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ABSTRACT: A constitutive model is presented to define the linear poroelastic 
response of fissured media to determine the influence of dual porosity effects. A 
stress-strain relationship and two equations representing conservation of mass in 
the porous and fractured material are required. The behavior is defined in terms 
of the hydraulic and mechanical parameters for the intact porous matrix and the 
surrounding fracture system, allowing generated fluid pressure magnitudes and 
equilibration rates to be determined. Under undrained hydrostatic loading, the 
pore pressure-generation coefficients B, may exceed unity in either of the porous 
media or the fracture, representing a form of piston effect. Pressures generated 
within the fracture system equilibrate with time by reverse flow into the porous 
blocks. The equilibration time appears negligible for permeable sandstones, but it 
is significant for low-permeability geologic media. The constitutive model is rep­
resented in finite element format to allow solution for general boundary conditions 
where the influence of dual-porosity behavior may be examined in a global context. 

INTRODUCTION 

The linear flow-deformation behavior of geologic media is governed by 
the theory of single-porosity poroelasticity, as expounded originally by Biot 
(1941). Where, as in the case of fissured rock and soils, the medium com­
prises discrete fractions of differing solid compressibilities and permeabili­
ties, a dual-porosity approach appears more appropriate. 

The dual-porosity approach has been extensively developed to represent 
single-phase and multiphase flow in petroleum reservoirs. The original char­
acterization of naturally fractured reservoirs by Warren and Root (1963) 
has been developed for radial flow in both blocky (Odeh 1965) and tabular 
reservoirs (Kazemi 1969) using analytical approaches and extended to mul­
tiphase flow using numerical techniques (Yamamoto et al. 1971; Kazemi et 
al. 1976; Kazemi and Merrill 1979; Thomas et al. 1983). Interest in single-
phase behavior within dual-porosity reservoirs has been concerned with 
accurate representation of the flux fields within the porous and fractured 
components (Huyakorn et al. 1983) for application to mass (Bibby 1981) 
and thermal transport (Pruess and Narasimhan 1985; Elsworth 1989). In all 
of these applications it is assumed that total stresses remain constant with 
time, and therefore poroelastic effects are not incorporated. 

The theory presented by Aifantis (1977, 1980) and Khaled et al. (1984) 
provides a suitable framework in which the flow-deformation behavior of 
dual-porosity media may be fully coupled to the deformation field as a 
multiphase continuum. Multiphase poroelasticity requires that the condi­
tions of flow continuity within the different solid phases and the exchange 
between the phases are superimposed on the elastic displacement behavior 
of the fissured mass as body forces. As initially defined (Aifantis 1977), the 
constitutive coefficients describing the behavior of the aggregated medium 

Associate Professor, Dept. of Mineral Engrg., Pennsylvania State Univ., Uni­
versity Park, PA 16802. 

2Research Associate, Dept. of Mineral Engrg., Pennsylvania State Univ., Uni­
versity Park, PA 16802. Now at School of Petroleum and Geological Engineering, 
University of Oklahoma, Norman OK 73019-0628. 

Note. Discussion open until June 1, 1992. To extend the closing date one month, 
a written request must be filed with the ASCE Manager of Journals. The manuscript 
for this paper was submitted for review and possible publication on May 11, 1989. 
This paper is part of the Journal of Geotechnical Engineering, Vol. 118, No. 1, 
January, 1992. ©ASCE, ISSN0733-9410/92/0001-0107/$1.00 + $.15 per page. Paper 
No. 26530. 

107 

 J. Geotech. Engrg., 1992, 118(1): 107-124 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

03
/2

5/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



defy direct physical interpretation. Although phenomenological coefficients 
describing both load-deformation and fluid-percolation response may be 
determined directly from laboratory and field testing of the fractured systems 
(Wilson and Aifantis 1982), these coefficients may be recovered more con­
veniently from basic knowledge of modulii and permeability of the com­
ponents comprising matrix and fissure porosities. 

Defining the response of the system directly in terms of the elastic and 
permeability properties of the components, with due regard for fissure ge­
ometry, offers the further advantage of ensuring that material nonlinearities 
of unknown magnitude are not inadvertently included within data reduced 
from field testing. This is an important factor, given long-standing knowl­
edge on the nonlinear load-deformation behavior of interfaces (Goodman 
1974) and the strong aperture dependence of fluid transmission in fissures 
(Iwai 1976). Indeed, the conditions needed to satisfy requirements for a 
linear theory of dual poroelasticity for fissured media may be so restrictive 
that, in all practicality, the phenomenon must be viewed as intrinsically 
nonlinear. This argument aside, only linear phenomena are considered in 
the following. 

