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Abstract 

An analytical model based on a poromechanical formulation for dual-porosity media is presented. In comparison with 
traditional conceptualizations such as by Barenblatt et al. ( 1960), the proposed model contains both additional terms in the 
governing flow equations to provide a physically more realistic description of the change in storage, and a natural accommodation 

of body displacements. Solution is developed for radial flow in a reservoir subject to the conditions of both constant bottom hole 
pressure and constant flow rate using Hankel transforms. The poromechanical effect, resulting from the coupling between fluid 
flow and solid deformation, is significant in the well vicinity where the modifications of initial pressure and stress state are 
substantial. Different from the conventional approach in which the impact of fluid properties is generally emphasized, the 
presented case studies highlight the critical influence of mechanical properties of the fractured rock mass on the change of fluid 

pressure in a producing reservoir. The study indicates that dual-porosity behavior is most obvious only when the poromechanical 

properties fall within a certain range. 

1. Introduction 

The behavior of fractured porous rock masses is dif- 
ferent from unfractured-porous media because of their 

unique flow characteristics along with unique mechan- 
ical responses to the internally and externally applied 

loads. Porous rock masses are deposited as sediments 

of matrix rock with intergranular porosity. Over geo- 

logical time, continuity of these masses has been dis- 
rupted as a result of tectonic activities, weathering, 

earthquakes, glacial and thermal stresses. The resulting 
rock masses may be described as aggregates of blocks 

bounded by interconnected or isolated fractures, adding 

secondary porosity to the original porous materials. In 
general, the fluid flow within matrix blocks is different 
from the flow in a fractured network. In the former, the 
matrix blocks contain pore space having similardimen- 
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sions in lengths and widths, in addition to highly tor- 

tuous flow patterns. In the latter, the fractures provide 
more continuous apertures with lengths far in excess of 

their widths. If several closely spaced sets of joints are 

present, they may form a directly interconnected flow 
system. The combination of radial intergranular flow 

in the matrix blocks with linear flow in fractures rep- 

resents a typical flow pattern within naturally-fractured 

reservoirs. 

In general, conservation laws hold for momentum, 
mass and energy. For an isothermal case, stress equi- 

librium must be maintained for the load-deformation 
behavior of the reservoir, while fluid mass is concur- 
rently conserved. Reservoir deformation as a result of 
production is coupled with induced pore pressure 

change. This effect is most pronounced in areas of large 
changes in total stress, such as in the vicinity of pro- 

0920-4105/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved 
XSDlO920-4105(95)00019-4 



156 Mao Bai et al. /Journal of Petroleum Science and Engineering 13 (1995) 155-168 

ducing wells, with the magnitude of this impact dimin- 

ishing with distance. 
Analytical solutions for flow in deformation-coupled 

dual porosity systems provide an important means of 
distilling the essential behavioral components in the 

response, albeit for simplified geometric representa- 
tions of reality. The governing equations representing 

flow through fractured-porous media were initially pro- 

posed by Barenblatt et al. ( 1960). The mathematical 

model was further developed as a potential reservoir 

simulator by Warren and Root ( 1963). Analytical solu- 
tions for flow towards a single well are available for a 

variety of reservoir conditions. Streltsova-Adams 

( 1978) evaluated many of the possible solutions based 
on the dual-porosity conceptualization. Raghavan 
( 1977) proposed several approaches for wells inter- 

cepting single discrete fractures. Moench (1984) 
assumed an interactive dual-porosity behavior as that 

fluid flows across a fracture skin. In terms of coupling 
fluid flow with solid deformation, Biot (1941) pre- 

sented a comprehensive poroelastic formulation in 

three-dimensional space, with displacement and 

pressure as primary unknowns. Rice and Cleary ( 1976) 

introduced a series of alternative solutions based on the 

stress function method and provided a unification 
between the theory of Biot and that developed by Ter- 

zaghi ( 1923). Using the solution of Melan ( 1940) for 

a central point dilatation in a semi-elastic space, Segall 
( 1985) solved the coupled flow-deformation problem 

for a reservoir subjected to fluid extraction. Recent 

advances extend the traditional dual-porosity approach 

to encompass the coupled processes which include par- 

tial or comprehensive coupling of fluid flow, solid 

deformation, heat transfer and solute transport (Bai et 
al., 1993; Bai and Roegiers, 1995). Research efforts 

have also been focused on identifying local influences 
such as convective flow (Bai and Roegiers, 1994) or 

nonlinear flow near a well (Bai et al., 1994) in a dual- 
porosity medium. Accompanying numerical advances 

include the development of a three-dimensional finite- 
element model capable of evaluating coupled flow- 
deformation in poroelastic dual-porosity media (Bai 
and Meng, 1994). 

