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A study of the pore pressure fields that develop around intruding dikes is described under the motivation 
that intruded geometry may be determined from pore pressures recorded in relatively remote monitoring 
wells. The pore pressure fields induced around cylindrical and planar intrusions are described as analogues 
to moving point or line dislocations within an infinite saturated porous elastic medium. The resulting 
transient pressure fields reduce to an equivalent steady state when viewed from the advancing front. 
Solutions for the moving point and line dislocations yield a dependence on common dimensionless 
groupings. Thus, dimensionless pressure rise accompanying intrusion, and recorded at a static location, may 
be uniquely referenced to the dimensionless parameters representing emplacement velocity and time. The 
resulting transient pressure response may be divided into two groups, representing fast and slow 
emplacement. Where hydraulic parameters representing the host porous medium are known a priori, both 
emplacernent location and the cross-sectional area may be determined uniquely. For slow emplacement, the 
intrusion rate may also be determined; only a lower limiting intrusion rate may be discemed for fast 
emplacernent. Field data are rare, but two intrusive events at Krafla, Iceland are examined using the 
proposed moving dislocation models. Predicted location and lower limiting intrusion rate of the Krafla dikes 
compare favorably with field observation despite more than a 9 km separation to the monitoring well. 

INTRODUCTION 

Knowledge of the magma ascent rate is required for a proper 
understanding of volcanic systems and eruption processes and 
is important for eruption prediction [Kushiro, 1980; Turcotte, 
1982; Ida and Kumazawa, 1986; Chadwick et al., 1988; 
Shimozuro, 1989]. Despite this significance, the determination 
of ascent rates has remained historically elusive, as few 
volcanoes are adequately instrumented to determine magma 
migration [Endo et al., 1990]. In the following, an appraisal is 
made of the suitability of using pore pressure increases to 
determine both the morphology and emplacement rate of 
magmatic intrusions. 

Magmatic emplacement results in a sudden volumetric 
increase within the saturated medium [ Turcotte, 1990], with 
secondary volumetric changes possibly resulting from thermal 
expansion within the saturated porous medium surrounding the 
intrusion [ Delaney, 1982; Watanabe, 1983]. Together, these 
processes result in an instantaneous change in pore fluid 
pressures around the location of emplacement. Although data 
documenting these processes are rare, two events at Krafla, 
Iceland have supplied relatively complete transient pore 
pressure records recorded in a single well. The rapid pressure 
rise and subsequent slow pressure drop measured in a single 
well at the Krafla geothermal site may be used to infer the path 
of magma ascent within the host rock. Indeed, if the processes 
describing changes in pore pressure that result from intrusion 
are sufficiently quantified, a surprising array of parameters 
describing dike morphology may be ascertained. The possibility 
of inferring dike morphology, from pore pressures recorded at a 
single location in the surrounding medium, is developed in the 
following. 
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Undrained changes in pore pressure may be represented by 
the concept of a dilation center [Cleary, 1977]. For a migrating 
dilation center representing the continuous intrusion process, 
the resulting pore pressure field may be represented by a 
succession of dilation centers to reproduce appropriate 
boundary conditions. Boundary conditions at the interface 
between the intrusion and the host rock may be applied as 
either stress-free [ Cleary, 1978] or displacement conditions 
[Elsworth, 1991], with the latter proving most convenient for 
this particular type of viscous intrusion. Consequently, moving 
point and line dislocations may be considered analogous to the 
bounding geometries of an intruded dike of finite extent. Pore 
pressure responses within the porous medium surrounding 
intruded line and sheet dikes are defined in the following as 
bounding cases. The insensitivity of the pore pressure response 
to prescribed geometry is apparent in the results. 

POINT DISLOCATION IN A POROELASTIC MEDIUM 

The pore pressure field that results from dilation of an 
infinitesimal cubic volume within a saturated porous elastic 
medium is available from Cleary [1977]. The point dilation is 
centered at the origin. The walls of the infinitesimal cube 
separate exterior and interior problem domains that may be 
considered independently. Applying an instantaneous but 
permanent hydrostatic expansion of the interior cube at time 
t--0 results in a volumetric change of "strength", Z. 
Considering the interior problem first, an arrangement of dipole 
forces are applied to the faces of the cubic volume to yield the 
required volume change, Z. The concurrent application of an 
equal but opposing set of forces to the surface of the exterior 
medium retains displacement continuity between the exterior 
and interior domains. The cubic region may be arbitrarily 
reduced to a point where, by definition, the magnitude of the 
applied dipole forces remain constant and the strength of the 
dislocation, Z, is also retained finite. This application of forces 
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results in an expansion of the cubic interior volume and is 
accompanied by a corresponding increase in void volume. In 
order to retain saturation of this volume and thereby satisfy 
continuity for the fluid (diffusion equation), an instantaneous 
fluid source must be supplied at far-field pressure. The 
superposition of the continuous dipole triplicate and an 
instantaneous point fluid source of appropriate magnitude give, 
directly, the pore pressure Green's function for a point normal 
dislocation in an infinite medium [ Cleary, 1977; Rudnicki, 
1981] as 

KZ [ B(l+vu) _•2 p_p,=4rcR3 3(l_vu)2d•3e 4 ] (1) 
with 

R 

477 (2) 
and 

R 2=x2+y 2+z 2 (3) 

where induced pore pressures, p-p,, above ambient pressure, 
p,, are spherically symmetric within the Cartesian (x,y ,z) 
space. The strength, Z, of the dislocation is conditioned by the 
effective modulus of the interior region, K, whereby the 
product, KZ, directly represents the magnitude of the dipole 
triplicate. The material coefficients are those of undrained 
Poisson ratio, %, that takes the range v<%<0.5 where v is the 
drained magnitude [Rice and Cleary, 1976], the consolidation 
coefficient or synonymous hydraulic diffusivity of the isotropic 
saturated porous elastic medium, c, and the Skempton pore 
pressure parameter, B, representing the ratio of induced 
undrained pressure change to mean applied stress [Skempton, 
19541. 