Where the structure of the fissured mass is well defined, as in the case 
of regularly jointed rocks and fissured soils, the contribution of fissure and 
matrix components to the overall flow and deformation response of the 
medium are readily apparent. Indeed, where elastic and flow properties of 
the fissures and matrix are known a priori, it is reasonable to develop the 
governing equations directly from this constituent basis. This exercise is 
completed in the following to develop the macroscopic continuum equations 
of linear poroelasticity on the basics of known fluid compressibility and 
defined fissure stiffness, porosities, and permeabilities. 

CONSTITUTIVE EQUATIONS 

The behavior of the dual porosity aggregate may be defined in terms of 
component equations representing the solid deformation and coupled fluid-
pressure response. The morphology of the continuum is represented in 
Fig. 1. 

Solid Deformation 
The relationship between changes in total stresses (da) and intergranular 

stresses (do-') are governed by the Terzaghi (1928, 1943) relationship of the 
form 

FIG. 1. Morphology of Porous-Fractured Aggregate 
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dax = dcrj + mdp1 (la) 

da2 = da2 + mdp2 (16) 

where dp = change in fluid pressure. The effect of grain compression on 
the intergranular stresses are neglected. Stresses and strains are positive in 
compression. Subscripts 1 and 2 refer to the porous and fractured phases, 
respectively, and are represented as do-! = 3[cr.vx, ayy, erzz, uxy, crvz, <ryz]{ 
and So1! = d[axx, a22, crvJf for three-dimensional and two-dimensional prob­
lems, respectively. Since pore fluid pressures act on the normal stresses 
alone, the vector m r is [1,1,1,0,0,0] and [1,1,0] in three- and two-dimensions. 
Vector or matrix quantities are represented by boldface type. It may be 
readily noted that the influence of grain compression on the intergranular 
stress relationship (Skempton 1960; Nur and Byerlee 1971) [(1)] may be 
accommodated by substituting a modified magnitude of the vector m. This 
modified vector is determined as m„ = (m — l/3^D„m), where the subscript 
refers to the intergranular relation for the porous [n = 1 and (la)] or 
fractured [n = 2 and (lb)] phases. In this, K„ is the bulk modulus of the 
solid and D„ is the elasticity matrix for phase n, as defined subsequently. 
The influence of grain compression on intergranular stresses are neglected 
because of the relative compressibility of the skeleton of interest in this 
study. 

Local stress equilibrium requires that changes in total stress within ad­
jacent phases must remain in equilibrium, such that 

ScTx = da2 = da (2) 

The linear constitutive relationships for the separate phases are defined as 

da[ = Djdei (3a) 

da2 = D2dE2 (3b) 

where e = solid strain within each of the two materials, namely porous and 
fractured material, and the inverse relations recovered from (3a,b) are 

de1 = C^CTI (4a) 

dz2 = C2dcr2 (4b) 

where D„ = the elasticity matrix for phase n with all other phases assumed 
rigid, and C„ = the compliance matrix under a similar arrangement, such 
that D,7X = C„. Since D„ and C„ are written to represent the elastic behavior 
of phase n only, and are stated at a macroscopic level to contain a repre­
sentative sample of matrix and fissure geometry, the total strain due to 
deformation in each of the phases is 

de = del + de2 (5) 

or, substituting (1) into (4) and recording the result into (5) gives 

de = (Ci + C2)3o- - C1mdp1 - C2mdp2 (6) 

or 

da = D12(de + Cjmd/?! + C2mdp2) ' (7) 

where D12 = (Cx + C2)^x and dividing through by time increment dt allows 
(7) to be recorded as 
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<j = D12(e + Ciiapx + C2mp2) (8) 

representing the time-dependent load-deformation constitutive equation. 