resentation of the fluid storage interaction between 
matrix blocks and fractures during the initial transient 

flow regime. The states of stress and deformation near 
a producing well have been examined via a porome- 

chanical coupling. The solutions of the constant bottom 

hole pressure for an infinite reservoir and the constant 
flow rate for a finite reservoir are obtained using Hankel 

transforms. A hypothetical case study focuses on the 

constant flow rate scenario, in an attempt to identify 

the dual-porosity behavior of the fractured-porous rock 

mass in conjunction with its poromechanical effect 
along with the variation of the material properties. 

2. Theoretical formulation 

In the dual-porosity poromechanical formulation, 

the governing equations for the solid and fluid phases 
can be written as (Wilson and Aifantis, 1982) : 

Gui,jj + (A + G) uk.ki + k 4rn~rn,i = 0 (1) 
“I= I 

(2) 

where m = 1 and 2, represent the matrix and fractures, 

respectively; A and G are the Lame’ constants, 4 is the 

fluid pressure ratio factor or Biot coefficient (Biot, 
1941), C$ * is the relative compressibility representing 

the lumped deformability of the fluid and the fractured 

or intact medium, k is the permeability, /1 is the fluid 

dynamic viscosity, ris the transfer coefficient, u is the 
solid displacement, p is the fluid pressure, l kk is the 

total body strain, Ap is the pressure difference between 
fractures and matrix blocks. A sign convention, assum- 
ing fluid compression as positive and tension in solid 

stress as negative, is adopted, consistent with the field 
of geomechanics. The stress-strain relationship in a 

poroelastic medium may be expressed as: 

(3) 

This paper presents an alternative dual-porosity The complete analogy between poroelasticity and 

model based on a modification of Barenblatt et al.‘s thermoelasticity was first identified by Biot ( 1956). AS 

formulation ( 1990) and additionally incorporating full pointed out by Rice and Cleary ( 1976) the analogy 
coupling of displacements. The addition of terms in the holds only when the coupling between the fluid pres- 
governing flow equations provides a more realistic rep- sure (or temperature) and stresses is rigorously 
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retained. In other words, the pressure should be derived 

from the governing equations simultaneously with 

either stresses or temperature (Cleary, 1977). In poroe- 
lasticity, complete decoupling may cause a significant 
error, however, only in close proximity to the applica- 

tion of load (Cryer, 1962). In an infinite medium, par- 

tial decoupling using the concept of displacement 
potential offers an acceptable approximation to that of 

rigorous coupling, even adjacent to a fluid source (Cur- 

ran and Carvalho, 1987). As a result, a simple sequen- 

tial solution procedure is then permissible. For an 
infinite medium with isotropic and homogeneous prop- 

erties, the solid displacement can be expressed in terms 

of a displacement potential proposed by Goodier 
( 1936)) assuming the displacement field is irrotational 
as: 

u; = @,, 

Substituting Eq. 4 into Eq. 1, gives: 

(4) 

Integrating Eq. 5 with respect to xi, results in a Pois- 

son equation: 

@.kk = Ekk = - P 5 hi%, (6) 

IIs= 1 

where: 

pi_= (l+u)(l-2V) 

2G+h E(l-v) 
(7) 

where E is the elastic modulus, v is the Poisson’s ratio. 

Substituting Eq. 6 into Eq. 2, yields: 

In a dual-porosity medium, if the rate change of fluid 
accumulation in the control volume is a result of 
exchange in storage capacity in the matrix and frac- 

tures, in addition to the volume exchange due to fluid 
flow between fractures and matrix blocks, then the flow 
equation should be further modified, in a long form, as: 

(8) 

Expressing the relative compressibilities in a more 
explicit form, and neglecting the influence of shear- 

induced dilation of the fractures, Eq. 8 can be written 
for the matrix and the fractures, respectively: 

(10) 

where f, and f3 are the matrix and fracture compressi- 

bilities, f2 and f4 are the interacting bulk compressibil- 
ities of the fracture and matrix phases, respectively. 

