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Physical and Numerical Studies of a Fracture System Model

ANDREW R. PIGGOTT aND DEREK FLSWORTH!

Depariment of Mineral Engineering, The Pennsylvania State University, University Park

Physical and numerical studies of transient flow in a model of discretely fractured rock are presented.
The physical model is a thermal analogue to fractured media fow consisting of idealized disc-shaped
fractures. The numerical medel is used to predict the behavior of the physical model. The use of different
insuiating materials to encase the physical model allows the effects of differing leakage magnitudes to be
examined. A procedure for determining appropriate leakage parameters is documented. These parame-
ters are wsed in forward analysis to predict the thermal response of the physical model, Knowledge of the
leakage parameters and of the temparal variation of boundary conditions are shown to be essential to an
accurate prediction. Favorable agreement is iHustrated between numerical and physical results. The
physical model provides a data source for the beachmarking of alternative numerical algorithms.

INTRODUCTION

The recent accelerated development of codes describing
flow in three-dimensional discretely fractured media (see, for
example, Huang and Evans [1985], Long er al. [1985], Piggott
[1986], and Andersson and Dverstorp [19877) has occurred
with only a lmited opportunity for evaluating the per-
formance of the algorithms, The codes are, by their nature,
deveioped to describe extremely heterogeneous conditions.
These conditions preclude the derivation of analytical results.
Although the individual components of a discrete fracture
model may be rigorously validated against alternative numeri-
cal schemes [Elsworth, 1986a, b}, questions remain as to the
performance of the assembled system.

A numerical approach to discrete fracture hydraulics is jus-
tifiable only when it can be demonstrated that the inherent
idealization is geologically plausible and that the algorithm
accurately simulates the behavior of the idealized system. The
first issue is currently open to debate; the second issue forms
the basis of this paper.

Problems entrained in the hydraulic analysis of intersecting
disc systemns relate both to the ability of & numerical formu-
iation to accommodate the governing equations and to the
adequacy of the spatial and temporal discretization of the
system. The degree of approximation that results is inversely
proportional to the density of nodal coverage. Computational
economy demands that the degree of discretization be mini-
mized il populus fracture systems are to be investigated. Clear-
ly, an accurate yet economical numerical algorithm is neces-
sary.

In the absence of closed-form sojutions for flow in nontri-
vial fracture systems, it is necessary to identify alternate means
of validation. One approach which could be adopted involves
the comparisen of numerically predicted responses with those
collected from field tests conducted in a fracture dominated
aquifer, This approach is desirable, since it directly addresses
the physical problem considered by fracture hydraulics re-
search. Such a study, while ultimately necessary, complicates
validation by superimposing the uncertainty of the geological
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environment on the physics of the problem. An alternate ap-
proach is based on the use of a physical model to generate
responses which may then be compared to those predicted by
the numerical formulation. Models used to study groundwater
hydraulics are based on the similarity of the governing equa-
tions for hydraulic, electrical, and thermal flow. The use of
physical models in both the validation of analytical solutions
and the investigation of physical phenomena is not without
precedent. Previous researchers have documented the use of
clectrical [Sharp, 1970; Hudson and LaPointe, 1980; Tsang,
19843, thermal [Javandel and Witherspoon, 1967], and hy-
draulic models [Wilson, 1970; Hull et al., 1987). The diflicul-
ties associated with the fabrication and operation of hydraulic
and electrical models reander thermal modeling the most suit-
able alternative for simulating transient fluid flow in discrete
rock fractures. Table 1 summarizes the analogies existing be-
tween hydraulic and thermal flow. The foliowing describes an
attempt to predict the transient response of a thermal ana-
logue fracture system model using a documented numerical
procedure,

Pavysical. MODEL

The physical model consists of 12 planar discs which corre-
spond to the discrete members of an orthogonal fracture
system with each of the three mutually orthogonal orienta-
tions represented by four discs. The disc system is, by defini-
tion, truncated by the boundaries of a cubic volume. The discs
are circular in shape but are frequently truncated as required
by the boundaries of the cube. The systemn was automatically
generated, geometrically analyzed, and reduced to a form suit-
able for fabrication and numerical analysis according to the
procedure described by Piggort [1986]. The discs are 2 mumn
thick 70-30 brass and have a diameter of 0.3 m. The cube also
has a dimension of 0.3 m. Soldered connections join the discs
along their intersection segments. The high thermal condue-
tivity and low thermal mass of the soldered connections repre-
sent a near-perfect thermal connection between joined discs. A
brass baseplate was added in order to improve the structural
integrity of the model, The completed model is illustrated
schematically in Figure 1. Insulation is located between the
discs and surrounding the model. The thermal properties of
the model are summarized in Table 2. A thermal disturbance
is applied to the model by contacting the baseplate with an ice
bath. All other cube surfaces act as impermeable boundaries.