Fluid Pressure Response 
Conservation of fluid mass must be maintained for each of the two porosity 

types, with appropriate transfer being possible between the two. The basic 
statement of continuity of flow requires that the divergence of the flow-
velocity vector be equal to the rate of fluid accumulation per unit volume 
of space, i.e., Vrv = rate of accumulation. Equating the continuity con­
straint for the porous phase with changes in fluid mass due to all possible 
mechanisms gives the rate of fluid accumulation as the summation of: 
(1) Change in total body strain resulting in fluid expulsion; (2) change in 
fluid pressure precipitating changes in volumetric pore fluid content as a 
result of fluid and grain compressibility; and (3) volumetric transfer between 
the porous blocks and the fractures under differential pressures. These three 
source terms represent the right-hand side of the continuity relationship as 

Vrvx = m ^ ! - c ^ + K(Pl - p2) (9) 

where V r = (d/dxl, . . . , d/dx,) in the case of ;' dimensional geometry; 
Eulerian flow velocity vf = [vvl, . . . , vvi] and ax = [nJKf + (1 - n^/K,], 
where nx = the porosity of phase 1; Kf = the fluid bulk modulus; and ks 
= the solid grain bulk modulus. Transfer between the porous block and 
the surrounding fractures may be quantified by the assumption of a quasi-
steady response governed by the coefficient K and the instantaneous pres­
sure differential (/?! — p2) (Warren and Root 1963). 

In (9), the volume strain within the porous medium, mTe1, refers to the 
drained condition where excess pore pressures are zero throughout the load­
ing process. The proportion of the volume strain manifest within the porous 
phase may be determined from the total volume strain, mTe1, by substituting 
(7) into (1) and the result into (4). This gives following division by dt, which 

mTe1 = mTCJ)12(e + C^mpt + C2mp2) - mrC1m/J1 (10) 

which may be reduced to the drained response by requiring that p1 = p2 
= 0. [The requirement of using drained solid body strain may be confirmed 
by noting the form of (40) where pressure changes are set to px = p2 = 0 
leaving the only mechanism for fluid expulsion into the separate phases 
through displacement rates, ii.] The truncated (drained) form of (10) may 
then be substituted into the continuity relationship of (9) to yield 

VTvt = m^CJ^e - axA - K{Pl - p2) (11) 

to give the final form of the continuity relationship for phase 1. Again, it 
is noted that the influence of grain compressibility as a result of changes in 
intergranular stresses has been neglected. This effect may, however, be 
incorporated by substituting the vector mt for m in (11), where m1 accom­
modates the intergranular stress relationship of (1). This effect is small for 
the stress levels of interests within geotechnical engineering and may be 
neglected. 

Repeating the same process for the fractured material gives a second 
continuity relationship 

Vrv2 = mrC2D12e - ct2p2 + K(Pl - p2) (12) 

where the fracture compressibility term is defined as a2 = n2/Kf, with n2 
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representing the fracture porosity. Again the influence of grain compress­
ibility on the intergranular stress relationship is neglected, but it may be 
readily included by substituting m2 for m. 

DUAL-POROSITY LOAD RESPONSE 

For the case of general loading, the dual-porosity response may be fully 
described by (8), (11), and (12) to determine the magnitude of instanta­
neously generated displacements and fluid pressures and their modification 
with time. Although these relationships are entirely general, it is instructive 
to consider the behavior under purely hydrostatic loading and examine the 
response in normalized format. This will allow us to determine the important 
differences between true dual-porosity systems and their representation by 
an equivalent single-porosity system. 

Hydrostatic Behavior 
Where a hydrostatic load is applied to the dual-porosity medium, the 

three-dimensional form of (7) that contains a total of six subordinate equa­
tions may be reduced to a single component. For a ubiquitously jointed 
medium containing orthogonal fractures of uniform spacing, s, the strain 
components may be reduced on noting that 

mTe = 3e (13) 

and the compliance matrices are represented as 

C - < ^ <14„) 

c> = h <146> 
where k„ = the joint normal stiffness and the stiffness matrix reduces to 

D12 = (Q + c y - 1 (15) 

Rearranging (8), (11), and (12) for an applied hydrostatic stress magnitude 
cr yields 

6- = D12s + DuQp! + D12C2p2 (16) 

K(Pi ~ p2) = lDl2Cxi - axpx (17) 

-K(Pl - p2) = 3D12C2e - a2p2 (18) 

where a zero external flux condition (VT\1 = VTy2 = 0) has been applied 
as a further boundary condition. The behavior is most conveniently decom­
posed into: the undrained loading stage when fluid pressures pl0 and p2a are 
generated; and the dissipation of pressures through fluid exchange in the 
subsequent drained behavior. The undrained pore pressures provide initial 
conditions to the initial value problem posed in (16)—(18). The magnitudes 
of undrained pore pressures may be evaluated, as discussed subsequently. 
Following undrained loading, dissipation begins under constant total stresses 
at the boundary where & = 0. Interest is restricted to the continuum level, 
where stress gradients are defined to be zero. Spatial changes in total stress 
that may occur within the volume, even under unchanged boundary stresses 
[see Mandel (1953)], are still admissible, but they require the additional 
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step of incorporating the equilibrium relationship introduced in (34). These 
considerations are in addition to the constitutive equations and our interest, 
for the moment, is merely in the constitutive relations. With some rear­
rangement, the governing equations [(16)-(18)] may be represented as 

s = - C1p1 - C2p2 (19) 