Since the analysis in the exterior is linearly elastic, pore 
pressures generated by induced deviatoric total stresses are 
controlled by the Skempton A parameter, which for a linearly 
elastic body reduces to A=l/3 [Skempton, 1954]. In equation 
(1) induced pressures vanish as R -->oo and as t 

Magma intrusion may be represented as a displacement 
controlled process. If magma injection rate is prescribed as the 
primary boundary condition that controls intrusion, then it is 
more convenient to relate induced pore pressures directly to the 
dilation volume rather than via the indeterminate magnitude of 
the dipole strength, KZ. Total volume change, V, resulting 
from a dislocation at the origin is 

I (4) 
where the compressibility, m, of the saturated medium is 
recovered from the hydraulic diffusivity, c, intrinsic 
permeability, k, and fluid dynamic viscosity, g, as rn=k/(cg). 
Substituting equation (1) into equation (4) and completing the 
integration yields 

KZ=c•__V 3(1-%) (5) 
k B (1+%) 

where V is constant in time. Resubstituting equation (5) into 
equation (1) yields the induced pore pressure field that results 

from insertion of volume, V, into the porous medium at time, 
t--O, and leaves the cavity inflated at this volume for t>0. The 
resulting expression is 

cV 
P-P'- 4•:R 3 k 2x/• e 4 (6) 

representing the spherically symmetric pore pressure field. 

Moving Point Dislocation 

The point normal dislocation of equation (6) may be readily 
integrated in time and space to represent a moving or arrested 
dislocation [Elsworth, 1991] where the fluid and deformation 
fields of the linear system remain coupled throughout. For a 
moving dislocation the continuous dislocation volume, V, is 
replaced by a volumetric rate and integrated in time and space. 
For a dislocation of cross-sectional area, a, moving within the 
porous medium at velocity, U, as illustrated in Figure 1, the 
substitution 

V=Saa • (7) 

may be used, where x is the discrete parameter of time 
integration. A moving coordinate system is chosen that 
migrates in the negative x direction with the front of the 
traveling point dislocation. The position of a point located 
relative to the primary dislocation at coordinates (x,y,z) at 
current time t would have been ([x-U(t-x)],y ,z ) at time x. 
Substituting equation (7) and the coordinate transform (of 
equation (9)) into equation (6) and integrating in time (x) 
between the time of initiation (x---0) and the current time (x=t) 
gives 

cUa I 4 P-P'= 4• k 2•3•e dx (8) 
where 

and 

• 2=[x-U (t-x)] 2+y 2+z2 (9) 

(10) 

Volume, V=Uadx Y 

z 

Cross-sectional 

area, a 

Velocity, U 

Fig, 1. Local coordinate system for a moving point dislocation. 
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Substituting the dummy variable enables the transient behavior to be defined as 

R 

'!= 2% (t-x) 
into equation (8), yields, following some rearrangement, 

(11) 

2 •o C•DXD-•l -t 2•1 P D R D =-¾-• e d l ! (19) 

Ux '• _t12_[ UR ]2 
p-p•= •e e 4,:n d•! 

2•2R 2• 
(12) 

where R2--x2+y2+z2. The integral must be evaluated 
numerically except for the steady condition where t-->oo when 
the pressure distribution reduces to 

- U (R -x ) 

•Ua • p-p•= 4-•-•- e (13) 
Dimensionless parameters. The pressure response may be 

viewed in terms of a minimum set of dimensionless parameters. 
The system may be defined through the dimensionless 
parameters, 

4gl (p-p•) k 
Po- -- (14) 

Ua I.t 

Ul 

uo=2c (•5) 

and the steady behavior to be described as 

-% (R o -x o ) 
PoRo=e (20) 

where the maximum magnitude of dimensionless pore pressure, 
Po, is unity. Both equations (19) and (20) are written with 
reference to the moving coordinate system and must be 
appropriately transformed to represent the transient response at 
a static measuring location, adjacent to the migrating 
dislocation. If time, t*, is defined as the time at which the path 
of the dislocation is closest to the pore pressure measuring 
location, as identified in Figure 2, then the moving coordinate 
system may be transformed on noting that 

where 

xo=-•(t-t* )=•AUo (to-t3 ) (21) 

t3= 4ct * 12 (22) 
enabling dimensionless radius, RD, to be defined as 

4ct 
to=• (16) 

l 2 

1 

(xo Yo ,zo)=•(x ,y ,z ) (17) 

Ro 2=-xo 2+ yo 2+zo2 (18) 

representing dimensionless pore fluid pressure at the monitoring 
location, Pt>, dimensionless intrusion velocity, Uo, 
dimensionless time, to and dimensionless coordinates 
(xo ,Yo ,zo ). Here, l is introduced as the minimum distance from 
a pore pressure monitoring location to the path of the 
dislocation, as illustrated in Figure 2. Rearranging equations 
(12) and (13) in terms of these dimensionless parameters 

Recording 

TIME 

Reaches point 
at time, t* 

Ro2=xo2+ 1 (23) 

where it is apparent from Figure 2 that 2 2 yo+zo=l. Thus the 
transient pore pressure response may be fully defined as a 
migrating dislocation approaches, reaches and ulti•nately passes 
a particular location. 

Pressure buiMup. Pressure buildup behavior is of particular 
use in determining the applicability of the steady state 
approximation of equation (20) in the analysis of intrusion 
problems. The true transient behavior is determined from an 
intrusive event initiating at time, t=0, and continuing until 
current time from equation (19). Since the steady condition 
migrates outwin'ds from the tip of the advancing dislocation, it 
is only relevant to discuss the steady state relative to the 
moving coordinate system. 

