigid
sheath so that no lateral expansion can occur'
The water is allorved to escape for instance by
applying the load through a porous slab' When
all the excess water has been squeezed out the
aiial strain is given by relations (2'11) in which
we put o:0. We u'rite

The coefficient / measures the ratio of the lateral
bulging to the vertical strain under final equi-
librium conditions.

To interpret the constants If and R consider a
sample of soil enclosed in a thin rubber bag so
thar the stresses applied to the soil be zero' Let
us drain the water from this soil through a thin
tube passing through the walls of the bag' If a
negative pressure -o is applied to the tube a
certain amount of u'ater will be sucked out' This
amount is given bv (2.10)

vPo
e r : e ! : - :  - y e . .

o
f : - -

R

o
€:  - -

H

er:  -pr f r .

The coefficient ' l - 2 v

.  o : -
2G(r- v)

(3.1)

(3 .2 )

(3.3)

(3.4)

(3.7)

(3.8)
The corresponding volume change of the soil is
given by (2.4)

will be called the firc| compressibility'
If we measure the axial strain jusf after the

load has been applied so that the water has not
had time to flow out, we must Put 0:0 in
relation (2.I2). We deduie the value of the water

Pressure 
c: - aQe,. (3'9)

The coeffici efi l/H is a measure of the com-
pressibility of the soil for a change in water
pr.*ur", while l/R measures the change in
water content for a given change in water pres-
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substituting this value in (2.11) we write

2r :  _p&; .
The coefficient

oo,r:7;;5
will be called the instanta.ncous compressibitrity.

The physical constants considered above refer
to the properties of the soil for the state of
equilibrium when the water pressure is uniform
throughout. We shall see hereafter that in order
to study the transient state we must add to the
four distinct constants above tie so-called
cofficient of permeabilily of the soil.

4. GBwrul Eguerrows GovrnNrNc
ConsorroerroN

We now proceed to establish the differential
equations for the transient phenomenon of con-
solidation, i.e., those equations governing the dis-
tribution of stress, water content, and settlement
as a function of time in a soil under given loads.

Substituting expression (2.11) for the stresses
into the equilibrium conditions (1.2) u'e find

t_, Oe ct6
GV2u+_  __d_ :0 ,

1 - 2 v  0 r  0 x

G 0 e 0 o
GVUa- - -a- :0 ,

l - 2 v  E y  0 y

G 0 e 0 c
GVfu+- --d-:0,

|  -2v 0z 0z
pz : Qz / gs2 | 62 f 0y2 { 62 / l7z.

There are three equations with four unknowns
ta, o, rn, a. In order to have a complete system we
need one more equation. This is done by intro-'
ducing Darcy's law governing the flow of water
in a porous medium. We consider again an
elementary cube of soil and e.ll V, the volume of
water flowing per second and unit area through
the face of this cube perpendicular to the r axis.
In the same way we define V, and I/,. According
to Darcy's law these three components of the
rate of flow are related to the water pressure by
the relations

6a 0o 0aV. :  -k - : ,  Vo :  -k - . ,  V , :  -p - - .  (4 .2 )
0x 0y 0z

The physical constant & is called the coefi.cient of
permeability of the soil. On the other hand, if we
assume the water to be incompressible the rate of
water content of an element of soil must be equal
to the volume of water entering per second
through the surface of the element, hence

d d_ :
at

0v, 0v, av"
0r 0y 0z

L
(4.3)

Combining Eqs. (Zf) (4.2) and (4.3) we obtain

0 e  t 6 o
hY2o:a-*-  - .

d t  Q a t
(4.4)

The four differential Eqs. (a.1) and (4.4) are the
basic equations satisfied by the four unknowns
u, v,  w, o.

(s.1)

/ (  ? )

(3.10)

(3.11)

(4.1)

where o is th'
constant. Fr<

and from (2.

Note that E

This relatior

with

The constar
water Pressl
boundary a:

Taking tl

The 6rst cc
ability of ti
soil. The se

The initi,
water musl

Carrying t

where or al
The solt

condition

The set

5. Appr,rceuoN To e SreNpeno Sotl Tesr
Let us examine the particular case of a column of soil supporting a load ps:-otand confined

Iaterally in a rigid sheath so that no lateral expansion can occur. It is assumed also that no water can
escape laterally or through the bottom while it is free to escape at the upper surface by applying the
load through a very porous slab.

Take the z axis positive downward; the only component of displacement in this case will be zr.
Both u and the water pressure a will depend only on the coordinate z and the time l. The differential
Eqs. (4.1) and (4.4) become .1-

I Afu Ap/'
- - _ 4 _ : Q ,
a 022 dz

02a A\n l  0o
h-- d-+-.:-_,
022 0z0t Q at
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r four unknowns where o is the final compressibility defin"rl by (3.8). The stress c, throughout the loaded column is a

nplete system we:
is done by intro-
:he flow of water
nsider again an
I/, the volume of
nit area through
rlar to the * axis.
od V,. According
mponents of the
.'ater pressure by

0o'': -ft-. (4.2)
Ez

l the coeficient of
rther hand, if we
:ssible the rate of
cil must be equal
:'ing per second
:nt, hence

)v,
::-. (4'3)
ctz

(4.3) we obtain

T-. (4.4)

and (4.4) are t}re
: four unknowns

-a' and confined
hat no water can
by applying the

s case will be u.
. The differential

(s'1)

(s.2)

,PLIED PETSICS

constant. From-(2'l1) we have

and from (2'12)

t & o
ps:  -c t :  - -1 - *aa

o d z

A7o 6
0:o--*-.

o z O
Note that Eq. (5.3) implies (5'1) and that

t Ah) 0o

a 0z0t At
This relation carried into (5'2) gives

with

02a | 0o
- : -  - ,
022 c 0t

t a l
- - c r l * - .
c  k Q k

(s.3)

(s.4)

(s.s)

(s.7)

(s.8)

(s.e)

1 6 1

The constant c is called the consolid,ation conslanl. Equation (5.4) shows the important result that the

water pressure satisfies the well-known equation of heat conduction' This equation along with the

boundary and the initial conditions leads to a complete solution of the problem of consolidation'

Taking the height of the soil column to be L and z:0 at the top we have the boundary conditions

o : 0  f o r  z : 0 ,

Ea
- : 0  f , o r  z : h .
6z

(s.6)

The first condition expresses tlat the pressure of the water under the load is zero because the perme-

ability of the slab through which the load is applied is assumed to be large with respect to that of the

soil. ihe second condition expresses that no water escapes through the bottom'
The initial conaition irihat the change of water content is zero when the load is applied because the

water must escape with a finite velocity' Hence from (2'12)
0 w c

o:,--*6:o for  l :o '

Carrying this into (5.3) we derive the initial vdlue of the water pressure

r t  |  \  & - o i
o :po /  

\ *O* " )  
f o r  l : 0  o r  c - -Po ,

where ar and a are the instantaneous and fnal compressibility coefficients defined bv (3'8) and (3'11)'

The solution of the difierentiat equation (5.4) with the boundary conditions (5.6) and the initial

condition (5.?) may be written in the form of a series

o: !o-o,  , " loo |  - (  "  
\ '  , r t  

rz  1  r  13r \2 1 3tz  I

r o,-ol * L \zrl - 'J sin i*1"*o L- \a) "lsin -*' ' '  | '
The settlement may be found from relation (5'3)' We have

!Ur-ana-oPo.