P^= - ^ ( P i - ^ ( 2 0) 

p2 = — (Pi - P2) (21) 
7l2 

where 

^ = ^ ( t + i ) <22«> 
*""5^fe + 1 ) -<22t) 

7i2 = (ana2 2 - QC2) (22c) 

a"=l3lfe+Cl) ^ 

°= = Ufe + C ') ^ 
Eqs. (20) and (21) are independent of the strain field and may be solved 

in time where boundary conditions are supplied directly. Solution to (20) 
and (21) may be determined as 

Pi(t) =Po~ (Po ~ pl0)e-^ti+722)^i2 (23a) 

Pi(t) = Po ~ (p0 - P2Je-<-™+y*></™ (236) 

where initial (undrained) conditions Pi(0) = plB; p2(0) = p2o
 ar*d terminal 

(fully drained) conditions Pi(°°) = p2(°°) = Po control the response of the 
hydraulically closed system. The initial or undrained response occasioned 
upon application of a hydrostatic stress cr to the system may be evaluated 
by using the time-independent form of (16)—(18). Substituting the rear­
ranged forms of (17) and (18) directly into (16) gives the instantaneous 
normalized strain (D12e0/cr) as 

D"e° = (i 13D^c" i ^ g i y 1 _ i
 (24) 

v \ oil a2 / px ' 

and the normalized pressure response is returned as 

^ = ^ = 5 l (25) 
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^ = ^ = B2 (26) 

where these also are equivalent to Skempton's pore pressure coefficients, 
#! and B2, written separately for the fluid in the pores and fractures. With 
some rearrangement, the pore pressure parameters may be defined as 

B1 = - ^ (27) 
i _ |—i_^ 

a2 C\ 
+ 

3C' 11 + S 
Q 

and 

^ = (28) 

-Si 
3C, -I 

The pore pressure parameters are no longer bounded between zero and 
unity, as is the magnitude of the instantaneous normalized strain, which 
represents the aggregated influence of effective stresses in the two phases. 
A large magnitude of $x suggests that the material will exhibit a small 
instantaneous strain, although the fluid pressures generated are further con­
trolled by the magnitude of the porous or fracture compliances and the 
compressibility of the fluid as embodied in a± and a2. 

The long-term response of the system where V ^ = Vrv2 = 0 results in 
an equilibrium pore pressure distribution with px = p2 and a steady mag­
nitude of normalized strain. These long-term equilibrium parameters [pi(°°), 
p2(co) and e(°°)] are most easily recovered from solving the equivalent single-
porosity problem, as follows. 

EQUIVALENT SINGLE-POROSITY RESPONSE 

The equations developed to describe the dual-porosity response may be 
modified to represent the case where it is assumed that pressures within 
both the porous and fractured material remain in equilibrium (i.e., p± = 
p2)- This is the assumption made when real porous-fractured systems are 
represented by a simple equivalent phase system. Requiring px = p2 for all 
times, including initial pressure pl0 and p2o, then (16) reduces to 

6- = D12e + p (29) 

and adding (17) and (18) under a similar requirement that px = p2, gives 

3E = («! + a2)p (30) 

where these represent the basic constitutive equations under hydrostatic 
loading. Implicit within (17) and (18), and by inference therefore in (30), 
is the requirement that Vrv = 0. Since no drainage is allowed, e is zero 

113 

 J. Geotech. Engrg., 1992, 118(1): 107-124 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

03
/2

5/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



following loading with the result that fluid pressures are maintained at their 
initially induced magnitude. This differs from the true dual-porosity case 
where there is an interchange of fluid between the pores and fractures. In 
the usual manner, (29) and (30) may be premultiplied by dt and the limit 
taken as dt —> 0 to recover the instantaneous normalized strain and pore 
pressure magnitudes as 

^ 2 = A + _ 3- V ' = - ' . ( 3 D 
a V ^12(01 + a2)/ fe 

and 

Po _ 3 1 
<r Di2(ai + a2)P2 x Di2(ai + a2) 

= 5 (32) 

where again B is bounded by zero and unity and incorporates the compliance 
of the porous solid, the fracture, and the fluid together with the appropriate 
distribution of porosities within each of the phases. 