In determining the closeness to the steady state it is desired 
to compare pressure at any time level with the steady 
magnitude of PoRo. According to equation (19), representing 
the full transient behavior, the maximum set of dimensionless 

parameters describing the system are 

to 'Uoxo'Uo] (24) PøRø=f [ R•- ' 
For small Uoxo the behavior of the integral is asymptotic to a 
threshold response in terms of dimensionless time, to/Ro 2 [see 
Elsworth, 1991]. Thus, for Uoxo<10 -= the time to reach 95% 
of the steady pressure at any location around the advancing 
dislocation front is given by 

Fig. 2. Local coordinate system for a moving point dislocation relative 
to a static measuring location. 

to =500 for Uoxo_<10 -2 (25) 
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As magnitudes of Uoxo increase the pressure response time 
and duration are simultaneously reduced. The time to steady 
response may be approximated by the inflection point of the 
P•Ro versus to/RD 2 curve [Elsworth, 1991] and is appropriately 
given by 

32(PDRD) =0 (26) 
3ri 2 

or 

to __•2 for Soxo>_10 • (27) 
Ro UoRo 

The asymptotic values of equations (25) and (27) enable the 
suitability of using the approximate steady representation to be 
determined. Knowledge of the measuring location relative to 
the intruded feature enables an evaluation of the 

appropriateness to be made provided material parameters are 
available for the host porous medium. The quasi-steady 
approximation of equation (20) yields a suitable approximation 
in many instances, as evidenced in the observed fit between 
theory and experiment, presented later. 

Steady pressure distribution. After relatively small 
penetration distances the pressure distribution surrounding the 
tip of an advancing dislocation is well approximated by the 
steady representation of equation (20). Although the pressure 
distribution is steady relative to the moving coordinate frame, a 
recording location fixed in space will register a transient 
response as the perturbation approaches. The pressure response 
relative to the moving coordinate system may be transformed to 
the time domain on substitution of equations (21) and (23) into 
equation (20). In this procedure the time frame is referenced to 
that when the path of the dislocation passes closest at t*, as 
illustrated in Figure 2. Through this transform, only three 
independent parameters remain in equation (20), namely, 

?o =f [$o ,So (to-t3 )]. (28) 

The pressure changes that occur as a moving dislocation 
approaches and subsequently departs the measuring location 
may be illustrated separately in Figures 3 and 4, respectively, 
where equations (21) through (23) are substituted into equation 
(20). Where the dislocation approaches at low velocity, Uo, the 

Approaching dislocation 

"D 

r 1/,0 
10.610 ' , 

.10 7 -10 ø 
Dimensionless time, • (•-•*) 

Fig. 3. Dimensionless pore pressure versus dimensionless time resulting 
from an approaching point dislocation. 

10 -7 
10-• 

10• U•10 '2 
10 o 

! 04 1• 1 

I 

10 o 

Dimensionless time, I.• (to-to*) 

Departing dislocation 

10 7 

Fig. 4. Dimensionless pore pressure versus dimensionless time resulting 
from a departing point dislocation. 

diffusive augmentation of pore fluid pressures at the measuring 
location occurs at a rate consistent with migration of the 
dislocation, as illustrated in Figure 3. As the dislocation 
velocity increases, pressure buildup is no longer able to keep 
up with the moving dislocation front. Consequently, for 
Uo>10 ø, the induced pore pressures have not yet reached a 
peak even when the dislocation front is in the closest location 
at t* represented by Uo (to-t•)=O. 

The pore pressures generated after the dislocation passes the 
measuring location are illustrated in Figure 4. Clearly visible is 
the lag to peak pressure for large magnitudes of dimensionless 
dislocation velocity, Uo. For small velocities, the peak pressure 
is reached concurrently with the dislocation approaching the 
measuring location and a symmetry is noted with the prepeak 
transient record. The symmetry of the transient record is 
indicative of the spherical pressure distribution evident around 
the advancing dislocation as noted elsewhere [Elsworth, 1991]. 
As dimensionless dislocation velocity increases, the spherical 
distribution is flattened ahead of the dislocation front, resulting 
in the characteristic delay apparent in Figure 4. 

Although useful to understand the processes accompanying 
pore pressure generation around a migrating dislocation, the use 
of the parameter Uo (to-t3) is not practical for the reduction of 
field data. Clearly, the time at which the dislocation passes 
closest to the measuring location, t* (i.e., when the physical 
separation is l), is not generally available and must be 
substituted by a field discernible parameter. The peaked form of 
the pressure response is evident from equation (20), where the 
appropriate substitution of equations (21) through (23) is made. 
When pore pressures are plotted relative to prepassage and 
postpassage times, as illustrated in Figures 3 and 4, the 
logarithmic time scale masks the true peaked nature of the 
response. Referencing both field data and analytical solutions 
relative to the time to peak pore fluid pressure, P', enables a 
common reference frame to be established. Correspondingly, 
the time to peak pressure may be evaluated by differentiating 
equation (20) with respect to xo and setting the result to zero. 
This yields the relation 

Uo= (29) 

(1-••o 
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Approaching dislocation 10 0 

10ø - 10'• 

- //1o ( - 

10 -7 
.10 7 .10 o .10 4 

Dimensionless time, • (• 
Fig. 5. Dimensionless pore pressure versus dimensionless time 
resulting from an approaching point dislocation relative to time to peak 
pressure. 

where the p superscript refers to the magnitudes of xo, Ro and 
to at peak pore fluid pressure. Pore pressure transients may 
therefore be evaluated relative to the peak as illustrated in 
Figures 5 and 6 for the prepeak and postpeak regimes, 
respectively. As expected, the symmetric form of the response 
for small Uo is little affected. For large dislocation velocities 
an asymmetric form to the response is apparent in the translated 
configuration. An extremely rapid pressure increase is 
apparent as the dislocation approaches, representing the 
undrained loading applied to the system. 

Presentation of the data in the form of Figures 5 and 6 
enables direct reduction of field data, since time to peak 
pressure may be directly discerned. 

