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Summary 

This study investigates the changes in deformation and stress dependent hydraulic 
conductivities that occur as a result of underground mining in intact and fractured 
porous media. The intact porous medium is assumed to be comprised of regularly packed 
spherical grains of uniform size. The variation in grain size or pore space due to the effect of 
changing intergranular stresses results in a change in rock hydraulic conductivity. A model is 
developed to describe the sensitivity of hydraulic conductivity to effective stresses through 
Hertzian contact of spherical grains. The fractured porous medium is approximated as an 
equivalent fracture network in which a single fracture is idealized as a planar opening having 
a constant equivalent thickness or aperture. Changes in fracture aperture as a result of 
changes in elastic deformation control the variation of hydraulic conductivity. A model is 
presented to illustrate the coupling between strain and hydraulic conductivity. Subsidence 
induced deformations that result from mining induced changes in hydraulic conductivity in 
both intact and fractured media. These changes are examined and compared with results 
from a mining case study. 

1. Introduction 

For  flow within a single capillary, or by superposition through a bundle of  
capillaries, hydraulic conductivity, K, may be defined proportionally to a charac- 
teristic length representative of  hydraulic radius, which may be expressed as 

K ' (1)  

where d is the "hydraulic radius" and is related to the grain diameter or pore 
dimension, F(n) is the porosity factor, c is a constant associated with grain packing 
and grain shape configuration, p is the fluid density, g is the gravitational 
acceleration and # is the dynamic viscosity of the fluid. 
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Various attempts have been made to provide some insight into the physical 
processes represented by Eq. (1) with substantial experimental work having been 
completed to further verify the expression (Hubbert, 1940; Scheidegger, 1957; 
Kozeny, 1927; Krumbein and Monk, 1943). Also related to Eq. (1), hydraulic 
radius is controlled by changes in effective or intergranular stresses (De Wiest, 
1969). Young et al. (1964) showed that an increase in stress acting on samples of 
argillaceous rocks produced a decrease in permeability of more than an order of 
magnitude over the results of unconfined tests. In correlating confining stresses 
with hydraulic conductivity, the interaction between stresses and fluid pressures 
(i.e. effective stress law) has been intensively investigated (Brandt, 1955; Gangi, 
1978; Walsh, 1981; Gale, 1982; Barton et al., 1985; Jones, 1975), in which one of 
the major indeterminates is the exact magnitude of effective stress (Terzaghi, 1923; 
Walsh, 1981; Skempton, 1960; Geertsma, 1957; Nur and Byerlee, 1971; Robin, 
1973). A review of the methodology for determining stress-dependent hydraulic 
conductivities is given in the Appendix. 

For the purpose of predicting the change in hydraulic properties in intact 
porous media, this study introduces a model to describe the coupled steady flow 
problem using a finite element formulation. Changes in hydraulic conductivity are 
evaluated using the concept of elastic contact through change in grain size (or pore 
size). The significant influence of effective stresses in the modification of hydraulic 
conductivities is demonstrated. 

In many cases, rock masses contain natural fractures, and both mechanical and 
hydraulic behavior is controlled by the presence of these features. Where ground- 
water moves nearly exclusively through interconnected fractures the system may be 
represented as an equivalent fracture network. Conceptualization of flow in a 
single fracture can be addressed through the parallel plate analog where a fracture 
is idealized as a planar opening having a constant thickness or aperture (Louis, 
1969; Bear, 1972; Iwai, 1976; Hoek and Bray, 1977). Neglecting turbulent flow and 
assuming only flow within the fracture network, the hydraulic conductivity of a set 
of parallel fractures of spacing, s, is given as (e.g. Louis, 1969) 

K --  pgb3 (2) 
12s#' 

where b is initial fracture aperture and, s is fracture spacing. 
Where the interconnection between fractures is sufficiently distributed, the 

network may be further idealized as an equivalent porous continuum. This 
piecewise continuum is represented by an equivalent anisotropic hydraulic con- 
ductivity, controlled by fracture spacing and mean aperture. The utility of this 
idealization is that strain-induced changes in fracture aperture, and corresponding 
modification of the hydraulic conductivity components, may be readily evaluated. 