Vorvur 12, tr'EBRUARY, l9+l



' I "
t \'l

The total settlement is - a ' .

c t |w  8  :  1  1  fen* t ) r -1 ,  I7oo : -  |  -d r : -  1o-o)hp , t=+op . |_ l :  l  a lao tpo .  (s .10). t o  6 z  1 2 '  . -  ; ( Z n l l ) z - - 1  L  z n  J . - | , , " , . '
I m m e d i a t e l y a f t e r l o a d i n g ( l : 0 ) , t l r e d e f l e c t i o n i s   

8 o [ys i: - -(a - o;)hpo E .-_ .=:* ohp.. n 2 '  " . " 7 ( 2 n ! l ) z ' '
Taking into account that

o [ T 2

T 1r"*tyr:; '  
ui:oih\o'

6. SIM?LIFIED

For a comP
test shows tha
be taken equ
comPressibilit
the soil is equr

i out. Accordin

This reduces t
the soil to tl
permeabilitY.
deduce

and from (5
constant takt

Relation (2.1

The general
(4.4) are sim

By adding t
of Eqs. (6.5

where a is t
From (6.

Hence the
equation o

Voruur r

which checks with the result (3.10) above. The final deflection for r: .o is
w-:ahfo.

(s.1 1)

(s.12)

(s. 1 3)

It is of interest to find a simplified expression for'the law of settlement in the period of time immedi-ately after loading. To do this we first eriminate the initial deflection zoi by considering
8  . .  *  1  1  f  / ( Z n + t ) r \ ,701: 7D 6- tp;: J-6 - a;)hp, + #{ t - *o L_ (#) r,ll

. f :  -
a' F - i

.Tjir.
trfis 

lxlrelses that part of the deflection which is caused by consolidation. we then consider therare oI setuement.

and write (5.14) as
n/h: E, l /h:  dg

It follows a parabolic curye as a function of time (curve 2 in Fig.
162

(s.14)

(s.1 s)

(s.16)

1 ) .

JorrRNAr oF AppLED psysrcs

d w , 2 c ( a - a ; )  :  1  f e n t l z r l ,  I
d,:--T-?o I exn l-L " ]"1

i

For l:0 this series does not converge; which means that at the first instant of loading the rate ofsettlement is infinite. Hence-the curve representing the settlement zr, as a function of time startswith a vertical slope and tends asymptotically toward the value (a-a;)hptas shown in Fig. 1 (curve1)' It is obvious that during the initial period of settlement the height D of the column cannot haveany-influence on the phenomenon because the water pressure at the?epth z:hhasnot yet had timeto change' Therefore in order to find the nature of the settlement curve in the vicinity of l:0 it isenough to consider the case u'here h: q .In this case we put

dw, €- : 2c(a - a) p o D exp [ - nr({ + * A)rct)AE

for h: o. The rate of settlement becomes the integral
dw, f- c(a-o;)ps-: Zc(a - a;)?o I exp (-zr2f2ct)d,g:-.
at J o (trct)l

The value of the settlement is obtained by integration

f t  dw,  tc t \ lw , :  |  - -d l :2 (a-a)po l : l  .
J o  d t  

_ \ o  
/



)s.  (5.10)

(s.1 1)

(s.12)
time immedi-
c

(s.1 3)

consider the

(s.14)

rg the rate of
,f t ime starts
Fig. 1 (curve
cannot have
yet had time
'  o f  l : 0  i t  i s

(s. 1 s)

(s.16)

6. Srupnrrpo TgBonv FoR A Satunetso CLAy

For a completely saturated clay the standard
test shows that the initial compressibility o; may
Uu t"t utt equal to zero compared to the final
compressibility a, and that the volume change of
the soil is equal to the amount of water squeezed
out. According to (2.12) and (3'11) this implies

This reduces the number of physical constants of
the soil to the two elastic constants and the
permeability. From relations (3'5) and (3'6) we
deduce 

2Gg*v)n-n:fia,1 (('2)

and from (5'5) the value of the consolidation
constant takes the simPle form

Q :  * ,  a : 1 .

c :  k  / a .

Relation (2.12) becomes

0 :  e .

The general differential equations
(4.4) are simPlif ied,

G 0 e 6 o
GV2u+- - - - :0 ,

l - 2 v  6 1  0 x

G 0 e 0 o
Gv?1+-  - - - : 0 ,

|  - 2v  0Y  0Y

G 0 e 0 c
Gvrl)+- ---:0,

t - 2 v  0 z  0 z

0e
kV a2 --

at

-  1 d c
V€2 : - -

c 0 t

Equations (6.5) and (6.8) are the-fundamental
"qu"bont governing the consolidation of a com-
pletely saturated clay. Because of (6'4) the initial
condition 0:0 becomes c:0, i.e., at the instant
of loading no volume change of the soil occurs'
This condition introduced in Eq' (6'7) shows that
at the instant of loading the water pressure in the
pores also satisfies Laplace's equation'

Vo2:0. (6 '9)

The settlement for the standard test of a column
of clay of height lz under the load 2o is given b1'
(5.13) bV putt ing &t:0.

9 . 1
w, - - -ohpoL; -  -

T2 o (2nl l)2

x{r-"*n?e#)",]} (6 10)
From (5.16) the settlement for an infinitely high
column is

, , :zoor(L)t . (6 .11)

(6.1)

(6 .3 )

(6.4)

(4.1) and

(6.s)

(6.6)

(6.8)

It is easy to imagine a mechanical model having
the properties implied in these equations' Con-
sidei a .ytt"* made of a great number of small
rigid paiticles held together by tinv helical
rp.i"g.. tttis system will be elastically deformable
"na *itt possess average elastic constants' If we
fill completely with water the voids betrveen the

By adding the derivatives with respect to r, y, z
of Eqs. (6.5), resPectively, we find

Ye2:oYo2, (6.7)

where o is the final compressibility given by (3'8)'
From (6.6) and (6.7) we derive

Hence the volume change of the soil satisfies the
equation of heat conduction.

VoLUME 12, FEBRUARY, l9+t

Frc. 1. Settlement caused by consolidation as a function
of 

-tio".'C-u*e 
I representi tlie settlement of a column of

t'.ilf,i i itiii" 6iapi' cu*" 2 represents the settlement
forln infinitely high column.
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particles, we shall have a model of a completely
saturated clay.

Obviously such a system is incompressible if no
water is allowed to be squeezed out (this corre_
sponds to the condition 0= -) and the change
of volume is equal to the volume of water
squeezed out (this corresponds to tie condition
a:1). If the systems contained air bubbles this
would not be the case and we would have to
consider the general case where e is 6nite and
a * 1 .

Whether this model represents schematically
the actual constitution of soils is uncertain. It is
quite possible, however, that the soil particles are
held together by capillary forces which behave in
pretty much the same way as the springs of the
model.