More explicitly: 

l-n, n, 
fl=- K, +c.+m 

s I 

h= 2n; 
K,,s” + KS 

-4+&P 

(11) 

(12) 

(13) 

where n, and n2 are the porosities for matrix and frac- 

tures, respectively; KS and Kf are the bulk moduli of 
solid grains and fluid, respectively; K, is the normal 

fracture stiffness, s* is the fracture spacing, n; and n; 

are the effective porosities in matrix and in fractures 

considering an average bulk compressibility in matrix 

and in fractures containing fluids, respectively. It is 

important to note that the governing Eqs. 9 and 10, for 

fluid flow alone, are different from those proposed by 

Barenblatt et al. ( 1990). Barenblatt et al. assumed that 

the change of the guest fluid pressure (here meant for 

fracture pressure in matrix flow equation, and vice 

versa) should have an impact on the change of void 

space in the host phase and this impact was omitted in 
their final formulation. It is arguable, however, that the 

storage change in the host phase (e.g. matrix) due to 

fluid and solid compressibilities in the guest phase (e.g. 

fractures) should occur in its own space. The storage 
change in the guest phase may contribute substantially 
to the change of fluid volume in the host phase, partic- 
ularly in the initial transient pumping stage. This prop- 
osition may be further clarified as follows. 
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a. A porous medium b. A fractured porous medil _.-lm 

Fig. I. Schematic fractured/porous media. 

In the absence of fractures (Fig. la), fluid flow can 

be represented by: 

(15) 

As a result of the presence of fractures, as shown in 

Fig. 1 b, the fluid compressibility due to pressurechange 

in the fracture space would counteract the rate change 

of fluid accumulation in the matrix space (second term 
on the right-hand side of Eq. 9)) while the internal fluid 

flow due to pressure difference between matrix and 

fractures would either assist or counteract the matrix 
fluid accumulation, depending on the magnitude of 

pressure pi and p2 ( third term on the right-hand side of 
Eq. 9). Eq. 9 results. 

Similarly, fluid flow in a fractured medium, inter- 

cepted by the impermeable matrix blocks (Fig. lc), 

may be represented by: 

( U 
E &I=; 

c. A fractured medium 

Following the previous reasoning, Eq. 10 may be 

developed if the matrix blocks in Fig. lc are permeable, 
such as in Fig. lb, and flow between the matrix and 

fracture is then permitted. 

To represent a long producing well zone, stress and 
pressure changes are assumed plane radially symmetric 
and, therefore, independent of the circumferential and 
vertical orientations. Strains are, therefore, given as: 

i- 
E,., = d” 

dr 

I E,“= Ez = 0 

(17) 

The total strain is then: 

and stresses can be evaluated from Eq. 3 as: 

and: 

(18) 

(19) 

(20) 

(21) 

In a radial system, Eq. 1 can be reformulated as: 

(22) 

Integrating Eq. 22 with respect to r, and assuming 
r + M, Au and Ap, + 0 (A indicates the change over 

initial values), yields: 

(23) 

Note that Eq. 23 is identical to the combination of 
Eqs. 6 and 18. 
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The solution is more general if it is solved in adimen- 

sionless form. Therefore, we introduce the following 

parameters: 
Dimensionless fluid pressure: 

(24) 

where h is the reservoir thickness, PO is the initial fluid 

pressure, q is the flow rate. 
Dimensionless radial distance: 

where r, is the well radius. 

Dimensionless time: 

t,,= (k, +k?)t 

P& 
(26) 

,=I 

Dimensionless displacement: 

41 - u 
lJ,,=- 

r, 
(27) 

where LI() is the initial displacement. 