In this paper models for evaluation of the subsidence and stress-dependent 
changes in hydraulic conductivity in both intact and fractured media are discussed. 
Their utilities are examined in an actual mining case study. The corresponding 
results, calculated from models, are analyzed and compared with field measure- 
ments. The steady state models presented here are useful in quantifying the long- 
term influence on the groundwater regime as a result of mining. 
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2. Governing Equations 

Assuming strains, Eij to be linearly related to total stresses, O'ij , through pore 
pressure magnitude, p, enables a constitutive relation to be expressed as (Biot, 
1941) 

l + u  u 1 
eij - E O'ij  - -  E ~  - -  ~ p6ij (3) 

where the mean stress may be calculated by akk/3 = t race(a i j /3) ,  8ij is Kronecker's 
delta and repeated indices indicate summation. The effective modulus of Biot 
(1941) is given as H and E, and u are drained elastic modulus and Poisson ratio, 
respectively. 

The equilibrium equation, in the absence of body forces, and inertial effects 
may be expressed as 

~v,J = 0, (4) 

where a comma represents partial differentiation with respect to the following 
index. The strain displacement relationship is 

~iJ = �89 + uj, i), (5) 

where ui is displacement in the xi direction. Substituting Eqs. (3) and (5) into (4), 
results in the field equations of poroelasticity for the solid phase as 

E E 
2(1 + u) ui'jj + 2(1 + u)(1 - 2u) uk,~i + ap ,  i = 0, (6) 

where the pressure coefficient c~ is defined as (Nut and Byerlee, 1971) 

K~ 
- - - - 7  c~ = 1 Kg (7) 

where Ks is bulk modulus of the porous medium and Kg is bulk modulus of the 
grains. 

Darcy's velocity, vi, may be expressed as 

= - X p ,  i, (s)  

where K is hydraulic conductivity. The steady state continuity equation is 

ui, i = O. (9) 

Combining Eq. (8) with (9) enables the field equation to be determined for the 
fluid phase as 

V(KVp) : 0 (10) 

where V is the del operator, and the steady state is of interest. 
Together, Eqs. (6) and (10) represent the governing equations for the steady 

state coupled flow-deformation behavior. 

3. Finite Element Diseretization 

Eqs. (6) and (10) may be used to form finite element statements for the steady 
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poroelastic problem, where interpolation functions are substituted to interpolate 
dependent nodal variables of displacements, u, and pressure, p, over individual 
elements. From this substitution, and use of the variational principle, the following 
matrix relationship is obtained: 

R C . 

0 G,)  ( p )  
where 

(11) 

f 
G s = | BTDBdV 

J v 

Gf = [ ATKAdV 
J v 

= [ BTmNdV (12) Rc 
3 v 

F = [ NfidS 
J S 

Q = [ NqdS 
J S 

where u - -  (b/1,b/2) , m = (1 1 0) r,  B is the strain-displacement matrix, D is the 
elasticity matrix, and K is the conductivity matrix, N is a vector of element shape 
functions, A contains the derivatives of the shape functions, F is a vector of applied 
boundary tractions f, Q is a vector of prescribed nodal fluxes q, and Vis the volume 
of the domain. The sub-matrix, Re, of Eq. (11), represents the influence of seepage 
forces on the resulting deformation field. 

After obtaining the displacement and pressure fields from Eq. (11), stresses can 
be reevaluated through Eqs. (5) and (3). The effective stresses cre can then be 
determined through the relationship 

O- e - :  O- c - -  ap, (13) 

where ac is the mean stress evaluated by ac = akk/3 and Crkk is the total stress in Eq. 
(3). 

4. Change in Hydraulic Conductivity for Intact Rock 

Through experimental investigation, Hubbert (1940) substantiated Eq. (1) by 
presenting the relationship 

 14) 

where K is hydraulic conductivity, N is a dimensionless number associated with 
grain shape and packing, d is a size factor related either to the dimensions of the 
opening in the medium (pore space) or expressed as a mean size of the grain 
(Krumbein and Monk, 1943). In addition, d can also be some function of the 
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square root of the permeability k (Freeze and Cherry, 1979). In this study, d is 
defined as the reciprocal of the specific surface which is the ratio of bulk volume to 
internal area of the porous medium (Kozeny, 1927). 