PARAMETRIC RESPONSE 

Under undrained loading, the instantaneous generation of pore pressures 
is controlled by Bx and B2 in the true dual-porosity system, and by 5 0 in 
the pseudo dual-porosity system. For dual porosity, the mismatch in medium 
stiffness and porosity between the porous body and the fracture result in 
differential pressure generation that will diffuse with time to an equilibrium 
configuration. Where external drainage is controlled, the equilibrium pres­
sure is given by plu = B0 where this magnitude is intermediate to the 
instantaneous pore and fracture pressures. 

Of significance are the magnitudes of instantaneous pore pressures in the 
pore and fracture as controlled by B1 and B2 of (25) and (26). Unlike B 
[(32)] for the pseudo dual-porosity system, the magnitude of Bl and B2 are 
not confined between zero and unity. Rather, one may be greater than unity 
and the complementary parameter less than unity. This behavior is repre­
sentative of a piston effect, whereby pressures are amplified in the low 
stiffness porosity. According to (25) and (26), 5, is largest for large a,/oty-
and small CJCj for r = 1,2;/ = 1,2 and i + /, and also is controlled by 
the ratio a,/Q. Physically, pore pressure magnitudes are increased as po­
rosity increases or as solid stiffness decreases. The influence is illustrated 
for a variety of sedimentary and crystalline rocks in Table 1. Porosities and 
stiffnesses have been added to augment available data for poroelastic be­
havior of single-porosity solids. 

Regardless of fracture spacing, all materials return B2 magnitudes close 
to or greater than unity for the fracture pressures and B1 magnitudes of 
negligible proportion. Pore pressure parameter magnitudes for the aggre­
gated system given by B in the table remain close to unity. As the fracture 
spacing is increased (from 0.1 m to 0.5 m), the aggregated B decreases 
uniformly due to the net increase in stiffness of the system. However, no 
similar generalization is possible for the coefficients Bt and B2. 

The instantaneous pore pressure regime in the closed system (VT • v = 
0) is modified with time by diffusive exchange between the porous body 
and the fracture. For realistic parameter estimates, given in Table 1, dif-
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fusion is most likely from the fractures into the circumscribed blocks. The 
rate of this process may be considered as an indication of the relative im­
portance of the dual-porosity effect. The equilibration rate is controlled by 
a dimensionless time given in (23A) and (23b) as tD = (yu + -y22)f/7i2, 
whereby the time to 50% and 95% equilibration of pressures are given by 
t5S = 0.6931 and P£ = 2.9957. In terms of the physical parameters of the 
system 

* ( % + % + ' ) ' 

3£>12(aua22 - Q Q 

where, in addition to the material coefficients controlling deformation, the 
block permeability, kh and appropriate diffusion lengths are incorporated. 

The behavior of representative sandstones in Table 1 are characterized 
by very rapid response times, reaching t9S in less than a second. The low-
permeability matrix of the crystalline rock impedes equilibration that, de­
pendent on permeability and fracture spacing, may extend over thousands 
of seconds. Characteristic responses are illustrated in Fig. 2 to illustrate the 
form of the response. With drainage potential proportional to fracture spac­
ing s2, flatter responses in time are elicited where the path length is increased. 

Although parametric analyses previously were limited to sandstones and 
crystalline rock, the major trends in behavior are apparent. Firstly, fluid 
pressures developed in compliant fractures may considerably exceed those 
developed in the porous body. These differential pressures will only be 
significant, however, if matrix permeabilities are sufficiently low that the 
pressure differential may be sustained in time. From the time scales apparent 
for permeable (sandstones) and impermeable (crystalline) materials, it ap­
pears that dual-porosity effects may be of little consequence in permeable 
media, but drainage time scales are sufficient in low-permeability rocks to 
cause noticeable effect. Where permeability controls behavior, clays and 
low-permeability silts may be subject to dual-porosity effects. 

T 1 1 r 

00 I 1 1 1 1 1 1 
200 400 600 

TIME (••condi) 

FIG. 2. Undrained Pore Pressure Response for Fractured Sandstone and Frac­
tured Marble 
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GLOBAL BEHAVIOR 

It is possible to solve a broader range of problems only if the previously 
developed constitutive behaviors are globally framed to represent spatial 
interaction. This requires that the constitutive, load-deformation relation­
ship of (7) is substituted into an equilibrium statement and that the flow 
continuity (11) and (12) have an appropriate constitutive equation applied. 
The constitutive relationship, in this instance, is supplied by Darcy's law 
(Bear 1972). 