The temperature monitoring system used in conjunction



458

TABLE 1. Hydraulic and Thermal Analogies

Hydraulic Analogy Thermai Analogy

Hydraulic head
Darcy's law

Hydraulic conductivity
Specific storage
Hydraulic diffusivity
Leakage coefficient

temperature

Fourier’s Jaw

thermal conductivity

specific heat times mass density
thermal diffusivity

heat transfer coefficient

with the model consists of an Omega model 2166A-F multi-
point digital thermometer and Omega style TII, type I iron-
constantan thermocouples. The monitoring system has an ac-
curacy of 1°C in the range of temperatures considered and
responds sufficiently rapidly to capture the transient response
of the model. The thermocouples are located along disc inter-
sections at positions coincident with those of identifiable
nodes in the numerical model, The locations of thermocouples
relative to the baseplate are given in Table 3. Thermal paths
joining the baseplate and two points at the same distance from
the baseplate are unique, and therefore thermocouple posi-
tioning is of little significance in the absence of detailed model
geometry. Data concerning the exact positioning and inter-
connection of discs together with absolute locations of ther-
mocouples are recorded in the work by Piggott and Elsworth
{1987]. Figure 2 shows details of the positioning of the ther-
mocouples which are assumed to measure boundary condition
temperatures, that is, the temperature applied to the disc
system: by the baseplate. The boundary condition thermo-
couples are separated {rom the constant temperature of the jce
bath by the wall of the ice bath, the baseplate, and most likely
an air gap. The temperatures measured by these thermo-
couples are transient and are related to the temperature of the
ice bath by the thermal properties of the disc model and of the
materiais separating them {rom the ice bath, Three tests have
been conducted on the model to date. During test i, the model
was instrumented with thermocouples designated A-1 through
A-B and insulated with styrofoam packing material. The
model was then reinstrumented for tests 2 and 3 with thermo-
couples designated B-1 through B-9 and insulated with
foamed-in-place polyurethane further surrounded by fiberglass
insulation. The positions of A and B series thermocouples are
not related. Test 3 corresponds to the recovery phase of test 2
wherein the ice bath was removed and the model allowed to
recover to room temperature.

The data obtained during the tests was transformed into
reduced quantities. Temperature is expressed in normalized
form using

T, = (T — T)(T, — T) W

where T, is the normalized temperature corresponding to tem-
perature T, initial temperature T, and steady state boundary
condition temperature T,,. Normalized temperatures of zero
and unity correspond to initial and steady state boundary
condition temperatures, respectively, Time is expressed in di-
mensionless form using

1y = Di/d? 2

where ¢, is the dimensionless time corresponding to thermal
diffusivity D, time ¢, and disc diameter 4. The potential for
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heat transfer {rom the insulation to the discs is expressed in
dimensionless form using

d, = d{k'/Kb)* 72 (3

where d, is the dimensionless disc diameter corresponding to a
disc diameter of d, heat transfer coefficient k', thermal conduc-
tivity K, and disc thickness b. A dimensionless diameter of
zero signifies perfectly insulated (confined) behavior. Dimen-
sionless diameter is analogous to dimensionless radius as de-
fined in semiconfined aquifer theory (see, for exampie, Kruse-
man and DeRidder [1983]) where the hydraulic counterpart of
the heat transfer coeflicient is the leakage coefficient of Han-
tush and Jacob [1955]. Moench [1984] suggests that semi-
confined behavior is applicable to the description of dual-
porosity flow where the head contrast between fracture and
matrix is restricted to the vicinity of the fracture matrix con-
tact and that such conditions are characteristic of low conduc-
tivity contacts.