To express hydraulic conductivity as a function of stress conditions, Gangi 
(1978) derived an equation based on Hertzian contact theory (Hertz, 1895), which 
may be expressed as 

K = K  o 1 - ~ \ -  - (15) 

where ai is the equivalent cementing pressure; E0 is the effective modulus of grains, 
and cr c is the confining stress, given in Eq. (13). This relationship identifies an 
inverse proportionality between hydraulic conductivity and effective stresses. 
Experimental investigation of the coupling between the hydraulic conductivity 
and stresses was also completed by Gale (1982) and by Barton et al. (1985). 

The resulting system of nonlinear Eqs. (1t) may be tinearized using a 
magnitude of hydraulic conductivity, K, that is representative of the effective 
stress conditions. An attempt is made in the following to evaluate the stress 
dependent variation in hydraulic conductivity of intact porous media, which is 
different from Gangi's approach in the following aspects: (a) The change in 
hydraulic conductivity is due to the variation of mean grain size instead of pore 
dimension. (b) A cubic grain packing model is adopted instead of a triangular grain 
packing model. (c) Pore pressure is incorporated in the formulation and is coupled 
with confining stress to form effective stress. 

In accordance with Eq. (14), hydraulic conductivity is directly proportional to 
the square of mean grain diameter. It is possible to deduce from Eq. (14) that 

K o( R 2, (16) 

where R is grain radius. 
A simple cubical grain packing structure is assumed for the porous medium as 

illustrated in Fig. 1. To apply Eq. (14) with this cubical packing model, we obtain 
the term Nd 2 from Kozeny's theory (Scheidegger, 1957) as 

3 2 1 (2Rt 2R2 
Nd2=-~ [~-R-ffj  =~-ff . (17) 

In the unconsolidated state, the hydraulic conductivity can, therefore, be 
expressed according to Eq. (14) as 

2e2(Pg'  (181 

If the initial hydraulic conductivity K 0 is known, then the grain radius R 0 may 
be estimated from Eq. (18) as 

R0 = ~r~/v 2~"  (19) 
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Fig. 1. Cubical packing of grains 

Under uniform compression, the change in grain size within a cubical packing 
can be determined by analyzing the elastic contact of spheres. It is assumed that the 
grains of the porous medium are subjected to an effective compressive stress cre. 
Since compression is assumed to be uniform over the boundary and without the 
introduction of shear stress, it is sufficient to investigate only a single representative 
spherical contact as demonstrated in Fig. 2. 

Applying the methodology introduced by Timoshenko (1934), the change of 

yl 
y2~ • 

Fig. 2. Configuration of spherical contact 
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grain radius can be represented as 

{ 1 [9(1 _ u2) 2] }. (20) 

With consideration of the initial state, substituting Eq. (19) into (20), yields 

A R =  V~-pg ~ - ~  ~- (~--~-~E a)  . (21) 

With reference to Eqs. (18) and (21), the change in hydraulic conductivity may 
be evaluated as 

2 
AK = 7~ (AR) 2 , (22) 

or, from Eq. (21) 

where a negative sign refers to compressional loading and a positive sign 
corresponds to dilatational loading. The dimensionless hydraulic conductivity 
may be written as 

AK 1 _9(1 - u 2) 2 . (24) 

5. Change in Hydraulic Conductivity for Fractured Rock 

To determine fracture hydraulic conductivity, we assume an idealized regularly 
spaced fracture system as illustrated in Fig. 3. If the fracture opening is estimated 
from direct measurements or from pressure/flow relationships, then fracture 
hydraulic conductivity in the direction parallel to each fracture set may be 
calculated directly from the parallel plate analog (Snow, 1968; Louis, 1969) as 
defined in Eq. (2). 

A heterogeneous porous medium containing two types of porosity (fractures 
and pores) may be idealized as a dual porosity medium as represented by Warren 
and Root (1963). Where fracture flow dominates, and only the steady condition is 
desired, the behavior of this dual porosity system reduces to that of an equivalent 
single porosity formulation. 

Assuming that the individual fractures are distinctly soft with respect to the 
porous medium, then the deformation modified hydraulic conductivity may be 
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Fig. 3. Model of fractured media 

written from Eq. (2) as (Elsworth, 1989) 

A K  = pg (b + sac) s, (25) 
12s# 

where Ae is the body strain perpendicular to the fracture set. 
The limiting condition for this expression must be controlled on physical 

grounds as 
(b + sac) 3 ~> 0 (26) 

eliminating the possibility of overclosure of the fractures. 
When the compliance of the elastic matrix approaches that of the fracture, the 

modulus of the matrix must be included in the evaluation of conductivity 
variation. Total displacements are the sum of the elastic displacements in the 
matrix and across the fracture (shear displacement and dilatation are neglected). 
The total displacement Aut resulting from a change in stress, Aa, is given as 

/~blt=/~bls"{-/~blf~-(E-]-~nn)/~O- , (27)  

where Au s and Auf are the displacements of the solid and the fracture, respectively, 
and Kn is the normal stiffness of the fracture (Fig. 4). 