For the general representation of heterogeneous, mixed-initial value 
problems, the finite element method is chosen. The equilibrium statement 
in its most general form is given as 

( 
BTda dV - df = 0 (34) 

where B = the strain-displacement matrix; df = an incremental vector of 
applied boundary tractions, and the integration is completed over the vol­
ume of the domain (dV). Defining all quantities in terms of nodal variables 

de = BSu (35a) 

dp1 = N3pi (355) 

dp2 = Ndp2 (35c) 

where du = a vector of incremental nodal displacements; dp = a vector of 
nodal pressures; and N = a vector of shape functions interpolating fluid 
pressures. Substituting (7) and (35) into (34), dividing by dt, and rearranging 
gives the incremental equation in finite element format as 

J BrD12B dV u + J B^D^dmN dV p, 

+ J BrD12C2mN dV p2 = / (36) 

where a superscript dot identifies time derivative. 
Darcy's law must be added to the continuity requirements already imposed 

in (11) and (12) and may be simply stated as 

vi = — V(px + 7Z) (37) 

where 7 = the unit weight of the fluid; a. = the dynamic viscosity; kt = 
the porous medium permeability with the fracture permeability set to zero; 
and Z = the elevation of the control volume. Substituting (37) into (11) 
and applying the Galerkin principle results in 

- - f A ^ A dVVl + I N W Q D ^ B dVu - at \ NrN dV p1 
(X Jv Jv Jv 

- K j NrN dV(Vl - p2) = - \v ArkxA dVZ (38) 

for the porous phase and for the fractured medium 

117 

 J. Geotech. Engrg., 1992, 118(1): 107-124 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

 o
n 

03
/2

5/
16

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



- - J Ark2A dV p2 + J NrmrC2D12B dV li - a2 J NrN dV p2 

+ K J NrN dV(fix - p2) = - J Ark2A dV Z 

where k2 = a matrix of fracture permeabilities. 
Eqs. (36), (38), and (39) may be written at any time level (say, t 

and are most conveniently represented in matrix form as 

(39) 

- Af) 

0 
( - K i - S3) 

( 

+ 
F Gx G2 

Ex - S j 0 
LE2 0 - S 2 

0 

s3 
-K 2 - S3)J 

r u i 
Pi 

.i»2. 

t+\t 

= 

~u~ 

Pi 
-P2J 

r-t-Ar 

r f -1 
K l 7 Z 

LK27ZJ 
(40) 

where all submatrices are defined in Appendix I. 
These coupled equations remain symmetric, but they must be rearranged 

prior to solution in time. All terms on the right-hand side are known. The 
matrix relation may be integrated in time by using any convenient repre­
sentation of the time derivatives. Using a fully implicit scheme, such that 

Pi+ ' 

F»2 + A ' 

At'+M 

1 
Af 

1 
Af 

(u'+Ar - u') (41a) 

(Pi+A' - Pi) (416) 

(P'+A ' - p2) (41c) 

and substituting (41) into (40) gives 

1 
Af 

F Gt 

Ex (-K1Af'+Ar - St - AfS3) 
E2 ArS3 

G2 

AfS3 

-K2Ar'+A' - S2 - A/S3)J 

1 
Af 

F G G2 

Ei - S i 0 
LE2 0 - S2 

" u " 

Pi 
-P2. 

1 

+ r / 1 K l 7 Z 
LK27Zj 

(42) 

where the matrix comprising the left-hand side is time invariant if a constant 
time-step magnitude is chosen. Initial undrained conditions are recovered 
if Kj = K2 = 0 and K = 0 allowing (42) to be solved for u, px and p2. 

A two-dimensional formulation is chosen to illustrate the potential of the 
dual-porosity formulation. Suitable shape functions must be chosen to rep­
resent the quadratic displacement field and bilinear fluid pressure variation 
present within individual elements. A four-node quadrilateral isoparametric 
element with quadratic-incompatible modes is used. The incompatible modes 
are condensed out at the element level. 