NUMERICAL MODEL

The numerical model of the {racture system is based upon
the application of the hybrid boundary element-—finite element
approach described by Elsworth [1986a] and automated by
Piggorr {1986]. The baseplate of the physical model has no
counterpart in the numerical model. Figure 3 shows the dis-
cretized representation of a typical fracture disc. The bound-
ary element formulation requires only that the disc perimeter
and intersection slits be represented. Those nodes defining the
impermeable portion of the disc perimeter (local nodes) have
degrees of freedom which are condensed out of the conduc-
tance matrix at the level of a single disc. Nodes defining inter-
section slits and permeabie portions of the disc perimeter
{global nodes) are retained for the assembly of the conduc-
tance matrix governing the fracture system. The geometry of
the disc system is described by a total of 242 nodes of which
6! are global nodes. Among the global nodes, 45 possess
active degrees of freedom and 16 are located along the speci-
fied head boundary condition surface represented by the base-
plate in the physical model. The boundary element formu-
lation applied to the model is especially suitable for linear fow
within fractures of high area to perimeter ratios and pos-
sessing homogeneous and isotropic properties. Further details
of the formulation are given by Elsworth [19864] to which the
interested reader is referred.

The boundary element formulation ultimately yields a
system of equations of the lorm

q. = Kh (4)

o Mode! discs

/— Baseplale

Fig. ;. Schematic illustration of the fracture system model.
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TABLE 2. Thermal Diffusivities of Model Materials
Thermal
Material Diffusivity, m*s Reference
70-30 brass 3.75 < 107° American Society of Metals [1979]
Polyurethane foam 1.8 x 10710 Turner and Malloy [1981]
Fiberglass 7.2 % 107 Turner and Mallay {1981]
Alr {20°C) 24 x 107° Eckert and Drake [1959]

for each fracture where q, is a vector of nodal discharges due
to conduction in the fracture, K is the conductance matrix
defined by the geometry and transmissivity of the fracture, and
h is a vector of nodal heads.

The rate at which fluid enters a fracture from the matrix due
to leakage is given by

vy = —k'(h— 1} (5)

where p, is the leakage velocity, k' is the leakage coefficient, h
is the head in the fracture, and f, is the reference head in the
matrix. The total volume of fluid entering a fracture per unit
time due to leakage is given by

q=—K j th—hydA {6)

]

where A4 is the plan area of the fracture. Equation (6) may be
restated in finite element form as

q = —KAW(h - h) o)

which reduces to

g = L{h —h) (8)

where q, is a vector of nodal discharges due to leakage, W is
the nodal weighting matrix, h is & vector of nodal heads, h, is
the vector of nodal reference heads, and L is the lumped leak-
age matrix for the domain, The individual terms for the nodal
weighting matrix (W) are given by

w;j = 6J‘jKU/Kkk 9

where &;; is the Kronecker delta, K;; arc the terms of the
conduclance matrix, and K, is the trace of the conductance
matrix. The conductance matrix written for an individual disc
is fully populated. During transient behavior, the rate at which
fluid is released form storage within the fracture is given by

v, = —S,bh {10)

TABLE 3. Thermocouple Locations

Thermocouple Distance From Baseplate, m

A-1 and A-2 o*
A-3 and A-4 (duplicates) 0.175
A-5 0.169
A6 0.160
A-7and A-8 0.270
B-1 and B-2 0.270
B-3 0.132
B-4 0.169
B-5 0.175
B-6 0.212
B-7 o*
B-8 0.189
B-% 0.279

*Thermocouples measuring boundary condition temperatures.

where », is the storage depletion velocity, S, is the specific
storage, b is the fracturc aperture, and /i is the time derivative
of head. The total quantity of Buid entering a fracture from
storage within the fracture per unit time is given by

q5=—S,bJ hdA (11}
A
Equation (I1) may be restated in finite element form as
q, = 5.hAWh (12)
which reduces to
q, = sh (13)

where q, is a vector of nodal discharges due to storage deple-
tion, h is a vector of nodal time derivatives of head, and S is
the lumped storativity matrix for the fracture.

The summation of the conductance, leakape, and storativity
matrices for all fracture domains yields matrices representing
the [racture system. Applying continuity to (4), (8), and (13}
leads to

Kh+Lth—h)+Sh=gq (14}

where q is a vector of nodal discharges. The vector of time
derivatives of head h may be approximated using the back-

ward difference formula
f‘rﬂ!r = g/AI(hH»A: - hr) (15)

where h, and h,,,, are vectors of nodal head at times 7 and
t + Ar, Expressed in compact form, {14} becomes

K*h, = gy ™ (16)

where
K*=K + L+ [/AS {1n
Qon® = Qo p + L, + 1/ASh, (18)

ice bath

/— Wail of ice bath

Air gap

Baseplate

Boundary condition thermocouple

Insulation

Moedel disc
Schematic cross section of the fracture system model show-

Fig. 2
ing the application of boundary conditions and the location of
boundary condition thermocouples,
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e Cisc perimeter

L Giobal nodes

/ Intersection slit

W

/— Locai nodes

Fig. 3. Discretized representation of a typical disc.