Kn 

s b 

Icm 

$ b 
~ .  5"- 

S 
$-- 

Fig. 4. A simple fracture-block mechanism, (s) spacing, (b) aperture, (Kn) fracture stiffness 
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The displacement across the fracture can be evaluated from Eq. (27) as 

Auf= Ae ( - ~  + ! )  -1 , (28) 

where Ae is the total body strain. 
The modified hydraulic conductivity of a single fracture set that incorporates 

solid deformation may be calculated using 

3 
(29) 

[?gb3[ (g~_b !)-i] 
AK----I~-~s ~ l + A e  + 

Written in dimensionless form this expression is 

-11 (30) 

A comparison between Eqs. (2) and (30) indicates that the effect of induced 
strains are controlled by the dimensionless terms "(Knb)/E") and "b/s". Hydraulic 
conductivity is little influenced when these terms are individually, or collectively, 
very large. 

The deformation-induced enhancement of hydraulic conductivity can be 
calculated by using Eq. (29) where body strains are evaluated from the finite 
element analysis. In many cases, the in-situ hydraulic conductivity is available, as a 
result, the initial fracture aperture can then be estimated from rearranging Eq. (2) 
to give 

b 0 = (12sK~ 1/3. (31) 
\ Pg / 

The remaining task before calculating conductivity is to determine the fracture 
stiffness, Kn. A variety of laboratory measurement techniques are available (e.g. 
Einstein and Dowding, 1981). As an approximation, the normal fracture stiffness 
may be determined through single joint tests. From available information the ratio 
of fracture stiffness to elastic modulus, Kn/E, is highly variable but a subset of 
results (Iwai, 1976; Rosso, 1976; Witherspoon et al., 1980) suggests that reasonable 
magnitudes are of the order 0.1/cm (0.04/in). 

Incorporation of shear displacement and strains may be made in accurately 
representing behavior where the fractures possess a shear rigidity characterized by 
their shear stiffness Ksh. Fracture roughness requires that dilatation accompanies 
any shear displacement and increases the aperture of the fractures. The displace- 
ment across the fracture due to shear strain can be calculated by the following 
equation (Elsworth and Xiang, 1989) 

Aush=A7 s +  , (32) 

where A 7 is the shear strain, Ksh is the shear stiffness, G is the shear modulus, and s 
is the fracture spacing. 
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Assuming that dilatation occurs instantaneously with shear initiation, and 
considering the change in normal stress resulting from shear displacement, the 
modified dimensionless hydraulic conductivity may be defined as 

AK [l + Ae/K,b b\ -1 . [ __G__G~(tan~hu) 3 
K0 -- ~ E -  + s )  + A T ~  s + KshJ ' (33) 

where ~)a is the dilatational angle. Clearly, changes in hydraulic conductivities are 
affected by both normal and shear strains. 

6. Comparative Analysis 

It is of interest to provide a qualitative comparison between the proposed stress- 
dependent hydraulic conductivity expounded in Eq. (24), that derived by Gangi 
(Eq. (15)), and also that applied to fractured media (Eq. (30)). 

Assuming strain can be expressed as 

Ae - Act _ Act c + Aai (34) 
E E o ' 

then Gangi's method in Eq. (15) may be reformulated as 

AK 
= {1 - k(Ac)2/3} 4, (35) 

K0 

while the proposed method for flow in intact rock described by Eq. (24), for 
compressive strain with u = 0.25, can be written as 

AK 
-- {1 - 1.733(Ae)2/3} 2 (36) 

x0 

and the proposed method for flow in a fractured medium, described in by Eq. (30), 
may be represented as 

AK 
- {1 - 16.667(Ae)} 3, (37) 

X0 

where it is assumed that Kn/E = 0.1/cm, b = I0 .3 m, s = 50m. 
A comparison of Eqs. (35) to (37) is shown in Fig. 5, in response to the 

variation of conductivity (K/Ko) versus strain Ae. At large strain values, the 
proposed method of representing intact rock yields a more drastic change in 
conductivity than that predicted by Gangi's formula (Gangi, 1978). As a result of 
the more nucleated distribution of porosity, the conductivity behavior of the 
fracture model is the most sensitive. 