7. OrnaartoN.lr Cercur.us Appr,lro ro
CoNsolroerroN

The calculation of settlement under a suddenly
applied load leads naturally to the application of
operational methods, developed by Heaviside for
the anal),sis of transients in electric circuits. As
an illustration of the power and simplicity
introduced by the operational calculus in the
treatment of consolidation problem we shall
derive by this procedure the settlement of a
completely saturated clay column alreadv catcu_
lated in the previous section. In subsequent
articles the operational method will be used
extensively for the solution of various consotida_
tion problems. We consider the case of a clay
column infinitely high and take as before the top
to be the origin of the vertical coordinate z. For a
completely saturated clay a: l, e: o and with
the operational notations, reptacing E/0t by p,

Eqs. (5.1) become
1 A\o 0c 02o 0u__:_ ,  k_ :O_.
o 02, 0z 02, ' dz

A solution of these equations which
infinity is

7!- CP-'btdl,

1 t b t l
o: Cr--l '- | Cre-,br"tr

o \ c  /

(7 .1 )

vanishes at

(7.2)

Rcswcl Dc1
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twentieth t,
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parts of tl
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Chapter 4, It I{ .  H. K
128 (1938).
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Vor,uur

l
col
@l
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The settlement u,, at the top (z:0) caused by the
sudden application of a unit load is

The meaning of this symbolic expression is
derived from the operational equationr

The boundary conditions are for s:0
l 0 w

( f  t :  -  1  : -  - ,  o :0 .
Hence 

a oz

,  C z : 1 .

(7 .3)

The settlement as a function of time under the
load po is therefore

ar:r"Or(l). (7.4)

This coincides with the value (6.11) above.
. V. Arrh, O-pcrotional Circuit Anotyis (John Wile1,,New York, tgZg), p. tCZ.
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4:3 Dual-porosity poroelasticity 
  





Flow-Deformation Response of Dual-Porosity Media 
By Derek Elsworth,1 Member, ASCE, and Mao Bai2 

ABSTRACT: A constitutive model is presented to define the linear poroelastic 
response of fissured media to determine the influence of dual porosity effects. A 
stress-strain relationship and two equations representing conservation of mass in 
the porous and fractured material are required. The behavior is defined in terms 
of the hydraulic and mechanical parameters for the intact porous matrix and the 
surrounding fracture system, allowing generated fluid pressure magnitudes and 
equilibration rates to be determined. Under undrained hydrostatic loading, the 
pore pressure-generation coefficients B, may exceed unity in either of the porous 
media or the fracture, representing a form of piston effect. Pressures generated 
within the fracture system equilibrate with time by reverse flow into the porous 
blocks. The equilibration time appears negligible for permeable sandstones, but it 
is significant for low-permeability geologic media. The constitutive model is rep-
resented in finite element format to allow solution for general boundary conditions 
where the influence of dual-porosity behavior may be examined in a global context. 

INTRODUCTION 

The linear flow-deformation behavior of geologic media is governed by 
the theory of single-porosity poroelasticity, as expounded originally by Biot 
(1941). Where, as in the case of fissured rock and soils, the medium com-
prises discrete fractions of differing solid compressibilities and permeabili-
ties, a dual-porosity approach appears more appropriate. 

The dual-porosity approach has been extensively developed to represent 
single-phase and multiphase flow in petroleum reservoirs. The original char-
acterization of naturally fractured reservoirs by Warren and Root (1963) 
has been developed for radial flow in both blocky (Odeh 1965) and tabular 
reservoirs (Kazemi 1969) using analytical approaches and extended to mul-
tiphase flow using numerical techniques (Yamamoto et al. 1971; Kazemi et 
al. 1976; Kazemi and Merrill 1979; Thomas et al. 1983). Interest in single-
phase behavior within dual-porosity reservoirs has been concerned with 
accurate representation of the flux fields within the porous and fractured 
components (Huyakorn et al. 1983) for application to mass (Bibby 1981) 
and thermal transport (Pruess and Narasimhan 1985; Elsworth 1989). In all 
of these applications it is assumed that total stresses remain constant with 
time, and therefore poroelastic effects are not incorporated. 

The theory presented by Aifantis (1977, 1980) and Khaled et al. (1984) 
provides a suitable framework in which the flow-deformation behavior of 
dual-porosity media may be fully coupled to the deformation field as a 
multiphase continuum. Multiphase poroelasticity requires that the condi-
tions of flow continuity within the different solid phases and the exchange 
between the phases are superimposed on the elastic displacement behavior 
of the fissured mass as body forces. As initially defined (Aifantis 1977), the 
constitutive coefficients describing the behavior of the aggregated medium 

Associate Professor, Dept. of Mineral Engrg., Pennsylvania State Univ., Uni-
versity Park, PA 16802. 

2Research Associate, Dept. of Mineral Engrg., Pennsylvania State Univ., Uni-
versity Park, PA 16802. Now at School of Petroleum and Geological Engineering, 
University of Oklahoma, Norman OK 73019-0628. 

Note. Discussion open until June 1, 1992. To extend the closing date one month, 
a written request must be filed with the ASCE Manager of Journals. The manuscript 
for this paper was submitted for review and possible publication on May 11, 1989. 
This paper is part of the Journal of Geotechnical Engineering, Vol. 118, No. 1, 
January, 1992. ©ASCE, ISSN0733-9410/92/0001-0107/$1.00 + $.15 per page. Paper 
No. 26530. 
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defy direct physical interpretation. Although phenomenological coefficients 
describing both load-deformation and fluid-percolation response may be 
determined directly from laboratory and field testing of the fractured systems 
(Wilson and Aifantis 1982), these coefficients may be recovered more con-
veniently from basic knowledge of modulii and permeability of the com-
ponents comprising matrix and fissure porosities. 

Defining the response of the system directly in terms of the elastic and 
permeability properties of the components, with due regard for fissure ge-
ometry, offers the further advantage of ensuring that material nonlinearities 
of unknown magnitude are not inadvertently included within data reduced 
from field testing. This is an important factor, given long-standing knowl-
edge on the nonlinear load-deformation behavior of interfaces (Goodman 
1974) and the strong aperture dependence of fluid transmission in fissures 
(Iwai 1976). Indeed, the conditions needed to satisfy requirements for a 
linear theory of dual poroelasticity for fissured media may be so restrictive 
that, in all practicality, the phenomenon must be viewed as intrinsically 
nonlinear. This argument aside, only linear phenomena are considered in 
the following. 

Where the structure of the fissured mass is well defined, as in the case 
of regularly jointed rocks and fissured soils, the contribution of fissure and 
matrix components to the overall flow and deformation response of the 
medium are readily apparent. Indeed, where elastic and flow properties of 
the fissures and matrix are known a priori, it is reasonable to develop the 
governing equations directly from this constituent basis. This exercise is 
completed in the following to develop the macroscopic continuum equations 
of linear poroelasticity on the basics of known fluid compressibility and 
defined fissure stiffness, porosities, and permeabilities. 