Time-dependent boundary conditions are applied to the nu-
merical model by specifying nodal values of h,, ,, in (16) and
of q,,, in (18) which correspond to time ¢ + Ar. Transient
behavior is evaluated by direct integration of (16).

The response of the numerical model may be expressed in
the same manner as the response of the physical model; that
is, normalized temperature versus dimensionless time. Again,
hydraulic head is analogous to temperature and is used in lieu
of temperature in (1).

In addition to the following comparison to a physical
model, the numerical formulation has been extensively vali-
dated against analytical solutions for both steady state and
transient flow in confined and semiconfined axisymmetric sys-
tems.

INTERPRETATION AND PREDICTION OF MODEL BEHAVIOR

Elsworth and Piggort [1987] describe an attempt to apply a
nonleaky form of the numerical model to the prediction of the
response of the physical model during test 1. Predictive errors
were observed at small and large dimensionless times while
acceptable predictions were obtained for intermediate dimen-
sionless times. The failure of the numerical model at large
dimensionless times is attributed to heat transfer between the
insulation and disc system. Thermal leakage is not suflicient to
explain the poor agreement observed at small dimensionless
times. The numerical model applied by Elsworth and Piggott
assumes a constant normalized boundary condition temper-

a5 | \
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00 . ; \\ .
102 10t io® 19! 10°

DPimensionless Diameter, d,

Fig. 4. Variation of steady state normalized temperature with di-
mensionless diameter for selected A series thermocouples.
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Fig. 5. Vauriation of steady state normalized temperature with di-

mensionless diameter for selected B series thermocouples.

ature of unity applied to the model at a dimensionless time of
zero. As discussed previously, the actual boundary conditions
are transient, The inconsistency in the applied boundary con-
ditions is suggested as the cause of the predictive error at
small dimensionless times.

Figures 4 and 5 show the variation of steady state normal-
ized temperatures with dimensionless diameter for selected A
and B series thermocouples, These curves were prepared by
substituting a range of values of the leakage coefficient into {7}
and obtaining a steady state solution te {16). Apparent steady
state normalized temperatures of 0.82, 0.64, and (.70 were
observed for thermocouples A-6 through A-8 for test 1. En-
tering Figure 4 with these values suggsts a dimensionless di-
ameter of approximately 0.51. Repeating the process for the
remaining A series thermocouples yields an average dimen-
sionless diameter of 0.53 which is taken to be characteristic of
the insulating properties of the styrofoam packing material.
Apparent steady state normalized temperatures of 0.89, 0.87,
and 0.93 were observed for thermocouples B-1 through B-3 for
test 2. Entering Figure 5 with these values and averaging the
resniting dimensionless diameters with those obtained from
the remaining thermocouples yields a dimensionless diameter
of 0.28. This value is taken to be characteristic of the poly-
urethane foam used as insulation during tests 2 and 3. This
procedure for estimating the dimensionless diameter cannot be
applied to the results of test 3 as the thermocouples, by the
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Fig. 6. Variation of normalized boundary condition temperatures
with dimensioniess time.
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mocouple A-6 for test 1.

nature of the test, reach a steady stale normalized temperature
of unity. Once the dimensionless diameter has been estimated,
the appropriate leakage coefficient may be determined by sub-
stituting the known values of dimensionless diameter, disc di-
ameter, conductivity, and disc thickness into (3).

Figure 6 shows the variation of the measured normalized
boundary condition temperatures with dimensionless time for
tests 1 through 3. The measured data in Figure 6 are approxi-
mated by third-order polynomial functions fit to the data
using the least squares procedure described by Atkinson
[1978]. By incorporating the approximating polynomials into
the computational algorithm, it is possible to represent the
transient nature of the boundary conditions without the need
to quantify the thermal properties of the materials separating
the model discs {rom the ice bath.