For a tensile strain field applied to the fracture flow model, and using the 
previously assumed parameters, the resulting change conductivity is given as 

AK 
-- (1 + 16.667Ae) 3, (38) 

Ko 
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Fig. 5. Compressive strain versus dimensionless conductivity 

while Eq. (24) may be correspondingly written for tensile strain as 

AK _ [1 + 1.733(Ae)2/3] 2. (39) 
K0 

Comparing Eqs. (38) to (39), and assuming that the modification in dimension- 
less hydraulic conductivity is solely controlled by the change in strata deformation, 
then, as expected, the conductivity of the fractured medium is considerably more 
sensitive to changes in strain than the intact medium as shown in Fig. 6, 
particularly when the strain magnitude becomes increasingly large. 

From these analyses it is apparent that an increase in effective stress results in a 
decrease in hydraulic conductivity and vice versa (Fig. 5). This tendency has been 
supported by many experimental studies (Kranz et al., I979; Witherspoon et al., 
1980). This trend is reversed in the case of dilatation, as illustrated in Fig. 6. 

7. Model Application: A Case Study 

The validity of the proposed models may be examined by applying them to data 
from a mining case study. All original data, cited in the following, are referenced to 
the paper by Hasenfus et al. (1988). 

The mine is located in West Virginia and exploits the Pittsburgh seam. The 
shallow water bearing strata present at the site exhibit perched or semi-perched 
aquifers with interbedded low permeability shales and claystones leading to a 
decrease in hydraulic conductivity with depth. Water level fluctuations in the 
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Fig .  6. D i l a t a t i o n  v e r s u s  d i m e n s i o n l e s s  c o n d u c t i v i t y  

shallow aquifers are primarily attributed to the steep topography. Water levels 
below 400 feet (122 m) remained fairly constant throughout the pre-mining period. 

The main aquifer, comprised of sandstone, is located approximately 110 to 130 
feet (33.5 to 39.6 m) beneath the surface. In general, for the upper 400 feet (122 m) 
of overburden, hydraulic conductivity decreases with depth (Hasenfus et al., 1988). 
Pre-mining hydraulic conductivities for this aquifer, and a secondary aquifer 
located at a depth of 160 to 170ft (48.8 to 51.8m) below the surface, were 
determined through pumping tests. The normalized pre-mining hydraulic con- 
ductivity is shown in Fig. 7. 

The mined seam lies directly beneath about 200 feet (61 m) of highly competent 
limestone and sandstone strata as contrasted with the low strength shales and 
ctaystones close to the surface (Fig. 8). The average extraction thickness was 5.75 
feet (1.75 m). The mined panel was 600 feet (182.9 m) wide by 7200 feet (2194.6 m) 
long, and affected by two adjacent panels. Headgate development was 250 feet 
(76.2 m) wide and the tailgate was 225 feet (68.6 m) wide (refer to Fig. 9 of mine 
panel layout). The coal seam is approximately 710 feet (216.4 m) deep at the mine. 

A finite element model was used to represent mining at the site. The model 
comprises 6 strata of 7 different elastic properties. All the materials are assumed to 
be isotropic. The material constants are listed in Table 1. Utilizing the symmetry of 
the system, the design of the finite element domain, along with all stress and 
pressure boundary conditions, is shown in Fig. 10 (illustrating the half profile of 
the mining geometry). A constant fluid pressure boundary condition is applied on 
the surface and around the mining panel (free drainage). The constant flux (no 
flow) boundary condition is employed on the side and along the base of the model, 
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Table 1. Parameters for the finite element model 

Material Conductivity (gpd/ft 2) Modulus (psf) Poisson ratio 

1 4.20 250000 0.27 
2 0.40 850000 0.18 
3 0.40 460000 0.22 
4 1.10 460000 0.22 
5 0.50 200000 0.37 
6 0.30 10000 0,40 
7 0.80 500000 0.20 

Conversion: 1 gpd/ft 2 = 4.72 x 10 -7 m/s and 1 psf = 47.88 Pa 
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representing the pre-mining hydraulic regime. A force boundary condition 
equivalent to overburden load is applied at the mining level. The stress and flow 
boundary conditions are also illustrated in Fig. 10. 