Pressure decay following termination. For a dislocation that 
terminates close to the measuring location, pressure response 
may be determined from the full transient representation of 
equation (19). Superposition is used to represent termination 
that occurs at time t', prior to the current time level of interest, 
t. A continuous dilational dislocation is introduced spanning 
O<x<t, and a second contractile dislocation of equal but 
opposite magnitude is applied in the interval f<x<t. This 

- 10 '4 UD<•.10 '2 Departing dislocation 
• 10ø __UD •li 10 0 ) 

•) • _ 10 2 • 
a. = 10 3 __• 
_o = lO'- 
e = 10 5 _• • 
g - 10 

10 -7 I I I I I i I I • I 
10 4 10 0 10 7 

Dimensionless time, • (•-• 

Fig. 6. Dimensionless •re pressure versus dimensioness t•e 
res•g from a depan•g point dislocation rela6ve to •e to pe• 
pressure. 

system of concurrent dislocations is represented as 

R D 

Ro= 2_•_eUORo Po ,1• Jo e (30) 

where 

4ct' 
t'o= (31) 

12 

and pressures must be referenced back to the coordinate 
system, arrested at time t', through 

x=x' -U (t-t' );y =y' ;z=z' (32) 

where the prime represents coordinates relative to the arrested 
geometry. In dimensionless form, these can be retransformed 
as 

xo=x'o +aAUD (to-t'o ) (33) 

enabling pore pressure dissipation to be determined around the 
terminated dislocation. Although useful for completeness, the 
expressions for pressure dissipation around the dislocation are 
of limited use in the reverse analysis of poorly defined systems 
due primarily to uniqueness requirements. The interested 
reader is referred elsewhere [Elsworth, 1991] to explore trends 
resulting from pressure dissipation. The analyses of most use in 
the following data reduction are those representing the steady 
condition. 

Moving Line Dislocation 

For unsteady, steady and terminated line dislocations, linear 
superposition of the pressure distributions previously defined in 
equations (19), (20) and (30) for point dislocations may be used 
where St. Venant's principle is assumed. Similarly, this 
principle holds in determining the applicability of the quasi- 
steady approximation to a nominally transient process. 
Alternatively, the pressure transient behavior may be formally 
evaluated for a limiting case to examine the anticipated 
variation in response between a point dislocation and a line 
dislocation of infinite extent. The modified geometry is 
illustrated in Figure 7 for a dislocation of infinite extent in the 
y direction, comprising a planar intrusion. 

Dislocation sheet 

Area, 

Velocity, U 

Fig. 7. Local coordinate system for a moving line dislocation. 
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The steady pressure response around the tip of an advancing 
line dislocation may be obtained by replacing the cross- 
sectional area of the dislocation, a, by the area per unit length 
in the y-direction, w, as illustrated in Figure 7. Substituting 
a=wdy into equation (13), and representing a feature of infinite 
extent in the y direction yields 

p t _p ß = g Uw +• 1 -v ((,, 2+, 2+• 2) •_,, ) -•' 4•• (x2+z2+y2) v' e 2,: dy (34) 
resulting in 

PD=Ko[UD RD ]e vD"D (35) 
where Ko[x ] is the modified Bessel function of the second kind 
of order zero and all dimensionless parameters are as 
previously defined in equations (15) through (18), excepting 
dimensionless pressure. Dimensionless pore pressure for the 
line dislocation is now represented as 

- Departing t// ' 
dislocation / / 

- UD-'- 10 I I • 
, , ! , J, J !/ ,• ,10't 

10 0 10 7 

Dimensionless time, Uo (tD'tO*) 

Fig. 9. Dimensionless pore pressure versus dimensionless time resulting 
from a departing line dislocation. 

p•_ 2•r(P t-p,) ___k. (36) 
Uw g 

Comparing dimensionless pore pressures for the point and line 
dislocations (equations (14) and (36)), it is apparent that length 
to the measuring location, l, has been replaced in lieu of 
intruded width, w, to retain the correct dimensionality of the 
parameter. Similar to the previous case, the steady distribution 
around the advancing tip may be transformed using equations 
(21) and (23) to yield the transient behavior observed at a static 
recording location. The pressure behavior relative to the time of 
dislocation passage, t', is documented in Figures 8 and 9. As a 
result of the differing geometry of the intrusion, dimensionless 
pressure magnitudes are not limited by unity. As the dislocation 
approaches, a steep pressure rise is exhibited for increasing 
magnitudes of intrusion or penetration rate, Uo, as apparent in 
Figure 8. When represented in log time, the steep pressure rise 
is masked by the stretching of the horizontal axis, especially at 
times close to the peak. The peak dimensionless pore pressure 
magnitude resulting from the line dislocation increases with a 
decrease in dimensionless intrusion or penetration rate, Uo, but 
real pressures increase even more rapidly due to the inverse 

dependence on penetration rate, U, apparent from equation 
(36). 

Induced pressures postpassage of the dislocation are less 
sharply peaked than for the point dislocation, reflecting the 
different geometry of the dislocations. A mild peak is evident 
as UD increases above unity, as apparent in Figure 9. 

For large UDRD the Bessel function of equation (35) may be 
approximated by an exponential form as Ko[x]=q•-•'e-". 
Substituting the approximation for UD RD > 101 yields 

• -U D (R D -x D ) 
P•>= d2UDRD e (37) 

The similarity between this expression and that for a point 
dislocation, represented in equation (20), may be noted. 

To enable data reduction, the pressure transient records must 
be evaluated relative to time to peak pore pressure, t p . Using 
equation (35) to evaluate 

&PD 
•=o (38) 

•)- 10 '7 

•= l•U-'• ':; , ,,oo ,0,0 

• •.• [ dislocation 

• 10 • . 

40* -10 ø 
Dimensionless time, • 

Fig. 8. Dimensionless pore pressure versus •mensioMess t•e 
resul•g from an approac•ng •ne disl•afion. 