Fluid transfer coefficient: 

(28) 

where CY* is a shape factor (Warren and Root, 1963) 

and can be evaluated by the equation: 

a* = 
4j* (j* f2) 

i” 

where j * = 1, 2 or 3 in terms of the number of orthog- 

onal sets of fractures, 5 is a characteristic dimension of 

the blocks, and can be written as: 

i= 
3u*b*c* 

a*b‘ +b’c* +c*a* 

For the regularly spaced parallelepiped model, 

j-=3, a* =b’=c* =s*; so that 

60 
a* =- 

(s*)? 

Elastic coefficient: 

p*=p qcL 
2nh(k, fk2) 

IS9 

(29) 

Calculating coefficients: 

Wi= 
(k, fU.A (i’ 1 2 3 4) 

li$f, “’ 
;= I 

(30) 

where: 

k,= k, wheni=l and2 
I 

-C k2 when i=3 and 4 

Using simple arithmetic manipulation, coefficients 

wi can be represented by dimensionless terms such 

as the permeability ratio k,lk2, compressibility ratios 
KrlK,,s*, K,IK,, and K,IE, along with ni, v and &. 

The governing Eqs. 23,9 and 10 can be rewritten in 

the dimensionless form: 

@Dl apll2 -- 

@’ at,, 
-+/l* (PI,, --PI,,) 

@* at,, 

@Pb2 1 dP,, 

at+ +*I,irr,,= 

(32) 

Solutions and solution procedures of solving simul- 

taneous Eqs. 3 1, 32 and 33 for the cases of constant 

bottom-hole pressure and constant pumping rate are 
described in Appendices A and B, respectively. 

3. Parametric relationships 

The parameters used in the previous formulation for 

the fractured-porous rock mass may be classified into 

four categories, as: (a) fluid properties (K,, p) ; (b) 
mechanical properties (E, v, K,, KS> ; (c) physical 
properties (s * , k, , k2, n,, n2, n ; (d) and poromechan- 
ical properties (4,) c/Q. Most fluid and mechanical 
parameters can be routinely obtained through labora- 
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Table I 
Referenced material properties 

Parameter Symbol Value Unit Type Reference 

Elastic modulus 

Poisson ratio 

Fluid bulk modulus 

Grain bulk modulus 

Fracture stiffness 

Fracture spacing 

Matrix porosity 

Fracture porosity 

Matrix p factor 

fracture p factor 

Matrix permeability 

Fracture permeability 

Dynamic viscosity 

Transfer coefficient 

5-80 

0.07 -0.33 

0.5 -s 

3.3 

36-50 

0.1 

0.2 - 30 

0.04 - 0.2 

0.0001 -0.01 

0.5 

0.9 
]O-‘O* 10-14 

10-7, lo-” 

0.012 

I .5 

60 

GPa 

GPa 

GPa 

GPa 

GPa/cm 

m 

cm’ 

cm’ 

CP 

CP 

sandstone Jumikis, 1983 

sandstone, limestone Jumikis, 1983 

oil Craft and Hawkins, 1959 

water Rice and Cleary, 1976 

sandstone, marble Rice and Cleary, 1976 

Iwai, 1976; Rosso, 1976 

Snow, 1968 

sandstone, limestone Jumikis, 1983 

Snow, 1968 

Walsh, 198 1 
Walsh, 198 1 

sandstone Freeze and Cherry, 1979 

metamorphic rocks Freeze and Cherry, 1979 

oil Craft and Hawkins, 1959 

water Craft and Hawkins, 1959 

parallelepiped Warren and Root, 1963 

tory techniques, in contrast to the physical parameters 
which are generally acquired via field measurements. 

For the determination of poromechanical parameters, 
more sophisticated macromechanical testing methods 

with fluid pressure coupling are usually required. As 

an initial approximation, Table 1 lists the values or the 
approximate ranges of general parameters which may 

be needed in the calculation. These parameters should 
be readjusted to suit individual situations. In particular, 

the mechanical parameters are basically determined 
from laboratory tests and should be adjusted to match 

in-situ magnitudes. 

It should be realized that not all of the previously 
defined parameters are independent. The existence of 
some parameters is aimed at providing a definable and 

computational convenience. For example, using a sim- 
ilar approach as Nur and Byerlee ( 1971), the fluid 

pressure ratio factors & (i = 1,2) in an overlapping 
matrix-fracture network may be defined as a function 

of the fluid, solid grain and skeleton bulk moduli, 

together with fracture compressibility: 

for matrix. and: 

(34) 

for fractures; where K is the bulk modulus of rock 
skeleton. 