7.1 Analysis of Strata Subsidence 

The form and magnitude of surface subsidence may be determined from the 
measured deformation field. The equilibrium form (long term) of the subsidence 
profile may be used to confirm the appropriateness of the elastic parameters used in 
the analysis. These elastic parameters are then used in the numerical model to 
further aid in determining the subsequent modification in hydraulic conduetivities 
and the resulting change in the fluid flux field. 
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The mining-induced subsidence field, determined through use of the model, is 
illustrated in Figs. 11 and 12 for magnitudes of the pore pressure coefficient c~ 
between 0.5 and 1. It is apparent that mining-induced pore pressure magnitudes 
exercise significant influence over the resulting subsidence field. As c~ increases 
towards unity, the subsidence magnitude correspondingly increases. The difference 
in subsidence for different c~ is more explicitly expressed by surface subsidence 
profiles as illustrated in Fig. 13 for a values from 0.1 to 1, where the measured 
normalized surface subsidence is included for comparison. It is of interest to note 
that significant variation occurs as c~ is reduced from 1.0 to 0.1, but that the process 
appears linear, as would be expected. This is a result of the corresponding increase 
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in seepage force in the porous medium as o~ increases. It is important to note that 
the illustrated range of a extends beyond the reasonable limits of 1.0 to 0.7, 
representative of sedimentary rocks. The second observation is that, in comparison 
with the influence of  the gravity load, the change in pore pressure has a dominant 
influence on the magnitude of surface subsidence, representing a significant effect 
of seepage force (or pressure gradient) over the deformation field under given 
conditions. The third observation is that the measured subsidence profile closely 
follows the subsidence predicted by c~ = 0.1 over the seam area, while the 
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maximum subsidence magnitude is comparable to the subsidence with c~ = 0.8. 
However, the measured surface subsidence shows a steep subsidence profile over 
the panel, which significantly deviates from the calculated subsidence profiles. This 
deviation may be attributed to the heterogeneous material properties that develop 
in the overlying strata, as a result of the nonlinear response to mining induced 
strains, which are in contrast to the homogeneous and linear finite element 
modeling. As an example, Fig. 14 depicts the comparison of subsidence between 
the measured and predicted profiles using a mesh where the elastic modulus does 
not differentiate between that over the seam and that over the gob. The noticeable 
discrepancy between the two is apparent. However, if the elastic modulus over the 
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Fig. 16. Ratio of conductivity (K/Ko) in intact rock (a = 0.5) 

gob is modified to simulate the influence of mining, then a more favorable match is 
allowed, as shown in Fig. 15. 

7.2 Variation of Hydraulic Conductivity 

Once the deformation field within the mining region is determined, stress- 
dependent magnitudes of dimensionless hydraulic conductivity can be evaluated 
from Eq. (24) for intact rock, or from Eq. (30) for fractured rock. 

If Eq. (24) is used for intact rock, effective stresses are calculated from Eq. (13) 
after stresses and pore pressure distributions are obtained from the finite element 
analysis. The distribution of dimensionless hydraulic conductivity is illustrated in 
Figs. 16 and 17, where the pore pressure coefficients, a, are assumed as 0.5 and 1, 
respectively. These represent extreme bounding magnitudes for sedimentary rocks, 
where values of the pore pressure parameter are typically in the range 0.7 to 1.0. 
The immediate observation is that little change in hydraulic conductivity has taken 
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place in the near surface strata, in contrast to the more radical changes that have 
occurred in close vicinity to the mining panel, especially in the caving or severely 
fractured zones. In general, a higher pore pressure coefficient results in a greater 
change in hydraulic conductivity. 

For fractured rock, Figs. 18, 19 and 20 depict the profiles of the ratio of post- 
mining to pre-mining hydraulic conductivities where the pore pressure coefficient, 
a, is 0.5 and fracture spacings are 10m (32.8 ft), 1 m (3.28 ft), and 0.1 m (0.33 ft), 
respectively. The change in hydraulic conductivity is manifest primarily in the 
vicinity of the mining panel. As apparent in Eq. (30), changes in hydraulic 
conductivity in fractured rock strongly depend on fracture spacing and strata 
deformation, in addition to the secondary influence of the mechanical properties of 
rock and fractures. 