CONSTITUTIVE EQUATIONS 

The behavior of the dual porosity aggregate may be defined in terms of 
component equations representing the solid deformation and coupled fluid-
pressure response. The morphology of the continuum is represented in 
Fig. 1. 

Solid Deformation 
The relationship between changes in total stresses (da) and intergranular 

stresses (do-') are governed by the Terzaghi (1928, 1943) relationship of the 
form 

FIG. 1. Morphology of Porous-Fractured Aggregate 
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dax = dcrj + mdp1 (la) 

da2 = da2 + mdp2 (16) 
where dp = change in fluid pressure. The effect of grain compression on 
the intergranular stresses are neglected. Stresses and strains are positive in 
compression. Subscripts 1 and 2 refer to the porous and fractured phases, 
respectively, and are represented as do-! = 3[cr.vx, ayy, erzz, uxy, crvz, <ryz]{ 
and So1! = d[axx, a22, crvJf for three-dimensional and two-dimensional prob-
lems, respectively. Since pore fluid pressures act on the normal stresses 
alone, the vector mris [1,1,1,0,0,0] and [1,1,0] in three- and two-dimensions. 
Vector or matrix quantities are represented by boldface type. It may be 
readily noted that the influence of grain compression on the intergranular 
stress relationship (Skempton 1960; Nur and Byerlee 1971) [(1)] may be 
accommodated by substituting a modified magnitude of the vector m. This 
modified vector is determined as m„ = (m — l/3^D„m), where the subscript 
refers to the intergranular relation for the porous [n = 1 and (la)] or 
fractured [n = 2 and (lb)] phases. In this, K„ is the bulk modulus of the 
solid and D„ is the elasticity matrix for phase n, as defined subsequently. 
The influence of grain compression on intergranular stresses are neglected 
because of the relative compressibility of the skeleton of interest in this 
study. 

Local stress equilibrium requires that changes in total stress within ad-
jacent phases must remain in equilibrium, such that 

ScTx = da2 = da (2) 
The linear constitutive relationships for the separate phases are defined as 

da[ = Djdei (3a) 

da2 = D2dE2 (3b) 

where e = solid strain within each of the two materials, namely porous and 
fractured material, and the inverse relations recovered from (3a,b) are 

de1 = C^CTI (4a) 

dz2 = C2dcr2 (4b) 

where D„ = the elasticity matrix for phase n with all other phases assumed 
rigid, and C„ = the compliance matrix under a similar arrangement, such 
that D,7X = C„. Since D„ and C„ are written to represent the elastic behavior 
of phase n only, and are stated at a macroscopic level to contain a repre-
sentative sample of matrix and fissure geometry, the total strain due to 
deformation in each of the phases is 

de = del + de2 (5) 

or, substituting (1) into (4) and recording the result into (5) gives 

de = (Ci + C2)3o- - C1mdp1 - C2mdp2 (6) 

or 

da = D12(de + Cjmd/?! + C2mdp2) ' (7) 
where D12 = (Cx + C2)^x and dividing through by time increment dt allows 
(7) to be recorded as 

109 

 J. Geotech. Engrg., 1992, 118(1): 107-124 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

03
/2

5/
16

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



<j = D12(e + Ciiapx + C2mp2) (8) 
representing the time-dependent load-deformation constitutive equation. 

Fluid Pressure Response 
Conservation of fluid mass must be maintained for each of the two porosity 

types, with appropriate transfer being possible between the two. The basic 
statement of continuity of flow requires that the divergence of the flow-
velocity vector be equal to the rate of fluid accumulation per unit volume 
of space, i.e., Vrv = rate of accumulation. Equating the continuity con-
straint for the porous phase with changes in fluid mass due to all possible 
mechanisms gives the rate of fluid accumulation as the summation of: 
(1) Change in total body strain resulting in fluid expulsion; (2) change in 
fluid pressure precipitating changes in volumetric pore fluid content as a 
result of fluid and grain compressibility; and (3) volumetric transfer between 
the porous blocks and the fractures under differential pressures. These three 
source terms represent the right-hand side of the continuity relationship as 

Vrvx = m ^ ! - c ^ + K(Pl - p2) (9) 
where Vr = (d/dxl, . . . , d/dx,) in the case of ;' dimensional geometry; 
Eulerian flow velocity vf = [vvl, . . . , vvi] and ax = [nJKf + (1 - n^/K,], 
where nx = the porosity of phase 1; Kf = the fluid bulk modulus; and ks 
= the solid grain bulk modulus. Transfer between the porous block and 
the surrounding fractures may be quantified by the assumption of a quasi-
steady response governed by the coefficient K and the instantaneous pres-
sure differential (/?! — p2) (Warren and Root 1963). 

In (9), the volume strain within the porous medium, mTe1, refers to the 
drained condition where excess pore pressures are zero throughout the load-
ing process. The proportion of the volume strain manifest within the porous 
phase may be determined from the total volume strain, mTe1, by substituting 
(7) into (1) and the result into (4). This gives following division by dt, which 

mTe1 = mTCJ)12(e + C^mpt + C2mp2) - mrC1m/J1 (10) 
which may be reduced to the drained response by requiring that p1 = p2 
= 0. [The requirement of using drained solid body strain may be confirmed 
by noting the form of (40) where pressure changes are set to px = p2 = 0 
leaving the only mechanism for fluid expulsion into the separate phases 
through displacement rates, ii.] The truncated (drained) form of (10) may 
then be substituted into the continuity relationship of (9) to yield 

VTvt = m^CJ^e - axA - K{Pl - p2) (11) 
to give the final form of the continuity relationship for phase 1. Again, it 
is noted that the influence of grain compressibility as a result of changes in 
intergranular stresses has been neglected. This effect may, however, be 
incorporated by substituting the vector mt for m in (11), where m1 accom-
modates the intergranular stress relationship of (1). This effect is small for 
the stress levels of interests within geotechnical engineering and may be 
neglected. 

Repeating the same process for the fractured material gives a second 
continuity relationship 

Vrv2 = mrC2D12e - ct2p2 + K(Pl - p2) (12) 
where the fracture compressibility term is defined as a2 = n2/Kf, with n2 
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representing the fracture porosity. Again the influence of grain compress-
ibility on the intergranular stress relationship is neglected, but it may be 
readily included by substituting m2 for m. 

DUAL-POROSITY LOAD RESPONSE 

For the case of general loading, the dual-porosity response may be fully 
described by (8), (11), and (12) to determine the magnitude of instanta-
neously generated displacements and fluid pressures and their modification 
with time. Although these relationships are entirely general, it is instructive 
to consider the behavior under purely hydrostatic loading and examine the 
response in normalized format. This will allow us to determine the important 
differences between true dual-porosity systems and their representation by 
an equivalent single-porosity system. 