Fig. 

10 0 

lO-' 
-10 7 

•10 2 

I0: 

10 4 

iO s 

10 6 

i I I 

.10 o .10 '4 

Dirnensionle55 time, Up (tD't• 

10. Dimensionless pore pressure versus dimensionless time 
resulting from an approaching line dislocation relative to the time to 
peak pressure. 
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Fig. 

10 0 _ 

_ 

--, , 

_ 

10 '7 
10'4 

10 

10 • 

10 2 

10 a 

10 4 

10 5 

10 6 

10 0 10 7 

Dimensionless time, Uo (ID-• 
11. Dimensionless pore pressure versus dimensionless time 

resulting from a departing line dislocation relative to the time to peak 
pressure. 

yields 

Ko[UoRo ] = xt• (39) 
K•[UoRo ] Rg 

where R/• is a unique function of x/•, as apparent from equation 
(23), and K•[x] is the modified Bessel function of the second 
kind of order one. Following directly from equation (39), the 
pressure response may be determined relative to time to peak 
pressure, t/•, as illustrated in Figures 10 and 11. 

The prepeak pressure rise steepens with increased 
dimensionless penetration rate, Uo, enabling a unique fit to be 
attempted for Uo<10 ø, as apparent in Figure 10. This 
differentiation holds in the postpeak regime, where different 
transient responses are apparent for Uo <10 ø in Figure 11. 

TYPE CURVE DATA REDUCTION 

In evaluating field-recorded response, different data reduction 
procedures must be applied for data recorded in the two 
families of Uiv>10 ø and Uiv<10 -1. The behavior for data within 
these two separate families is, not surprisingly, similar for the 
point and line dislocations. The similarities in behavior result 
from the line dislocation system being linked to the point 
source system through linear superposition or equivalent 
integration. 

In all attempts to provide a match, prepeak and postpeak 
pressure data must be used with the corresponding type curves 
of Figures 5 and 6 for the point dislocation and Figures 10 and 
11 for the line dislocation. The curves must be matched 

simultaneously to provide identical match points in terms of 
pressure and time on the two plots. 

Point Dislocation for Uo > 10 ø 

The similarity between the curves in the postpeak pressure 
regime (Figures 5 and 6) is such that multiple matches may be 
made to yield matching pairs of Pt> and Uz>(tz>-tt•) for any 
fitted magnitude of Up. However, the behavior is such that the 
product Uz> (t-t p ), in units of time, is constant for any Uo. 

An arbitrary match point may be chosen, the most 
convenient one being Uz> (tz>-tg)=10 ø. This enables the 
minimum distance to the measuring location, l, to be 
determined from 

l=• Uo (t-t •' )4c (40) 

where it is assumed that the hydraulic diffusivity, c, is known 
a priori. Although this is the most likely situation with 
hydraulic diffusivity determined from relatively simple field 
testing, in certain instances the intrusive geometry may be well 
defined, and diffusivity may be verified against equation (40). 

In the range UD>10 ø, it is apparent from Figures 5 and 6 that 
the product UoPt• is constant and is given approximately by 
UoPt•--0.74. This limit may be discemed directly from 
equation (20) and noting that for large Uoxo, equation (27) 
yields the relation 2xgzUD. Since large Uo implies large xo, 
then Ro=xo and substituting into equation (20) gives 

Up P/• =2e-•=0.7358 (41 ) 

With this product defined, peak dimensionless pressure of 
equation (14) may be rearranged to yield the intruded cross- 
sectional area of the dislocation as 

a = -- (42) 
t•-lc • 

where it is assumed that the ratio k/• is independently 
available. Since Uo cannot be independently determined in this 
regime, the propagation velocity, U, remains indeterminate, but 
a lower bound may be established as Umi,, since Uv>10 ø. 

Point Dislocation for Uo <10 -1 

If early pressure rise in the prepeak pressure regime is well 
defined in the data, a unique fit should be possible, enabling 
Uo to be explicitly determined. Providing a match point at 
UD(to-tt•)=10 ø enables the minimum distance, l, to the 
dislocation to be determined from equation (40). Again, if the 
geometry of intrusion is well defined, then diffusivity may be 
independently verified. With l defined and Uo available 
explicitly from the curve match, dislocation velocity may be 
evaluated from equation (15). The unique peak magnitude of 
pore pressure in this regime of Pg=10 ø enables cross-sectional 
area, a, to be evaluated from equation (14). 

Line Dislocation for Uo > 10 ø 

Similar to the response for the point dislocation, a single data 
set allows multiple fits due to the similarity in the response 
curves. All selected curves for Uz> possess a unique match 
point value of (t-P'), although the product Uz> (t-P') remains 
constant. The separation length between the dislocation and the 
measurement location may be evaluated from equation (40), 
leaving the dislocation width, w, to be evaluated. 

Dislocation width may be evaluated on noting the linear 
dependence of peak pressure magnitude, Pg, on dimensionless 
penetration rate, Uz>, in Figures 10 and 11. The time to peak 
pressure response, x/•, may be determined from equation (39) 
where, for large Uz>, Uz> =xt•=Rt• and equation (37) reduces to 

Uo Pg =•/•'•e-•'•=0.7602. (43) 2 

From this the cross-sectional width, w, may be determined 
directly as 

e-•c g (44) 
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Fig. 12. Outline map of Krafla volcanic system. Caldera rim encloses magma storage chamber. Intrusions are concentrated in 
fissure swarm. Observation well is 1 km NNE from powerhouse. Eruption associated with September 1977 event occurred at 
A, and intrusion event of July 1978 occurred at B in southern Gj•stykki. Fissures after K. Saemundsson (unpublished data, 
1991). Figure after Ewart et al., [1990]. 

although Uo, and hence true intrusion velocity, U, remains 
indeterminate. However, a lower bound may be established for 
the intrusion rate, Umix•, since Uo > 10 ø. 