The ratios of post-mining to pre-mining hydraulic conductivities close to the 
centerline of the panel for both the intact rock model and fractured rock models 
are compared (Fig. 21). In the region immediately above the mining panel, greater 
changes in hydraulic conductivity occur in the fractured medium than in the intact 
medium. The difference of the changes in hydraulic conductivity between the 
fractured medium and the intact medium increases dramatically as the fracture 
spacing decreases. This results from mining-induced strain being distributed over 
fewer fractures with a corresponding (relatively) greater change in aperture. 
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It is of importance to compare the modeling results with field measurements. In 
the case study examined here, the pre-mining and post-mining hydraulic con- 
ductivities were determined by falling head permeability, slug, pumping test and 



Stress-Dependent Hydraulic Conductivity for Intact and Fractured Porous Media 229 

borehole packer tests (Hasenfus et al., 1988). The packer tests conducted in the 
post-mining borehole indicated both increasing and decreasing conductivities 
relative to pre-mining values. Unfortunately, due to severe rock failure over the 
mined panel area, no observation was available within 130 feet (40m) above the 
panel. Comparisons of the ratio of post-mining to pre-mining hydraulic conduc- 
tivity above the panel centerline among the models of fractured rock and intact 
rock and the measurement, as available, are shown in Fig. 22. The measured results 
indicate the oscillatory variation of the conductivity as depth increases, which may 
be due to the effect of shear slippage between strata layers under mining influence, 
and localized heterogeneities of deformation. As apparent in Eq. 33, additional 
changes in hydraulic conductivity may occur as a result of the shearing between 
layers. The slightly larger change in the ratio of hydraulic conductivity for the 
intact rock model, over that of the model representing fractured rock, is limited to 
shallow depths and where the fracture spacing is 10m. 
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Since fracture apertures are evaluated from the defined spacing and measured 
initial conductivity, it is observed that, at greater depth, the predicted change of 
hydraulic conductivity by the fractured rock model tends to be greater than the 
measured magnitude. This mismatch is conditioned by the choice of fracture 
spacing, consequently, a smaller spacing would result in a closer match. This 
adjustment is not contemplated, rather the natural uncertainty of parameters is 
retained in the model. The better correspondence between the measured data and 
the prediction by the intact rock model, and the fractured rock model with large 
fracture spacing, than with the model using small fracture spacing reflects the 
domination of the original permeability distribution, i.e. the permeability 
decreases with depth. 
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8. Conclusions 

This paper provides a variety of models for evaluating deformation and enhance- 
ment of hydraulic conductivity in both intact and in fractured strata. Although not 
limited to this, the models are applied to describe the change in hydraulic behavior 
that accompanies longwall mining. The models are based on the theory of coupled 
steady-state poroelasticity where the displacement and fluid pressure fields are 
obtained through finite element analysis. For intact rock, changes in hydraulic 
conductivity are determined using the concept of grain size analysis, via a theory of 
elastic contact. For fractured rock, changes in hydraulic conductivity are evaluated 
through the parallel plate description in an equivalent porous medium. In both 
cases, the stress state of the porous medium exercises critical influence on the 
variation of hydraulic conductivity. 

In applying the model, it is observed that the magnitude of the subsidence field 
over the mining panel is strongly controlled by the induced pore pressures. This 
results from the choice of force boundary conditions at the panel, rather than the 
prescribed displacement conditions, that would yield a more uniform subsidence 
profile with changing pore pressure coefficient c~. Representative magnitudes the 
pore pressure parameter, a, are in the range 0.7 to 1.0 for sedimentary rocks, 
effectively limiting the range of attainable subsidence profiles. 

Changes in hydraulic conductivity are directly associated with the changes in 
stresses and pore pressure magnitudes from the initial pre-mining status. The 
greatest changes in hydraulic conductivity tend to occur in the vicinity of the 
mining panel where the surrounding rock is subjected to severe caving or fracturing 
as a result of stress or deformation variation of the strata. The comparison of 
changes in hydraulic conductivity, a major concern when mining under aquifers, 
shows compatible patterns (but different magnitudes) between the fractured rock 
model and the intact rock model immediately above the mining panel. A consistent 
trend is evident, to a certain extent, between the results from the models and those 
from the measurements. Fracture spacing is one of the key factors that controls the 
intensity of the changes in hydraulic conductivity. 