Hydrostatic Behavior 
Where a hydrostatic load is applied to the dual-porosity medium, the 

three-dimensional form of (7) that contains a total of six subordinate equa-
tions may be reduced to a single component. For a ubiquitously jointed 
medium containing orthogonal fractures of uniform spacing, s, the strain 
components may be reduced on noting that 

mTe = 3e (13) 
and the compliance matrices are represented as 

C - < ^ <14„) 

c> = h <146> 
where k„ = the joint normal stiffness and the stiffness matrix reduces to 

D12 = (Q + c y - 1 (15) 
Rearranging (8), (11), and (12) for an applied hydrostatic stress magnitude 
cr yields 

6- = D12s + DuQp! + D12C2p2 (16) 

K(Pi ~ p2) = lDl2Cxi - axpx (17) 

-K(Pl - p2) = 3D12C2e - a2p2 (18) 
where a zero external flux condition (VT\1 = VTy2 = 0) has been applied 
as a further boundary condition. The behavior is most conveniently decom-
posed into: the undrained loading stage when fluid pressures pl0 and p2a are 
generated; and the dissipation of pressures through fluid exchange in the 
subsequent drained behavior. The undrained pore pressures provide initial 
conditions to the initial value problem posed in (16)—(18). The magnitudes 
of undrained pore pressures may be evaluated, as discussed subsequently. 
Following undrained loading, dissipation begins under constant total stresses 
at the boundary where & = 0. Interest is restricted to the continuum level, 
where stress gradients are defined to be zero. Spatial changes in total stress 
that may occur within the volume, even under unchanged boundary stresses 
[see Mandel (1953)], are still admissible, but they require the additional 
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step of incorporating the equilibrium relationship introduced in (34). These 
considerations are in addition to the constitutive equations and our interest, 
for the moment, is merely in the constitutive relations. With some rear-
rangement, the governing equations [(16)-(18)] may be represented as 

s = - C1p1 - C2p2 (19) 

P^= - ^ ( P i - ^ ( 2 0) 

p2 = — (Pi - P2) (21) 
7l2 

where 

^ = ^ ( t + i ) <22«> 
*""5^fe + 1 ) -<22t) 
7i2 = (ana2 2 - QC2) (22c) 

a"=l3lfe+Cl) ^ 

°= = Ufe + C') ^ 
Eqs. (20) and (21) are independent of the strain field and may be solved 

in time where boundary conditions are supplied directly. Solution to (20) 
and (21) may be determined as 

Pi(t) =Po~ (Po ~ pl0)e-^ti+722)^i2 (23a) 

Pi(t) = Po ~ (p0 - P2Je-<-™+y*></™ (236) 

where initial (undrained) conditions Pi(0) = plB; p2(0) = p2o
 ar*d terminal 

(fully drained) conditions Pi(°°) = p2(°°) = Po control the response of the 
hydraulically closed system. The initial or undrained response occasioned 
upon application of a hydrostatic stress cr to the system may be evaluated 
by using the time-independent form of (16)—(18). Substituting the rear-
ranged forms of (17) and (18) directly into (16) gives the instantaneous 
normalized strain (D12e0/cr) as 

D"e° = (i 13D^c" i ^ g i y 1 _ i
 (24) 

v \ oil a2 / px ' 

and the normalized pressure response is returned as 

^ = ^ = 5 l (25) 
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^ = ^ = B2 (26) 

where these also are equivalent to Skempton's pore pressure coefficients, 
#! and B2, written separately for the fluid in the pores and fractures. With 
some rearrangement, the pore pressure parameters may be defined as 

B1 = - ^ (27) 
i _ |—i_ ^ 

a2 C\ 
+ 3C' 11 + S 

Q 

and 

^ = (28) 

-Si 
3C, -I 

The pore pressure parameters are no longer bounded between zero and 
unity, as is the magnitude of the instantaneous normalized strain, which 
represents the aggregated influence of effective stresses in the two phases. 
A large magnitude of $x suggests that the material will exhibit a small 
instantaneous strain, although the fluid pressures generated are further con-
trolled by the magnitude of the porous or fracture compliances and the 
compressibility of the fluid as embodied in a± and a2. 

The long-term response of the system where V ^ = Vrv2 = 0 results in 
an equilibrium pore pressure distribution with px = p2 and a steady mag-
nitude of normalized strain. These long-term equilibrium parameters [pi(°°), 
p2(co) and e(°°)] are most easily recovered from solving the equivalent single-
porosity problem, as follows. 

EQUIVALENT SINGLE-POROSITY RESPONSE 

The equations developed to describe the dual-porosity response may be 
modified to represent the case where it is assumed that pressures within 
both the porous and fractured material remain in equilibrium (i.e., p± = 
p2)- This is the assumption made when real porous-fractured systems are 
represented by a simple equivalent phase system. Requiring px = p2 for all 
times, including initial pressure pl0 and p2o, then (16) reduces to 

6- = D12e + p (29) 
and adding (17) and (18) under a similar requirement that px = p2, gives 

3E = («! + a2)p (30) 
where these represent the basic constitutive equations under hydrostatic 
loading. Implicit within (17) and (18), and by inference therefore in (30), 
is the requirement that Vrv = 0. Since no drainage is allowed, e is zero 
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following loading with the result that fluid pressures are maintained at their 
initially induced magnitude. This differs from the true dual-porosity case 
where there is an interchange of fluid between the pores and fractures. In 
the usual manner, (29) and (30) may be premultiplied by dt and the limit 
taken as dt —> 0 to recover the instantaneous normalized strain and pore 
pressure magnitudes as 

^ 2 = A + _ 3- V ' = - ' . ( 3 D 
a V ^12(01 + a2)/ fe 

and 

Po _ 3 1 
<r Di2(ai + a2)P2 x Di2(ai + a2) 

= 5 (32) 

where again B is bounded by zero and unity and incorporates the compliance 
of the porous solid, the fracture, and the fluid together with the appropriate 
distribution of porosities within each of the phases. 

PARAMETRIC RESPONSE 

Under undrained loading, the instantaneous generation of pore pressures 
is controlled by Bx and B2 in the true dual-porosity system, and by 5 0 in 
the pseudo dual-porosity system. For dual porosity, the mismatch in medium 
stiffness and porosity between the porous body and the fracture result in 
differential pressure generation that will diffuse with time to an equilibrium 
configuration. Where external drainage is controlled, the equilibrium pres-
sure is given by plu = B0 where this magnitude is intermediate to the 
instantaneous pore and fracture pressures. 

Of significance are the magnitudes of instantaneous pore pressures in the 
pore and fracture as controlled by B1 and B2 of (25) and (26). Unlike B 
[(32)] for the pseudo dual-porosity system, the magnitude of Bl and B2 are 
not confined between zero and unity. Rather, one may be greater than unity 
and the complementary parameter less than unity. This behavior is repre-
sentative of a piston effect, whereby pressures are amplified in the low 
stiffness porosity. According to (25) and (26), 5, is largest for large a,/oty-
and small CJCj for r = 1,2;/ = 1,2 and i + /, and also is controlled by 
the ratio a,/Q. Physically, pore pressure magnitudes are increased as po-
rosity increases or as solid stiffness decreases. The influence is illustrated 
for a variety of sedimentary and crystalline rocks in Table 1. Porosities and 
stiffnesses have been added to augment available data for poroelastic be-
havior of single-porosity solids. 