The matrix permeability k, may be associated with 
the matrix porosity via (Bear, 1972) : 

where d, is the mean grain size or the hydraulic radius. 

Fracture permeability k2 in the fracture-dominant 

porous rock mass may be related to the fracture spacing 
s* by (Snow, 1968): 

(37) 

where br is the fracture aperture. 

4. Dual-porosity behavior 

The parameters used in an illustrative example are 

detailed in Table 2 for a fractured-porous reservoir of 

Table 2 

Parameters in an illustrative example 

Porosity n Factor I$ Coefficient Radius 

Matrix Fractures Matrix Fractures v P,, r, t-m 

0.2 0.02 0.5 0.9 0.25 1.0 0.1 m 10,000 2.0 
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1.0 

‘i 
,‘- 

/’ 

0.0 L 

/ 

,; 

(r0;O.S. rl=r2=r3=I) 

Fig. 2. Temporal pressure at r,) = 2 under constant well pressure. 

infinite extent. Assuming a constant pressure inner 

boundary and a no-flow boundary at infinity while con- 

sidering the influence of fluid compressibility from the 

guest phase only, Fig. 2 shows the normalized temporal 
fluid pressure in the fractures when the ratio of r, = k, / 

k2=Q.5, r, =K,dK,,s’, r2=K,4Ks, r,=K,/E are all 

equal to one, and the elastic modulus equals 1 GPa. It 

is noted that the gradual pressure changes at early time 

demonstrates the substantial contribution from the 

intergranular matrix flow. The following dramatic fluid 

pressure change at later time indicates dominated flow 
in more permeable fractures. 

Another attempt is made to simulate a fractured- 
porous reservoir with a finite radius (rile = 10,000). It 

is assumed that a constant fluid pressure prevails at the 

outer boundary, that a constant pumping rate is main- 
tained at the wellbore, and that the reservoir is com- 

posed of equally-spaced fractured porous blocks. The 

parameters in the calculation are the same as those 
shown in Table 2, except that the dimensionless radius 

rD equals 1. 
Fig. 3 shows the dimensionless pressure-time rela- 

tionship for a number of permeability ratios ( r,, = k, / 

k2). It is interesting to note that a decrease in matrix 
permeability results in a significantly delayed pressure 

drop in the fractures, representing the dominant impact 

of fracture flow. 
For a fixed permeability ratio (r = 0.01) and com- 

pressibility ratio of fluid to rock elastic modulus 

(r, = K&E = 1)) the pressure change is least sensitive 
to the change of compressibility ratios r, = K,-l (K,s * ) 
and r2 = K,-l( KS) at later times (Fig. 4). It appears that, 

for a constant fluid compressibility, a decrease in frac- 
ture compressibility leads to delayed pressure distur- 

bance. The dual porosity behavior becomes observable 
at large r,. For larger r,, the fluid in the fractures is 

drained quickly, and the matrix storage supplies the 

fractures within a short period of time. Subsequently, 

fluid flow and fluid pressure between matrix and frac- 

-*- r0=.0001 
a-**- r0=.00001 

(rl=l,r2=l,r3=1) 

Dimensionless time 

Fig. 3. Temporal pressure for various permeability ratios 
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l --*- rl=lll,r2=.1 
()(j(JOO rl=100,r%=.Ol 

1 0 

1 

A&AA. rl=1000,r2=.001 
fitin** rl=10000,r2=.0001 

7 

*a-** 

(rO=.Ol,r3=1) 

-q I1’1mq mmq mm7 mnq 8’““1 1, 

-6 10 + IO -’ 10 -3 10 -z 10 -I 1 
Dimensionless 

- 
10 10 
time 

Fig. 4. Temporal pressure for various fracture and grain compressi- 

bilities (a). 