Nomenclature 

A 
bo 
b 
B 
C 

d 
D 
E 
Eo 
f 
F(n) 
F 
g 

derivatives of shape functions 
initial fracture aperture 
width of fracture opening 
strain-displacement matrix 
constant 
mean grain size or hydraulic radius 
elasticity matrix 
elastic modulus 
effective grain modulus 
boundary tractions 
porosity factor 
vector of applied boundary tractions 
gravitational acceleration 

n porosity 
N vector of element shape functions 
p pore pressure 
Q vector of prescribed nodal fluxes 
Re coupling matrix 
R grain radius 
s fracture spacing 
u displacement 
uf fracture displacement 
Us solid displacement 
ut total displacement 
vi Darcy's velocity 
V volume of the integral domain 
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G shear modulus c~ pore pressure coefficient 
G~ stiffness matrix @ Kronecker's delta 
Gf conductance matrix V del operator 
H Biot constant ha dilatation angle 
k permeability # fluid dynamic viscosity 
K hydraulic conductivity u Poisson ratios 
K hydraulic conductivity matrix 3' shear strain 
K 0 initial hydraulic conductivity eij strain tensor 
Kg bulk modulus of solid grains ekk volumetric strain 
Ks bulk modulus of porous media ~r/~ effective stress tensor 
K, stiffness of fracture O'ij stress tensor 
Ksh shear stiffness C~kk/3 trace(~rii)/3 = mean stress c~ c 
m one dimensional vector, = {1 1 0} T 

Appendix 

Hydraulic conductivity may be directly related to pore dimension, frequently 
defined in terms of the hydraulic radius (Scheidegger, 1957). In the well-known 
theory of Kozeny (Kozeny, 1927), the porous medium is represented by an 
assemblage of capillaries, of various cross-sections, where the Navier-Stokes 
equations are solved individually, for each of the parallel arrangement. The 
hydraulic conductivity is given as 

where c is a constant representing the mean size and shape of the grains, and n is 
porosity. 

Comparing Eq. (14) with Eq. (40), it is apparent that porosity is an important 
factor. Real porous media are comprised of a mixture of large and small particles 
that may be uncemented or cemented. The porosity of consolidated materials 
depends mainly on the degree of cementation, while the porosity of unconsolidated 
materials depends on the packing of the grains, their shape, arrangement and size 
distribution. 

Porosity may have an important control over hydraulic conductivity with 
hydraulic conductivity increasing with increased porosity. Kozeny-Karman (Bear, 
1972) proposed an equation similar to Eq. (40) which includes a factor representing 
porosity as 

K -  (1 - n) ~ 180 ' (41) 

where n is porosity. This equation attempts to incorporate the influence of grain 
packing on hydraulic conductivity. Alternatively, packing may be incorporated 
directly for Hubbert 's equation as shown in Eq. (14), enabling direct relationships 
to be established for permeability changes. 

The influence of pore pressures on effective stresses is controlled through the 
pore pressure coefficient a of Eq. (7), which has been experimentally defined by 
Geertsma (1957) and Skempton (1960) and confirmed from theory by Nur and 
Byerlee (1971). 
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Scheidegger (1957) claimed that the hydraulic conductivity of  a medium was 
solely a function of  the total external stresses, expressed as a change of pore space 
under external loading. By carrying out laboratory tests on intact and jointed 
Barre granite, Kranz et al. (1979) proposed the following equation to predict the 
change of  permeability, k, as a function of  difference between confining stress o- c 
and pore pressure p as 

k e ( -  ~c a p (42) 

where b and a are constants representing the effective proportionality of  the fluid 
pressure. Based on the experimental results, Kranz et al. suggested that b/a < 1 for 
jointed rock and b/a ~ 1 for intact rock. They also reported a one to two order of  
magnitude difference between the permeability of  jointed rock and that of  intact 
rock at low effective stresses, and almost no difference at high effective stresses. 

An empirical formula relating hydraulic conductivity to effective stress is given 
by Walsh (1981) as 

K=Ko{1-(x/2~)ln(~oo)} 3 (43) 

0 is the initial effective stress, ~ is a where K0 is the initial hydraulic conductivity, cre 
factor related to the fracture geometry, and acting effective stress, ~re, may be 
estimated from Eq. (13). 
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