Regardless of fracture spacing, all materials return B2 magnitudes close 
to or greater than unity for the fracture pressures and B1 magnitudes of 
negligible proportion. Pore pressure parameter magnitudes for the aggre-
gated system given by B in the table remain close to unity. As the fracture 
spacing is increased (from 0.1 m to 0.5 m), the aggregated B decreases 
uniformly due to the net increase in stiffness of the system. However, no 
similar generalization is possible for the coefficients Bt and B2. 

The instantaneous pore pressure regime in the closed system (VT • v = 
0) is modified with time by diffusive exchange between the porous body 
and the fracture. For realistic parameter estimates, given in Table 1, dif-
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fusion is most likely from the fractures into the circumscribed blocks. The 
rate of this process may be considered as an indication of the relative im-
portance of the dual-porosity effect. The equilibration rate is controlled by 
a dimensionless time given in (23A) and (23b) as tD = (yu + -y22)f/7i2, 
whereby the time to 50% and 95% equilibration of pressures are given by 
t5S = 0.6931 and P£ = 2.9957. In terms of the physical parameters of the 
system 

* ( % + % + ' ) ' 
3£>12(aua22 - Q Q 

where, in addition to the material coefficients controlling deformation, the 
block permeability, kh and appropriate diffusion lengths are incorporated. 

The behavior of representative sandstones in Table 1 are characterized 
by very rapid response times, reaching t9S in less than a second. The low-
permeability matrix of the crystalline rock impedes equilibration that, de-
pendent on permeability and fracture spacing, may extend over thousands 
of seconds. Characteristic responses are illustrated in Fig. 2 to illustrate the 
form of the response. With drainage potential proportional to fracture spac-
ing s2, flatter responses in time are elicited where the path length is increased. 

Although parametric analyses previously were limited to sandstones and 
crystalline rock, the major trends in behavior are apparent. Firstly, fluid 
pressures developed in compliant fractures may considerably exceed those 
developed in the porous body. These differential pressures will only be 
significant, however, if matrix permeabilities are sufficiently low that the 
pressure differential may be sustained in time. From the time scales apparent 
for permeable (sandstones) and impermeable (crystalline) materials, it ap-
pears that dual-porosity effects may be of little consequence in permeable 
media, but drainage time scales are sufficient in low-permeability rocks to 
cause noticeable effect. Where permeability controls behavior, clays and 
low-permeability silts may be subject to dual-porosity effects. 

T 1 1 r 

00 I 1 1 1 1 1 1 
200 400 600 

TIME (••condi) 

FIG. 2. Undrained Pore Pressure Response for Fractured Sandstone and Frac-
tured Marble 
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GLOBAL BEHAVIOR 

It is possible to solve a broader range of problems only if the previously 
developed constitutive behaviors are globally framed to represent spatial 
interaction. This requires that the constitutive, load-deformation relation-
ship of (7) is substituted into an equilibrium statement and that the flow 
continuity (11) and (12) have an appropriate constitutive equation applied. 
The constitutive relationship, in this instance, is supplied by Darcy's law 
(Bear 1972). 

For the general representation of heterogeneous, mixed-initial value 
problems, the finite element method is chosen. The equilibrium statement 
in its most general form is given as 

( BTda dV - df = 0 (34) 

where B = the strain-displacement matrix; df = an incremental vector of 
applied boundary tractions, and the integration is completed over the vol-
ume of the domain (dV). Defining all quantities in terms of nodal variables 

de = BSu (35a) 

dp1 = N3pi (355) 

dp2 = Ndp2 (35c) 

where du = a vector of incremental nodal displacements; dp = a vector of 
nodal pressures; and N = a vector of shape functions interpolating fluid 
pressures. Substituting (7) and (35) into (34), dividing by dt, and rearranging 
gives the incremental equation in finite element format as 

J BrD12B dV u + J B^D^dmN dV p, 

+ J BrD12C2mN dV p2 = / (36) 

where a superscript dot identifies time derivative. 
Darcy's law must be added to the continuity requirements already imposed 

in (11) and (12) and may be simply stated as 

vi = — V(px + 7Z) (37) 

where 7 = the unit weight of the fluid; a. = the dynamic viscosity; kt = 
the porous medium permeability with the fracture permeability set to zero; 
and Z = the elevation of the control volume. Substituting (37) into (11) 
and applying the Galerkin principle results in 

- - f A ^ A dVVl + I N W Q D ^ B dVu - at \ NrN dV p1 
(X Jv Jv Jv 

- K j NrN dV(Vl - p2) = - \v ArkxA dVZ (38) 

for the porous phase and for the fractured medium 
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- - J Ark2A dV p2 + J NrmrC2D12B dV li - a2 J NrN dV p2 

+ K J NrN dV(fix - p2) = - J Ark2A dV Z 

where k2 = a matrix of fracture permeabilities. 
Eqs. (36), (38), and (39) may be written at any time level (say, t 

and are most conveniently represented in matrix form as 

(39) 

- Af) 

0 
( - K i - S3) 

( 

+ 
F Gx G2 
Ex - S j 0 

LE2 0 - S 2 

0 
s3 

-K 2 - S3)J 

r u i 
Pi 

.i»2. 

t+\t 

= 

~u~ 
Pi 

-P2J 

r-t-Ar 

r f -1 
K l 7 Z 

LK27ZJ 
(40) 

where all submatrices are defined in Appendix I. 
These coupled equations remain symmetric, but they must be rearranged 

prior to solution in time. All terms on the right-hand side are known. The 
matrix relation may be integrated in time by using any convenient repre-
sentation of the time derivatives. Using a fully implicit scheme, such that 

Pi+ ' 

F»2 + A ' 

At'+M 

1 
Af 

1 
Af 

(u'+Ar - u') (41a) 

(Pi+A' - Pi) (416) 

(P'+A' - p2) (41c) 

and substituting (41) into (40) gives 

1 
Af 

F Gt 
Ex (-K1Af'+Ar - St - AfS3) 
E2 ArS3 

G2 
AfS3 

-K2Ar'+A' - S2 - A/S3)J 

1 
Af 

F G G2 
Ei - S i 0 

LE2 0 - S2 

" u " 
Pi 

-P2. 

1 

+ r / 1 K l 7 Z 
LK27Zj 

(42) 

where the matrix comprising the left-hand side is time invariant if a constant 
time-step magnitude is chosen. Initial undrained conditions are recovered 
if Kj = K2 = 0 and K = 0 allowing (42) to be solved for u, px and p2. 

A two-dimensional formulation is chosen to illustrate the potential of the 
dual-porosity formulation. Suitable shape functions must be chosen to rep-
resent the quadratic displacement field and bilinear fluid pressure variation 
present within individual elements. A four-node quadrilateral isoparametric 
element with quadratic-incompatible modes is used. The incompatible modes 
are condensed out at the element level. 