’ 
/ 

,’ 
- rl=.l,rZ=lO 
o-00 rl=.01,r2=100 
A-*-A* rl=.001,r2=1000 
&L-M* rl=.0001,r2=10000 

(rO=.Ol,r3=1) 

r”ml -wT miml-rrrm 
-I 10 -5 10 4 10 -’ 10 -z 10 -I 1 10 lo2 10” 10’ 

Dimensionless time 

Fig. 5. Temporal pressure for various fracture and grain compressi- 

bilities (b). 

tures are maintained in equilibrium within the system. 
For a fixed permeability ratio, rO, and compressibility 

ratio, r3, pressure profiles are sensitive to variation of 
the compressibility ratios r, and r,, as illustrated in Fig. 
5. It is obvious that the pressure change is delayed as 
r, increases and r, decreases. This behavior resembles 
an equivalent homogeneous reservoir with soft frac- 

tures and stiff solid grains. However, it is important to 
note that the depleting pressure magnitude at early per- 

iods appears greater than the reservoir pressure as 
depicted in Fig. 5. This poromechanical impact cannot 

be observed if a conventional flow model is used alone. 

Dual-porosity behavior is exhibited if the elastic 
modulus of the rock mass is relatively large for fixed 

ratios of r,,, r, and r,. The effect of the elastic constant 
of the rock mass diminishes when the ratio r, is smaller 
than lo-’ (Fig. 6). Although the duration is short at 

early dimensionless times, the pressure change is sig- 

nificant, depending on the magnitudes of r3. In addition, 
the period of pressure stabilization during the fluid 

transfer between matrix and fractures appears to be 

prolonged as a result of variation in r3. For a fixed 

Poisson ratio, the magnitude of rock elastic modulus 

represents the stiffness of the rock skeleton, which 

plays a critical role in the determination of the pressure 

profiles. This effect is illustrated in Fig. 7, where the 

dual-porosity behavior is apparent only when the rock 

mass is relatively stiff, e.g. r, = 0.01. The poromechan- 

ical effect is obvious when r, falls in the range between 
0.1 and 1000. Both dual-porosity phenomena and the 

poromechanical influence diminish when r3 is equal or 

larger than 1000. Because large r, represents relatively 

soft rock masses, the dual-porosity behavior is least 

observable for soft media. 

Assuming r,,=5, ro=O.l, r,=r2=r3= 1, and 

2n%(k, +,Q =qplr,, the radial pressure and defor- 

crti-4 r3=.0001 
H.H r3=.00001 

(r0=.01,r1=.001,r2=1000) 

10 -90 30 30 -‘lo -?a -’ 1 10 10210310’10510’ 
Dimensionless time 

Fig. 6. Temporal pressure for various elastic constants (a) 
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(r0=.01,r1=.001,r2=1000) 

““I “I”‘? 1 “m-w ““‘r “‘11 “mnl 
0 malo -“lo -‘lo -‘lo -zlo -’ 1 10 lo2 IO3 IO’ lo5 

Dimensionless time 

Fig. 7. Temporal pressure for various elastic constants (b) 

- pressure 

A-*&A* strain* 

(TD=lO,rO=.l,rl=r2=r3=1) 

0 2000 4000 6000 6000 10000 
Dimensionless distance from well 

Fig. 8. Deformation and pressure profiles along radial distance 

mation profiles are illustrated in Fig. 8 when tn equals 
IO. It is noted that unlike the uniform pressure decline 
from the well, both solid deformation and stress decline 

dramatically within a dimensionless distance of 600 
from the well, signifying a significant local deformation 
effect as a result of petroleum production. This implies 
that the impact of poromechanical behavior should not 
be neglected within this region. 

5. Conclusions 

An analytical procedure has been presented to eval- 

uate the poromechanical effects on the fluid pressure, 
the state of stress and the deformation near a well as a 
result of pumping in a fractured-porous rock mass. In 
comparison with conventional approaches to dual- 
porosity behavior, the present model provides a more 
reasonable description of the storage interaction 
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between matrix blocks and fractures, while simultane- 
ously coupling displacements to the pore fluid 

response. As enabled by the characteristics of an infi- 

nite medium, the volumetric strain rate is partially 

decoupled from the impact of fluid pressure by apply- 

ing a poromechanical potential. However, the coupling 
of flow with deformation is recovered by placing the 

fluid pressure gradient as a body force while maintain- 
ing the system in equilibrium. The poromechanical 
influence is most prominent near a producing well 
where the modifications of reservoir initial flow and 