Line Dislocation for Uo < 10 -• 

The unique form of the various pressure response curves 
enables U o to be determined directly. From the match point in 
time, the length, l, may be determined explicitly if hydraulic 
diffusivity, c, is known a priori. Real intrusion or penetration 
rate may be recovered from the dimensionless intrusion rate of 
equation (15) and dislocation width evaluated from the unique 

relation, Pl•=-ln(Uo), through equation (35). This form may 
be obtained on noting that for small Uo, xo-->O and, 
consequently, Ro=l. The limiting form for large x of the 
modified Bessel function is Ko[x]=-ln(x). Consequently, 
location, dislocation velocity, and injected volume may be 
determined. 

KRAFLA DATA 

Pore pressure data documenting magmatic intrusions are rare, 
but data for several separate dike intrusions are available for 
Kratta, Iceland, as reported by Sigurdsson [1982]. The pressure 
pulses are recorded in a single open observation well, KG-5, 
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Fig. 13. Block diagram aligned along the Krafla fissure swarm showing the magma intrusion system, the September 8 
eruption site and observation well KG-5. Wellfield geologic setling indicated on the south face. 

completed to 1300 m and cased to a depth of 600 m. The two 
magmatic events (sheet intrusions) occurred on September 8, 
1977 and July 10, 1978, and are identified by documented peak 
pressure increases (P•'-Ps) in well KG-5 of 0.76 MPa and 0.34 
MPa, respectively. The separation between the recording well 
and the surface phenomena associated with the two events was 
4300 m for the September event and about 9300 m for the July 
event, as illustrated in Figure 12. An eruption occurred in the 
September event [Saemundsson, 1991 ]. 

The site geology comprises lower and upper geothermal 
reservoirs, with interaction retarded by a confining bed 
[Stej•zsson, 1981]. Well KG-5 terminates in the upper single 
phase reservoir (liquid dominated with a mean water 
temperature of 205øC) while the intrusive events, initiating 
from a magma chamber below 3-km depth JEwart et al., 1990], 
affects also the lower two-phase reservoir (liquid-vapor with a 
mean temperature of 300øC-350øC). Pressure transients have 
not been detected in wells connected only with the lower zone. 
A schematic diagram indicating the form of the September 
1977 event is shown in Figure 13. Sigurdsson [1982] used the 
early pressure response of the two intrusive events in a 
stationary conceptual model to evaluate the permeability and 
storage coefficients for the reservoir. The model enabled the 
product of permeability and reservoir height 
(transmissivity=kh/!.t) and the product of storage and reservoir 
height (storativity=kh/(I. tc)) to be determined for the upper 
reservoir: transmissivity of 8.1x10 -9 to 16.8x10 -9 m3/Pa s and 
storativity of 2.1x10 -• to 3.7x10 -• m/Pa. Production tests for 
the upper reservoir [ Sigurdsson, 1982; Table VI] yield the 
following: transmissivity of 6.0x10 -9 to 18.3x10 -9 m3/Pa s and 
storativity of 0.85x10 -• rn•a. Likewise, well test data by 
Bodvarsson et al. [1984] suggest transmissivities averaging 
about 6.6x10 -9 m3/Pa s for both upper and lower reservoirs 
with upper reservoir transmissivity for hole KG-9 (closest to 
KG-5) about 13.2x10 -9 m3/Pas. Bodvarsson et al. [1984] 
report no storativity values applicable to the upper reservoir. 
The following field data are selected for the dislocation model 
based on field tests: transmissivity of 6.6x10 -9 to 

13.2x10 -9 m3/Pas representing the "wellfield average" and 
"nearest well" analyses [Bodvarsson et al., 1984] and storativity 
of 0.85x10 -• m/Pa from the reservoir tests of Sigurdsson 
[ 1982]. From these data the hydraulic diffusivity 
(c=transmissivity/storativity) is calculated as 234.5 to 469 m2/s 
and the permeability, k/!a., as 1.09x10 -• to 2.18x10 -• m2/Pa s. 
These values are summarized in Table 1. Estimates of 

reservoir height, h, used in these calculations are of the order 
of 600 m. Data fits may therefore be attempted with each of 
the two events. Pressure rise data for the two events are 

plotted relative to time to peak pressure (t-t •') in Figures 14 
and 15 for pressure rise and decline portions, respectively. 

Event of September 8, 1977 

The line and sheet dislocation models are applied to a sheet 
intrusion of limited length that pressurized the upper reservoir 
as it broke to the surface north of the magma storage area. The 
steepness of the pressure rise, apparent in Figure 14, suggests a 
fit with the point dislocation solution for UD >10 ø. The data for 
this event are shown superimposed on the appropriate type 
curves in Figures 16 and 17 for prepeak and postpeak data, 
respectively. Following the procedure described in the 
preceding section, the ambiguous match point for 
Uo (to -tj• )=10 ø gives the unambiguous magnitude of 
Uo(t-tt')=2.2xlO n s. An almost perfect fit is achieved. 
Substituting this magnitude and the magnitudes of hydraulic 
diffusivity estimates from Table 1 into equation (30) enables 
the minimum distance to the measuring location, l, to be 

TABLE 1. Hydraulic Parameters for the Krafla Geothermal Field 

Parameter Magnitude Units 

Hydrauric diffusivity, c 7.73-15.47x102 m2/s 
Permeability, k/g 1.09-2.18x10 -• m2/pa s 
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Fig. 14. Transient pore fluid pressure response measured in wellbore 
KG-5 at Krafla in the prepeak pressure regime. 
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Fig. 15. Transient pore fluid pressure response measured in wellbore 
KG-5 at Krafla in the Postpeak pressure regime. 

determined as I = 4123 to 5834 m. This compares favorably 
with the distance to the eruptive event reported as 4300 m 
previously. With this length range determined, the cross- 
sectional area of the dislocation may be evaluated from 
equation (42) as between 0.71 and 5.72 m 2, where the 
permeability and diffusivity estimates reported in Table 1 are 
used. This, however, is difficult to reconcile with a dike 700 m 
long and about 70 cm wide. 