Figure 7 shows the measured response of thermocouple A-6
during test 1 as well as the numerically predicted response for
three modeling scenarios, Case | corresponds to a constant
normalized boundary condition temperature of unity applied
at time zero and to the assumption of perfectly insulated {con-
fined) behavior. Case 1 is typical of the results presented by
Elsworth and Piggorr {1987]. Case 2 corresponds to constant
boundary conditions and a dimensionless diameter of 0.33.
Case 3 corresponds to fransient boundary conditions and a
dimensionless diameter of 0.53. The best agreement between
measured and predicted responses is obtained for case 3 and,
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Fig. B. Measured and predicted thermal responses for test 1.
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for this reason, tramsient boundary conditions and semi-
confined behavior will be assumed in the remaining analysis.
All predicted responses presented in this paper were obtained
from numerical integration based on 40 dimensionless time
increments of 0.01 followed by 60 increments of 0.06 and then
by 30 increments of 0.20.

Figures 8 through 10 show measured and predicted re-
sponses for tests | through 3, respectively. Thermocouples A-6
through A-8 and B-1 through B-3 were selected in order to
tllustrate rapid, intermediate, and slow thermal responses. The
agreement between measured and predicted responses for the
remaining thermocouples is ol equal quality. Excellent agree-
ment between the measured and predicted responses is appar-
ent for tests { and 3. The numerical model consistently over-
estimates the response of the physical model for test 2. It is
suggested that the relatively poor agreement between the mea-
sured and predicted responses for test 2 are due to experi-
mental inadequacies. A nonuniform temperature distribution
on the basepiate is suspected.

CONCLUSIONS

The physical model represents a thermal analogue to a
system of hydraulically conductive discrete rock fractures. The
tests conducted on the model provide transient data which
may be used te evaluate the performance of computational
approaches to fracture hydraulics,
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Fig. 10. Measured and predicied thermal responses for test 3.
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The numerical model provides a method of simulating the
response of the physical model under various test conditions.
The incorporation of semiconfined behavior into the formu-
lation of the numerical model and the application of boundary
conditions accurately reflecting those experienced by the
physical model serve to improve the agreement of the mea-
sured and predicted responses relative to that obtained using a
nonleaky model with static boundary conditions. The ability
to interpret the magnitude of heat transfer from the matrix to
the disc system from apparent steady state conditions is sig-
nificant in that these parameters would otherwise be difficuit
to quantily.

The constitutive relationship embodied in semiconfined be-
havior represents a simplification of the physics of the thermal
model. Explicitly representing the heat transfer within the in-
sulation and between the matrix and model discs requires
either the discretization of the matrix or the utilization of
more elegant, and computationally intensive, dual-porosity
models. Repardiess of the inherent simplification of the leak-
age model, the formulation appears to adequately predict the
response of the physical model under the conditions of the
tests. The residual predictive errors are thought to be entirely
related to the limitations of the experimental procedure and
not to a constitutive failure of the numerical model.

A detailed geometric description of the model and the re-
sults of the tests conducted on the model are available to
researchers wishing to cvaluate alternative numerical algo-
rithms. Interested parties should contact the authors directly.

NOTATION

b fracture aperture or disc thickness.

d, d; disc diameter, dimensionless diameter.
hofih h hydraulic head in fracture, time derivative of
head, vector of nodal heads, and vector of
time derivatives of nodal heads,
h,. h, reference hydraulic head in rock matrix,

vector of reference heads.
q vector of specified nodai discharges.

Gn q, leakage volume per unit time, vector of nodal
discharges due to leakage.
d. G, storage depletion per unit time, vector of

nodal discharges due to storage depletion,
q. vector of nodal discharges due to conduction.
1,1, A1 time, dimensionless time, and time increment,
v, leakage velocity.
storage depletion velocity.

A plan area of [racture,
D diffusivity.
k' leakage coefficient.
K conductivity.
K conductance matrix.
L lumped leakage matrix.
S, specific storage.
$ lumped storativity matrix,
T, T,. T, T, temperature, boundary condition temperature,

normalized temperature, and initial
temperature.

W nodal weighting matrix.

d; Kronecker delta.

Acknowledgments.  Funding for this project was provided by the
Department of Mineral Engineering of The Pennsylvania State Uni-

versity. The fabrication and instrumentation of the physical model
wus mude possible by grant G1134142 from the Pennsylvania Mining
and Mineral Resources Rescarch Institute, U.S. Department of the
Interior, Bureau of Mines. This support is gratefully acknowledged.