deformation conditions are dramatic. Change in the 
fow system in the vicinity of a production well may, 

therefore, be misinterpreted without considering this 
important poromechanical factor. For a constant fluid 

compressibility, the dual-porosity behavior of the frac- 

tured-porous rock mass is identified at the early tran- 

sient stage when fracture drainage leads to significant 

compression of the fractures. Dual-porosity behavior 

may not be observable if the rock skeleton is relatively 
soft, even if a significant disparity exists between frac- 

ture and grain compressibilities. However, the poro- 
mechanical influence is noticeable for soft rock masses, 
where the pressure magnitude at early time appears 

greater than the average reservoir pressure, a phenom- 
enon not attainable using traditional diffusive flow 

models. Dual-porosity behavior is most obvious in res- 

ervoirs comprising a stiff rock mass with relatively 

small fracture compressibilities and large grain com- 

pressibilities. The decrease in the permeability ratio 

between matrix and fractures only results in the delay 
of temporal pressure magnitudes, while no dual-poros- 

ity behavior is apparent. 
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Appendix A. Constant bottom hole pressure 

During production, the bottom hole pressure is usu- 
ally maintained at a constant level to prevent excessive 
separation of gas from oil. The boundary and initial 
conditions for an infinite reservoir with a constant bot- 
tom hole pressure and no flow at infinity are: 

f 
PD,=PD21p1= -PDW 

1 @D, @D2 
lir,=-grD+m=O 

I UDI, -co=0 
(Al) 

I PDI =p”*I,“=o=o 

where P,, is the dimensionless bottom hole pressure, 

which, for all practical purposes, is equal to or smaller 
than 1. For a linear system, the solution of Eqs. 32 and 

33 can be expressed as: 

PD;=vDi+PDw (i=1,2) 

The equations for the unknown V are: 

a%, +L avb, 

al’, -= rD ar, 

(A2) 

av DI avD2 

w’ at,, 
--W27+A*w”, -VD2) 

D 
(A3) 

av D2 avDl -- 
w’ at, 

--~*&(VD, - vD2) 
w4 at, 

(A4) 

The boundary and initial conditions are: 

v,,=v,,I,=,=O 

VD,=V,,~IQ,+~=O 

VD1=VD21ro=“= -pD, 

Using the Hankel transform defined by: 

(A51 

vD;(&D> = CvDi(rD,tD)ly(~,rD)rDdrD 
J 

(A61 
(i= 1,2) 

where: 

vD;(rD,tD>= [.&t) +y%81-’ 
I 
1 (A7) 

and 5 is an integral parameter; the Bessel function 
!& &rD), which satisfies the boundary conditions 
shown in Eq. A5, is: 
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%&rd = Yo(OJd&ii;,) -JdS)YdSm) (A81 

Solving Eqs. A3 and A4 using this Hankel transform 

gives: 

dv,, d& 
-(5?+h*)V,,+h*V,,,=w,dr- - (A9) 

r> W2 dt, 

dvo, dvo, 
-(52+A’Ra)~,,2+A*RrVn,=wldt- - 

D w4 dt, 

For convenience, let us define: 

(AlO) 

1 

a,=(tZ+h*) 
a,=([*+h*R,) 

b=w,w,-w,w, 

c,, = (a,w,-A”w,R,)b-’ 

C ,2=(a2~2-A*w3)b-’ 

c *, = (a,o,-A*w,Rk)bp’ 

c2*= (ap, -A*w,)b-’ 

(All) 

Eqs. A9 and A10 may be rewritten, after integration 

with respect to t,,, as: 

c22D 
V,, =-e 

d” 
-,1,1,, C~2F~-~zil> 

d* 
(A12) 

f,,* = C,,D e -(‘I I,,> 
d* 

+ ye - C’2Zll (A13) 

where: 

d* =~11~22-~12~21 (A14) 

and D and F are determined from the initial condition. 
Substituting Eqs. Al2 and A 13 into A7, one obtains: 

n 

VI>, = 
I( *-. 

<,,I,, _!+C?Z”> 
1 

P’(.$>)@& (At5) 

I 

VI>> = 
l( -P 

C.416) 

where: 

(A17) 

To satisfy the initial condition in Eq. A5, the follow- 
ing relationship between D and F can be obtained: 

D= 
Cl1 +c12 
-F 
C2l-t C22 

(A18) 

Finding explicit expressions for D and F is difficult 
due to the complication in solving the integrals in Eqs. 