As noted previously, no estimate of the dislocation velocity 
is possible. A lower bound may, however, be applied on noting 
from the form of the type curves (Figure 5) that Uo>10ø; 

therefore the minimum velocity is found to rest between the 
bounds Um•---0.265 to 0.750m/s. This range compares 
favorably with U=0.4 m/s, as reckoned from magma ascent 
along an inclined 4.5-km path in 193 min [ data from 
Brandsdbttir and Einarsson, 1979]. Results are reported in 
Table 2. 

A reasonable but slightly less conclusive match is also made 
with the model for a sheet inu'usion. The ambiguous match 
point for Uo(to-tt•)=10 ø gives the unambiguous magnitude of 
Uo(t-tV)=l.2xlO 3 s. From this, equations (40), (44) and the 
relation Uo>10 ø may be used to yield l, w, and U m•, 

.107 

104• 

•Q 100 

o 

E 

10'4 

I i I 

Dimensionless time, U o (tff tP D) 
.10 o 

I I • • • I I 

.10-4 

UD•< 4 

-2.2 x 103s 

I 

ioO____ 

102• _ 

10 3 

10 4 

10 5 - 

10 6 

I I I 

.107 -10 o 
Time (t-tP), s 

I I I 

o o o 

I I I I I I 

- 10 4 

- 10 o 

10-4 
.10-4 

Fig. 16. Prepeak pressure data for the event of September 8, 1977 superimposed on the type curve for a line dislocation. 
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respectively. These magnitudes are documented in Table 3 for 
comparison. 

Event of July 10, 1978 

In this event, distance measurements show that magma was 
emplaced as a dike in southem Gjb. stykki, roughly 10 km north 
of the borehole; surface widening in this zone was measured to 
be 1 m wide at the surface [Tryggvason, 1980]. The northern 
extent of magma has not been determined. The procedure for 
the September event may be repeated where the appropriate 
unambiguous match corresponds to Ut> (t-tt')=105 s for the line 
dislocation. From this the length separation, cross-sectional 
area, and minimtun dislocation velocity ranges are evaluated as 
8792 to 12,437 m, 1.45 to 11.62 m 2, and 0.124 to 0.352 m/s, 
respectively. These evaluated parameters are summarized in 
Table 2 for both events. Notably, for this event, the separation 
length corresponds well with the reported separation between 
borehole KG-5 and the center of seismic activity at 9300 m, as 
reported by Sigurdsson [1982]. Once again, however, the 

cross-sectional area seems unreasonably small compared to any 
physically reasonable value for a dike kilometers long and one 
meter wide. 

Although independent estimates of minimum advance rate, 
Umi•, are not available, the estimates presented in Table 2 
appear plausible. The satisfactory agreement between predicted 
and measured response further suggests that a moving point 
dislocation provides, in some respects, an adequate physic•il 
representation of the process of dike emplacement. 

Matching the data of this event with the model for a sheet 
dike yields, for Uo(to-tl•)=10 ø, (t-tr)=l.2x103 s. Using the 
same procedure as previously, the parmeters illusu'ated in 
Table 3 are obtained. 

CONCLUSIONS 

A theory is developed to represent the process of intrusion in 
a saturated porous elastic solid by a continuous moving point 
dislocation. The process is assumed to be displacement 
controlled and analogous to insertion of a continuous 

TABLE 2. Parameter Estimates for Intrusive Events at Krafla using the 
Model of a Moving Cylindrical Intrusion 

Parameter Sept. 8, 1977 July 10, 1978 Units 

Length to dislocation, 1 4123-5834 8792-12437 m 
Cross-section area, a 0.71-5.72 1.45-11.62 m 2 
Minimum velocity, Umi n 0.265-0.750 0.124-0.352 rn/s 

TABLE 3. Parameter Estimates for Intrusive Events at Krafla using the 
Model of a Moving Planar Intrusion 

Parameter Sept. 8, 1977 July 10, 1978 Units 

Length to dislocation, 1 6091-8617 11796-16687 m 
Intruded thickness, w 1.36-7.63 2.35-6.61 x104m 
Minimum velocity, Unan 0.179-0.508 0.093-0.262 m/s 
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volumetric dislocation at constant rate. Attention is restricted to 

the pore fluid pressures induced as a result of the intrusion. 
The full transient behavior for pressure rise and subsequent 
dissipation is represented. A quasi-steady approximation to this 
behavior, however, appears adequate in representing the 
important aspects of behavior as recorded at a static monitoring 
location as the dislocation passes. This procedure enables the 
transient pore pressure behavior to be conveniently recorded in 
terms of dimensionless pressure, PD, as a unique function of 
dimensionless intrusion velocity, UD, and dimensionless time, 
tD. To be useful in analyzing field data the transient response is 
most conveniently described relative to a field discernible 
landmark in time such as time of initiation, passage or arrest. 
The most applicable parameter in this analysis is dimensionless 
time to peak pressure, t•, and this is used in the analysis. 

When plotted relative to time to peak pressure, the transient 
pressure response for a moving point dislocation exhibits 
separate families of behavior representing slow and fast 
intrusion. For slow intrusion the pressure transient record 
relative to time to peak is symmetrical, reflecting the near- 
spherical symmetry of the induced pressure bulb relative to the 
advancing dislocation front. As the dimensionless intrusive 
velocity is increased, the response develops an increasing 
asymmetry in both time and space (relative to the dislocation 
front). The pore pressure contours ahead of the front are 
compressed resulting in the pressure rise becoming considerably 
more rapid than the decay. This transition in behavior is 
observed as intrusion rate, UD, increases through unity isolating 
separate behaviors for UD < 10 -1 and UD > 10 ø. 