The broad range of material parameters that influence the pressure gen-
eration and dissipation response makes meaningful representation of tran-
sient behavior difficult. The versatility of the proposed technique is illus-
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trated for a one-dimensional column for the parameters reported in Table 
2. The fluid pressure response with depth is illustrated in Fig. 3 for a fracture 
spacing, s, of 0.1 m. Fluid pressures generated within the fractures are 
considerably greater than the matrix pore pressures. With time, the fracture 
pressures dissipate into the porous blocks until an equilibrium is reached. 
In this example, following the establishment of an equilibrium pressure 
distribution, the consolidation process will continue by drainage from the 
top of the layer. The surface settlement associated with the expulsion of 
fluid from the dual-porosity system is illustrated in Fig. 4. Fracture spacings 
of 0.025, 0.05, and 0.1 m are used to demonstrate the differing responses. 
Where spacing is decreased, the dissipation process is accelerated. The dual-
porosity response is contrasted with the behavior of a single-porosity system, 
where the different form of settlement-versus-time behavior is apparent. 

A two-dimensional geometry, represented in Fig. 5, also may be used to 
illustrate the essential differences between single-porosity and dual-porosity 
effects. The response to a load of finite extent is illustrated in Fig. 6. As 
fracture spacing is decreased, the magnitude of initial normalized displace-
ment increases, reflecting the dominant influence of fracture stiffnesses on 
the deformation behavior. The small block dimensions present within the 

TABLE 2. Example Coefficients 

Parameter 
(1) 

E 
V 

K 
Kf 
« i 

n2 
ktl\i. 
k2/\i. 
s 

Definition 
(2) 

modulus of elasticity 
Poisson's ratio 
fissure stiffness 
fluid bulk modulus 
matrix porosity 
fissure porosity 
matrix permeability 
fissure permeability 
fissure spacing 

Magnitude 
(3) 

1.0 
0.15 
0.1 
0.1 
0.1 
0.05 
0.01 x 10-3 

0.1 
0.025, 0.05, 0.1 

Units 
(4) 

MN/m2 

MN/m2/m 
MN/m2 

m4/(MN • s) 
m4/(MN • s) 
m 

FLUID PRESSURE (P/u) -

FIG. 3. Pore Pressure Equilibration Response for One-Dimensional Column Loaded 
Axially 
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•A—;va—r.-*H 

n5 in6 in7 1 0 ' 10° 1 0 ' 103 10D 10 ' 10° lO* 1 0 ' " 1 0 ' ' l O ' ^ I O 1 0 , n 1 1 , „ 1 2 i 

o—- Blot(E=0.1) 

— - a — Blot(E=1) 

—••*•— Blot(E=10) 

* — Dual (s=0.05) 

» — Dual(s=0.1) 

• — Dual (s=0.2) 

FIG. 4. 
Axially 

Time (sec) 

Surface Displacement Response for One-Dimensional Column Loaded 

$h 

* , » ^ 

X 

Htl 
4 

< * • * " 

6n dn 

FIG. 5. Two-Dimensional Geometry 

closely fractured medium result in an acceleration of the consolidation proc-
ess. As bulk permeability magnitude is correspondingly increased, the dual-
porosity behavior exhibits a characteristic acceleration in the early time 
response and a deceleration in the late time response over the equivalent 
single-porosity behavior. The former characteristic results from the rapid 
equilibrating of fluid pressures within the fractures where dissipation in-

120 

 J. Geotech. Engrg., 1992, 118(1): 107-124 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

03
/2

5/
16

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



creases the magnitude of effective stresses. The high compressibility of the 
fractures correspondingly yields a magnified response. At later times, the 
dual porosity exhibits a more sluggish response over the equivalent single-
porosity behavior as a result of delayed changes in effective stresses within 
the porous blocks. This behavior is slightly magnified in time as block 
dimension is increased, resulting in a longer dissipation tail, as evident in 
Fig. 6. 

CONCLUSIONS 

A constitutive model for the coupled flow-deformation response of dual-
porosity media has been presented. The formulation is stated in component 
terms, where behavior is controlled by the mechanical and hydraulic re-
sponse of the individual porous and fractured phases. Representation in this 
form allows the potential importance of dual-porosity effects to be evaluated 
in controlling the coupled flow-deformation behavior of fractured geologic 
media. 

Pore pressure coefficients B1 and B2 may be defined for the dual-porosity 
response, where the magnitudes are not necessarily confined to the range 
between zero and unity. For realistic material parameters, the magnitude 
of the pore pressure coefficient for the fractures is commonly greater than 
unity, and for the porous medium, less than unity. With the generation of 
this pressure differential, fluid transfer between the porous medium and the 
fracture will attempt to equilibrate the pressures. Equilibration times are 
controlled by the compliances of the porous medium and the fractures, 
together with porosities and the block-fracture fluid-transfer coefficient K. 
This latter component is a function of block size and block permeability. 
Where undrained loading is prescribed, the times to 50% and 95% equili-
bration may be determined explicitly. 

Where general boundary conditions are applied to the dual-porosity sys-
tem, a numerical solution method must be employed, Representation as a 
finite element system is particularly appropriate, allowing spatial variability 
in parameters and general boundary conditions to be readily accommodated. 

z 1-° 

< O.B 
a. 

I o 0.6 
N 

1 °-4 

0.2 

. 

DUAL POROSITY 
s= 0.1m—~~^/^ 
s: 0.05 m O ^ C 

/ / J 

„^d£"Ss 

< i " " " I 11 m i n i ni i 

^ S I N G L E POROSITY 
O ^ s - . O . I m 

^ ^ 6 = 0.05 m 

• ' " I ' l l "I ' » " " " 1 ' 1 1 " ' " I 
101 102 103 10" 105 1Q6 1Q7 

ELAPSED TIME (SECONDS) 
108 

FIG. 6. Surface Displacement Response at Centerline for Single-Porosity and 
Dual-Porosity Systems (parameters Given in Table 2) 
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The procedure may be applied to a variety of engineering situations where 
the accurate determination of parameters associated with dual-porosity sys-
tems is important. These include the performance of fractured clay tills used 
as barriers to contaminated ground water and waste leachate and the be-
havior of fractured rocks deforming above mined underground openings. 
In either instance, the behavior of the dual-porosity medium is distinctively 
different from that of a single-porosity continuum, and it is important to 
recognize this differentiation if serviceable designs are to be commissioned. 
For example, large initial deformations are apparent in the dual-porosity 
medium under undrained loading that result in considerably different tran-
sient response to anything that can be explained using single-porosity rep-
resentation. Thus, use of an incorrect phenomenological model in describing 
field data would erroneously predict the performance of the prototype. For 
this reason, it is imperative that a correct and adequate model is initially 
selected. 
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APPENDIX I. SUBMATRICES 

E, = J N W C ^ B dV (43) 

E2 = J NWQAzB dV (44) 

F = J BT)12B dV (45) 

Gt = J BrD12CimN dV (46) 

G2 = J BrD12C2mN dV (47) 

H = J NrN dV (48) 

Kj = - I ArkiA dV (49) 

U. Jv 

K2 = - J Ark2A dV (50) 

Si = «xH (51) 
52 = a2H (52) 
53 = KEL (53) 

122 

 J. Geotech. Engrg., 1992, 118(1): 107-124 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

03
/2

5/
16

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



APPENDIX II. REFERENCES 

Aifantis, E. C. (1977). "Introducing a multi-porous medium." Developments in me-
chanics, 8, 209-211. 