The broad range of material parameters that influence the pressure gen­
eration and dissipation response makes meaningful representation of tran­
sient behavior difficult. The versatility of the proposed technique is illus-
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trated for a one-dimensional column for the parameters reported in Table 
2. The fluid pressure response with depth is illustrated in Fig. 3 for a fracture 
spacing, s, of 0.1 m. Fluid pressures generated within the fractures are 
considerably greater than the matrix pore pressures. With time, the fracture 
pressures dissipate into the porous blocks until an equilibrium is reached. 
In this example, following the establishment of an equilibrium pressure 
distribution, the consolidation process will continue by drainage from the 
top of the layer. The surface settlement associated with the expulsion of 
fluid from the dual-porosity system is illustrated in Fig. 4. Fracture spacings 
of 0.025, 0.05, and 0.1 m are used to demonstrate the differing responses. 
Where spacing is decreased, the dissipation process is accelerated. The dual-
porosity response is contrasted with the behavior of a single-porosity system, 
where the different form of settlement-versus-time behavior is apparent. 

A two-dimensional geometry, represented in Fig. 5, also may be used to 
illustrate the essential differences between single-porosity and dual-porosity 
effects. The response to a load of finite extent is illustrated in Fig. 6. As 
fracture spacing is decreased, the magnitude of initial normalized displace­
ment increases, reflecting the dominant influence of fracture stiffnesses on 
the deformation behavior. The small block dimensions present within the 

TABLE 2. Example Coefficients 

Parameter 
(1) 

E 
V 

K 
Kf 
« i 

n2 
ktl\i. 

k2/\i. 

s 

Definition 
(2) 

modulus of elasticity 
Poisson's ratio 
fissure stiffness 
fluid bulk modulus 
matrix porosity 
fissure porosity 
matrix permeability 
fissure permeability 
fissure spacing 

Magnitude 
(3) 

1.0 
0.15 
0.1 
0.1 
0.1 
0.05 
0.01 x 10-3 

0.1 
0.025, 0.05, 0.1 

Units 
(4) 

MN/m2 

MN/m2/m 
MN/m2 

m4/(MN • s) 
m4/(MN • s) 
m 

FLUID PRESSURE (P/u) -

FIG. 3. Pore Pressure Equilibration Response for One-Dimensional Column Loaded 
Axially 
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•A—;va—r.-*H 

n5 in6 in7 1 0 ' 10° 1 0 ' 103 10D 10 ' 10° lO* 1 0 ' " 1 0 ' ' l O ' ^ I O 1 0 , n 1 1 , „ 1 2 i 

o—- Blot(E=0.1) 

— - a — Blot(E=1) 

—••*•— Blot(E=10) 

* — Dual (s=0.05) 

» — Dual(s=0.1) 

• — Dual (s=0.2) 

FIG. 4. 
Axially 

Time (sec) 

Surface Displacement Response for One-Dimensional Column Loaded 

$h 

* , » ^ 

X 

Htl 
4 

< * • * " 

6n dn 

FIG. 5. Two-Dimensional Geometry 

closely fractured medium result in an acceleration of the consolidation proc­
ess. As bulk permeability magnitude is correspondingly increased, the dual-
porosity behavior exhibits a characteristic acceleration in the early time 
response and a deceleration in the late time response over the equivalent 
single-porosity behavior. The former characteristic results from the rapid 
equilibrating of fluid pressures within the fractures where dissipation in-
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creases the magnitude of effective stresses. The high compressibility of the 
fractures correspondingly yields a magnified response. At later times, the 
dual porosity exhibits a more sluggish response over the equivalent single-
porosity behavior as a result of delayed changes in effective stresses within 
the porous blocks. This behavior is slightly magnified in time as block 
dimension is increased, resulting in a longer dissipation tail, as evident in 
Fig. 6. 

CONCLUSIONS 

A constitutive model for the coupled flow-deformation response of dual-
porosity media has been presented. The formulation is stated in component 
terms, where behavior is controlled by the mechanical and hydraulic re­
sponse of the individual porous and fractured phases. Representation in this 
form allows the potential importance of dual-porosity effects to be evaluated 
in controlling the coupled flow-deformation behavior of fractured geologic 
media. 

Pore pressure coefficients B1 and B2 may be defined for the dual-porosity 
response, where the magnitudes are not necessarily confined to the range 
between zero and unity. For realistic material parameters, the magnitude 
of the pore pressure coefficient for the fractures is commonly greater than 
unity, and for the porous medium, less than unity. With the generation of 
this pressure differential, fluid transfer between the porous medium and the 
fracture will attempt to equilibrate the pressures. Equilibration times are 
controlled by the compliances of the porous medium and the fractures, 
together with porosities and the block-fracture fluid-transfer coefficient K. 
This latter component is a function of block size and block permeability. 
Where undrained loading is prescribed, the times to 50% and 95% equili­
bration may be determined explicitly. 