REFERENCES

American Society of Metals, Merals Handbook, 91th ed, vol. 2, pp.
323325, American Society for Metals, Melals Park, Ohio, 1979,

Andersson, J., and B. Dverstorp, Conditional simulations of fluid flow
in three-dimensional networks of discrete fractures, Water Resour.
Res., 73(10), 18761886, 1987,

Atkinson, K. E., An Introduction to Numerical Analysis, pp. 168-171,
John Wiley, New York, 1978,

Eckert, E. R. G., and R. M. Drake, Hear and Mass Transfer, 2nd ed.,
p. 504, McGraw-Hill, New York, 1959,

Elsworth, ., A hybrid boundary ¢lement-finite element analysis pro-
cedure for fluid flow simulation in f{ractured rock masses, [nt. J.
Numer. Anal. Meth, Geomech,, 1, 569-584, 1986a.

Elsworth, D.. A model 1o evaluate the transient hydraulic response of
three-dimensional sparsely fractured rock masses, Warer Resour.
Res.. 2213}, 1809-1819, 1986h.

Elsworth, 13, and A. R. Piggott, Physicai and numerical analogues to
fractured media flow, in Proceedings of the 6th International Con-
gress on Rock Mechanics, vol. 1, pp. 93-97, A. A. Balkema, Rotier-
dam, 1987

Hartush, M. S.. and C. E. Jacob, Nonsteady radial fliow in an infinite
leaky aquifer, Eos Trans. AGU, 36(1), 95-100, 1955,

Huang, C.. and D. D. Evans, A three-dimensional computer model to
simulate fluid flow and contaminant transport through a rock frac-
ture system, Rep. NUREG/CR-4042, U.8. Nucl. Reg. Comm,
Washington, B, C,, 1985,

Hudsen, J. A, and P. R. LaPointe, Printed circuits for studying rock
mass permeability, Inr. J. Rock Mech, Min, Sci. Geomech., 17(5),
297-301. 1980.

Hull. L. C., J. . Miller, and T, M. Clemo, Laboratory and simulation
stedies of solute transpori in fracture networks, Water Resour. Res.,
23(8), 15051513, 1987,

Juvandel, 1., and P. A. Witherspoon, Use of thermal modei to investi-
gate the theory of transiemt flow 1o a partially penetrating well,
W ater Resour, Res., 32), 391-597, 1967,

Kruseman, G. P, and N. A. DeRidder, Analysis and Evaluation of
Pumping Test Data, International Institute for Land Reclamation
and Improvement, Wageningen, The Netherlands, 1983,

Long, J. C. 8., P. Gilmour, and P. A. Witherspoon, A model for
steady fluid flow in random three-dimensional networks of dise-
shaped [ractures, Warer Resour. Res., 21(B), 1105-1115, 1985,

Maoench, A, F., Double-porosity medels for a fissured groundwater
reservoir with fracture skin, Water Resour. Res., 20(7), 831-846,
984,

Piggott, A. R.. A numerical procedure for the analysis of steady state
fluid flow in sysiems of finite discoatineities, 74 pp., M. Eng. thesis,
Univ. of Toronio, Toronto, Ont., 1986,

Pigpott. A, R, and D, Elsworth, Physical and numerical studies of a
fraciure system maodel, research repert, Coll. of Earth and Miner.
Sci., Pa. State Univ,, University Park. 1987,

Sharp, J. D.. Fluid flow through fissured media, Ph.D. thesis, Imperial
Call., Eondon, 1970.

Tsang, Y. W.. The eflect of tortuosity on fluid flow through a single
fracture, Warer Respur. Res. 20(9), 1209-1215, 1984,

Turper, W. C., and 1. F. Malioy, Thermal Insulation Handbook, pp.
203-275, Robert E. Krieger and McGraw-Hill, Malabar, Fla. and
New York, 1981,

Witson, C.. An Investigation of laminar flow in fractured porous
rocks, Ph.D. thesis, Univ. of Calif, Berkeley, 1970,

D. Elsworth. Waterioo Centre for Groundwater Research, Usiver-
sity of Waterlog, Waterloo, Ont,, Canada N2 361,

A. R. Piggott. Department of Mineral Engineering, 104 Mineral
Sciences Building, Pennsylvania State University, University Park,
A [6802.

(Received March 22, 1988;
revised September 12, 1988;
accepted September 26, 1988.)