Aifantis, E. C. (1980). "On the problem of diffusion in solids." Acta Mechanica, 
37, 265-296. 

Bear, J. (1971). Dynamics of fluids in porous media. American Elsevier, New York, 
N.Y. 

Bibby, R. (1981). "Mass transport of solutes in dual porosity media." Water Resour. 
Res., 17, 1075-1081. 

Biot, M. A. (1941). "General theory of three-dimensional consolidation." /. Appl. 
Phys. 12, 151-164. 

Elsworth, D. (1989). "Thermal permeability enhancement of blocky rocks: one di-
mensional flows." Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 26(3/4), 329-
339. 

Goodman, R. E. (1974). "The mechanical properties of joints." Proc. of the Third 
Congress of Int. Soc. for Rock Mech., 127-140. 

Huyakorn, P. S., Lester, B. H., and Faust, C. R. (1983). "Finite element techniques 
for modeling groundwater flow in fractured aquifers." Water Resour. Res., 19, 
1019-1035. 

Iwai, K. (1976). "Fundamental studies of fluid flow through a single fracture," thesis 
presented to the University of California, at Berkeley, California, in partial ful-
fillment of the requirements of the degree of Doctor of Philosophy. 

Kazemi, H. (1969). "Pressure transient analysis of naturally fractured reservoirs with 
uniform fracture distribution." Soc. Pet. Engrg. J., 9, 451-462. 

Kazemi, PL, Merrill, L. S., Jr., Porterfield, K. L., and Zeman, P. R. (1976). "Nu-
merical simulation of water-oil flow in naturally fractured reservoirs." Soc. Pet. 
Engrg. J., 16, 317-326. 

Kazemi, H., and Merrill, L. S. Jr. (1979). "Numerical simulation of water imbibition 
in fractured cores." Soc. Pet. Engrg. J., 19, 175-182. 

Khaled, M. Y., Beskos, D. E., and Aifantis, E. C. (1984). "On the theory of 
consolidation with double porosity—III. A finite element formulation." Int. I. 
Numer. Anal. Meth. Geomech., 8, 101-123. 

Mandel, J. (1953). "Consolidation des sols (etude mathematique)." Geotechnique, 
3, 287-299. 

Nur, A., and Byerlee, J. D. (1971). "An exact effective stress law for elastic defor-
mation of rock with fluids." J. Geophys. Res., 76(26), 6414-6419. 

Odeh, A. S. (1965). "Unsteady-state behavior of naturally fractured reservoirs." 
Soc. Pet. Engrg. I., 5, 60-66. 

Pruess, K., and Narasimhan, T. N. (1985). "A practical method for modelling fluid 
and heat flow in fractured porous media." Soc. Pet. Engrg. J., 25, 14-26. 

Rice, J. R., and Cleary, M. P. (1976). "Some basic stress diffusion solutions for 
fluid saturated elastic media with compressible constituents." Rev. Geophys. Space 
Phys., 14(2), 227-241. 

Ryan, T. M., Farmer, I., and Kimbrell, A. F. (1977). "Laboratory determination 
of fracture permeability." Proc. of the 18th U.S. Symp. on Rock Mechanics, 

Skempton, A. W. (1960). "Effective stress in soils, concrete and rock." Proc. of the 
Symp. on Pore Pressure and Suction in Soils, Butterworths, London, U.K., 1. 

Terzaghi, K. (1923). "Die Berechnung der Durchasigkeitsziffer des Tones aus dem 
Verlauf der hydrodynamishen Spannungserscheinungen, Sitzungsber." Acad. Wiss. 
Wien Math Naturwiss. Kl. Alot. 2A, 132, 105 (in German). 

Terzaghi, K. (1943). Theoretical soil mechanics, John Wiley & Sons, New York, 
N.Y. 

Thomas, L. K., Dixon, N. T., and Pierson, G. R. (1983). "Fractured reservoir 
simulation." Soc. Pet. Engrg. J., 23, 42-54. 

Touloukian, Y. S., Judd, W. R., and Roy, R. F. (1989). Physical properties of rocks 
and minerals. 11(2), McGraw-Hill, New York, N.Y. 

Warren, J. E., and Root, P. J. (1963). "The behavior of naturally fractured reser-
voirs." Soc. Pet. Engrg. I., 3, 245-255. 

123 

 J. Geotech. Engrg., 1992, 118(1): 107-124 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

03
/2

5/
16

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.



Wilson, R. K., and Aifantis, E. C. (1982). "On the theory of consolidation with 
double porosity." Int. J. Engrg. Set, 20(9), 1009-1035. 

Witherspoon, P. A., Wang, J. S. Y., Iwai, K., and Gale, J. E. (1980). "Validity of 
cubic law for fluid flow in a deformable structure." Water Resour. Res., 16(16), 
1016-1024. 

Yamamoto, R. H., Padgett, J. B., Ford, W. T., and Boubeguira, A. (1971). "Com-
positional reservoir simulator for fissured systems—the single block model." Soc. 
Pet. Engrg. J., 11, 113-128. 

APPENDIX III. NOTATION 

The following symbols are used in this paper: 

A 
B 
5 , 
B 

c, 
D, 

D12 
E 
f 

K 
K 
K 
Kt 
Ks 
m 

m, 
m„ 

n, 
Pi 
s 
t 

to 
u 
V,' 
Z 
d 

«/ 
7 
d 
e 

( * • 

V 
a 

= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
— 

= 
= 
= 

derivatives of shape function matrix N; 
strain displacement matrix; 
Skempton's fluid pressure coefficients in true dual-porosity system; 
Skempton's fluid pressure coefficients in pseudodual-porosity sys-
tem; 
compliance matrices; 
elasticity matrices; 
elasticity matrix (C± + C 2 ) _ 1 ; 
Young's modulus; 
vector of boundary tractions; 
fluid transfer coefficient; 
permeabilities; 
joint normal stiffness; 
fluid bulk modulus; 
solid grain bulk modulus; 
one dimensional vector; for three-dimensional problem, mT = 
(1 1 1 0 0 0); for two-dimensional problem, mT = ( 1 1 0 ) ; 
modified intergranular stress relationship; 
(m - l/3i&D„m); 
porosities; 
fluid pressure; 
fracture spacing; 
time; 
dimensionless time; 
displacement vector; 
flow velocity vector; 
elevation of control volume; 
partial differential operator; 
hydrostatic compressibility; 
unit weight of fluid; 
partial differential operator; 
strain vector; in three-dimensional Cartesian coordinates, eT = 

dynamic viscosity; 
Poisson ratio; and 
stress vector; in three-dimensional Cartesian coordinates, rr r = 
<Txx(TyyCrz2<Jxy(Txz<Tyz). 

Subscripts 
i = 1, 2, denoting pore phase and fracture phase, respectively. 
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4:4 Mechanical deformation - 1D and 2D Elements [5:1][5:2]  
 
http://youtu.be/WQbG588gOg4  
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4:5 Coupled Hydro-Mechanical Models [6:2] 
     
https://youtu.be/ve1EGEOT97k 
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