Where general boundary conditions are applied to the dual-porosity sys­
tem, a numerical solution method must be employed, Representation as a 
finite element system is particularly appropriate, allowing spatial variability 
in parameters and general boundary conditions to be readily accommodated. 

z 1-° 

< O.B 
a. 

I 
o 0.6 
N 

1 °-4 

0.2 

. 

DUAL POROSITY 
s= 0.1m—~~^/^ 
s: 0.05 m O ^ C 

/ / J 

„^d£"Ss 

< i " " " I 11 m i n i ni i 

^ S I N G L E POROSITY 
O ^ s - . O . I m 

^ ^ 6 = 0.05 m 

• ' " I ' l l "I ' » " " " 1 ' 1 1 " ' " I 
101 102 103 10" 105 1Q6 1Q7 

ELAPSED TIME (SECONDS) 

108 

FIG. 6. Surface Displacement Response at Centerline for Single-Porosity and 
Dual-Porosity Systems (parameters Given in Table 2) 
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The procedure may be applied to a variety of engineering situations where 
the accurate determination of parameters associated with dual-porosity sys­
tems is important. These include the performance of fractured clay tills used 
as barriers to contaminated ground water and waste leachate and the be­
havior of fractured rocks deforming above mined underground openings. 
In either instance, the behavior of the dual-porosity medium is distinctively 
different from that of a single-porosity continuum, and it is important to 
recognize this differentiation if serviceable designs are to be commissioned. 
For example, large initial deformations are apparent in the dual-porosity 
medium under undrained loading that result in considerably different tran­
sient response to anything that can be explained using single-porosity rep­
resentation. Thus, use of an incorrect phenomenological model in describing 
field data would erroneously predict the performance of the prototype. For 
this reason, it is imperative that a correct and adequate model is initially 
selected. 

ACKNOWLEDGMENTS 

Support provided by the Standard Oil Center for Scientific Excellence 
and the Waterloo Centre for Ground Research is most gratefully acknowl­
edged. 

APPENDIX I. SUBMATRICES 

E, = J N W C ^ B dV (43) 

E2 = J NWQAzB dV (44) 

F = J BT)12B dV (45) 

Gt = J BrD12CimN dV (46) 

G2 = J BrD12C2mN dV (47) 

H = J NrN dV (48) 

Kj = - I ArkiA dV (49) 

U. Jv 

K2 = - J Ark2A dV (50) 

Si = «xH (51) 
52 = a2H (52) 
53 = KEL (53) 
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APPENDIX III. NOTATION 

The following symbols are used in this paper: 

A 
B 
5 , 
B 

c, 
D, 

D12 
E 
f 

K 

K 
K 
Kt 
Ks 

m 

m, 
m„ 

n, 

Pi 
s 
t 

to 
u 
V,' 
Z 
d 

«/ 
7 
d 
e 

( * • 

V 

a 

= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
— 

= 
= 
= 

derivatives of shape function matrix N; 
strain displacement matrix; 
Skempton's fluid pressure coefficients in true dual-porosity system; 
Skempton's fluid pressure coefficients in pseudodual-porosity sys­
tem; 
compliance matrices; 
elasticity matrices; 
elasticity matrix (C± + C 2 ) _ 1 ; 
Young's modulus; 
vector of boundary tractions; 
fluid transfer coefficient; 
permeabilities; 
joint normal stiffness; 
fluid bulk modulus; 
solid grain bulk modulus; 
one dimensional vector; for three-dimensional problem, mT = 
(1 1 1 0 0 0); for two-dimensional problem, mT = ( 1 1 0 ) ; 
modified intergranular stress relationship; 
(m - l/3i&D„m); 
porosities; 
fluid pressure; 
fracture spacing; 
time; 
dimensionless time; 
displacement vector; 
flow velocity vector; 
elevation of control volume; 
partial differential operator; 
hydrostatic compressibility; 
unit weight of fluid; 
partial differential operator; 
strain vector; in three-dimensional Cartesian coordinates, eT = 

dynamic viscosity; 
Poisson ratio; and 
stress vector; in three-dimensional Cartesian coordinates, rr r = 
<Txx(TyyCrz2<Jxy(Txz<Tyz). 

Subscripts 
i = 1, 2, denoting pore phase and fracture phase, respectively. 
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