The two different responses enable different parameters 
describing the intrusive event to be determined. Assuming that 
the hydraulic parameters of permeability, /c/•, and diffusivity, 
c, representing the host porous medium are known a priori, 
then the full set of parameters representing the dislocation path, 
l, dislocation velocity, U, and dislocation cross-sectional area, 
a, may be recovered. Where the geometry of the intrusion is 
defined, hydraulic diffusivity of the host, c, may be determined 
in lieu of the length to the dislocation, I. For the slow 
dislocation, all three of these important parameters may be 
determined. However, for the fast dislocation, only a minimum 
advance rate may be recovered. Irrespective of this slight 
deficiency, the technique offers a potentially important resource 
in representing and characterizing intrusion from pressure 
transient records, subject to the limitations of the simplified 
conceptual model. Indeed, a surprising wealth of information is 
available purely from this pressure transient record. 

A number of assumptions are important in simplifying the 
process of intrusion to a tractable form. It is assumed that the 
intrusive event progresses at a continuous rate, develops 
negligible shear stresses at the interface, that the fluid diffusive 
process remains isothermal, and that the volume of intruded 
solid dominates over the potential steam flash volume generated 
at the contact between the magma and the saturated host rock. 
Actually, the requirement that fluid diffusion progresses in a 
strictly isothermal environment may be relaxed, providing non 
isothermal transport is purely diffusive. A hot source will create 
an additional fluid pressure increase, exhibiting a similar 
transient dependence to the pressure transient record. As a 
consequence, the transient record may be incorrectly interpreted 
to result from a spuriously large dislocation volume or as 
indicative of a porous medium represented by a decreased 
hydraulic diffusivity, c. 

Although the analyses for moving dislocations are introduced 

in transient form, as illustrated in equation (19), the reduction 
of data is completed using a steady approximation of these 
fully transient systems. The validity of using the steady 
approximation may be checked. For the Krafla data, appropriate 
values of the parameter UDXD are of the range 1 to 3 for the 
1977 and 1978 events, respectively. Equation (27) reduces to 
Ut=R, where R is the radius to which the steady state has 
migrated (pore pressure is 95% of the steady magnitude) after 
time t. For a dislocation moving at velocity U=0.5 m/s, and for 
time to peak pressure from the initiation of the eruption as 104 
for 1977 and l0 s for 1978, then migration radii, R, are 5000 m 
and 50,000 m for the 1977 and 1978 events, respectively. 
Since these dimensions are of the order, or greater than, the 
separation between dike and measuring location, then the use of 
a steady state appears reasonable, especially postpeak. 

Few field data are available to test this theory but promising 
correspondence is achieved between the theoretical response 
and data available for two intrusive events at Krafla, Iceland. 
The calculated cross-sectional area, a, is several orders of 
magnitude smaller than the actual intrusion cross-sectional area. 
This mismatch is a result of the observed pore pressures being 
orders of magnitude smaller than those anticipated from the 
proposed theory. A number of explanations are possible, 
although none appear entirely satisfactory. 

Since pore pressures are manually measured within the open 
annulus of a well, the volume compressibility of this measuring 
system may be sufficiently large to mask the true magnitude of 
the pore pressure rise. Pore pressure rise within the surrounding 
formation may be much higher than that transferred to the well 
through a rise in fluid level. This volume compressibility of the 
measuring system or wellbore storage effect is a plausible 
explanation for the mismatch. However, also associated with 
this mechanism would be an anticipated time lag in the 
pressure response resulting from the finite time taken for the 
pore pressures induced around the well to diffuse to the 
measuring well. The excellent match in intrusion rates and 
length to the dislocation suggests that the time history of the 
pore pressure response is not significantly affected. 

Alternatively, the deficit in pore pressure magnitudes may 
result from the competing mechanisms of magma chamber 
deflation that accompany dike inflation. Pore pressure increases 
that result from dike emplacement may be countered by pore 
pressure decreases that result from concurrent deflation of a 
shallow magma chamber that is close to the measuring well. In 
this, the &flation and inflation components would, by 
definition, be simultaneous, with the net effect that the transient 
pore pressure response would be minimally shifted in time. An 
unattractive feature of this explanation, however, is that the 
magma chamber resides within the two phase reservoir through 
which pressure pulses are poorly transmitted. 

The reservoir comprises imperfect elastic material, with 
fractures cutting the upper aquifer and sometimes passing into 
the overlying bed. The effect of this would be to enable pore 
pressure pulses in open fractures to dampen the total stress and 
pore pressure pulses. The effect of a cracked aquifer would 
reduce the total stress field magnitude at any arbitrary distance 
of the wellsite from the intrusion. The overall effect would be 

to induce pore pressures in the far field much lower than 
theoretical values, but not to greatly influence the time history 
of the pulse. Similarly, the presence of strain dependent 
modulii or modulus anisotropy in the aquifer rock mass, as a 
result of tectonic influences, may result in the effective 
dampening of the pore pressure pulse. 
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A final explanation of the mismatch in the pressure response 
may be the fact that the intrusions at Krafla were dikes 
obliquely oriented to the observation well and not cylindrical 
intrusions as assumed in the theory. The dikes had lengths on 
the order of 1 km and exhibited separation of about 1 m. 
Apparently, when such sheet-like features of limited length are 
viewed from a highly oblique position (nearly along strike), 
they can behave, in some respects, as if they were propagating 
point dislocations of relatively small effective cross-sectional 
area. The point volumetric dilation centers used in this analysis 
do not truthfully replicate the shear-stress-free conditions that 
may prevail at the interface between the viscous dike and the 
host rock. This shortcoming of the model is particularly 
apparent when the measuring location is oblique to the 
dislocation, as a zone of partial dilation is not adequately 
represented. 

Despite the mismatch in measured and predicted pressure 
magnitudes, the separation distances and advance rates, 
calculated primarily from the pressure history data, appear 
eminently reasonable. The fidelity of the fit between measured 
and predicted responses is clearly encouraging. 
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