Al5 and A16. However, if flow between the matrix 

and the fractures is neglected on application of the 

initial conditions, or A’ = 0, then the coefficients F and 

D may be determined from Eqs. Al5 and A16; i.e.: 

F= -P,, (A19) 
I 

D= -PDw 
[( 

w,-Co*-w,+w, 
w4 

w*+w, 
1 

(A201 

For A* =O, Eqs. Al5 and Al6 may be rewritten as: 

C.421) 
I 

I 

C.422) 

where F and D may be calculated from Eqs. .A19 and 
A20; and: 

c; = w3 
(~23) 

WI % - w2w4 

c; = 
WI 

(~24) 
w1 07 - w2w4 

Alternatively, the general expressions for D and F 

may be determined from Eqs. A15 and Al6 using an 

iterative solution procedure with direct elimination 
through supplying D or F with initial values. Fluid 
pressures can then be determined from Eqs. A2, Al5 
and A16: 

cc 

P”, = I 
1 

(A25) 

m 

PI,2 = 
-r[ 

-C21 

FDe- 

c, ,ID + Fe - CZ2fU 

1 

(A26) 
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The solutions of Eqs. A25 and A26 may be obtained 
using a numerical integration technique. In the present 

analysis, an adaptive Simpson’s integration method 

was chosen, whereby the entire interval is continuously 

subdivided into subintervals of variable lengths until a 

prescribed accuracy is achieved. The outer boundary is 

theoretically at infinity, although it is practically deter- 
mined by the vanishing magnitude of pressure P,. 
From Eqs. A25 and A26, it is readily verified that, as 

t,, approaches infinity, fluid pressures in the matrix 
blocks and in the fractures approach a constant value 

P IIW. 

It is understood that P,,, and P,, are now known 

functions. Eq. 3 1 may be integrated to yield: 

(i,=$l-P* (~,PDI+~*P,,,)r,dr,+g(t)l 
[ 

(~27) 

where g(t) can be determined by satisfying the bound- 

ary condition (Al ) as: 

Dimensionless strains may be deduced from Eqs. 17, 
18 and 31 as: 

(~29) 

Dimensionless stresses are deduced from Eqs. 19 and 
20; i.e.: 

(A31 > 

+ a1 ( WD, + hPD2) 

where: 

(Yi =p*p-’ 

Or written in an explicit form: 

(A32 > 

ID 

= ~(h-P-‘)[I(~,PD,+~*PDz)r,,drD 
D 

1 

(A33) 

- (hPD1 + d%pm)bdrDl I 
+ (aI -~P*)(~,pD,+~*pD,) (A34) 

It is seen from these expressions that the radial dis- 

placements, strains and stresses disappear at infinity. 

Appendix B. Constant pumping rate 

Reservoir pressure measurements are usually 
recorded in the production well while maintaining a 
constant ilow rate, which is also a normal operation 
requirement in well testing. In petroleum engineering, 
reservoirs with a finite boundary are more frequently 
encountered than those with an infinite boundary as 
discussed for the case of constant bottom hole pressure. 
For a finite reservoir, the decoupling of the volumetric 
strain from the fluid pressure is valid as long as the 
reservoir outer boundary is sufficiently large that the 
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effect of the outer boundary on the reservoir fluid pres- and can be obtained by solving the eigenvalue problem. 
sure change is negligible. Terms 5j are the roots of the following equation: 

The boundary and initial conditions for a finite res- 
ervoir with a constant outer boundary and a constant 

pumping rate (assuming average flow between frac- 

tures and matrix at the well) are: 

J,(@Y0(5,rbC) -J,(6r,JY,(&) =0 (B7) 

Applying the finite Hankel transform, governing 

equations that are identical to Eqs. A9 and A 10 can be 
obtained except that now 6 replaces 5. Following the 

procedure described previously, yields: r UP,,’ apI, -=- 
dr 

r,)=I = - I 
II ijr,, 

p,,, = p,,, I I,)= ,l)c = 0 
(Bl) 

Similar to Eq. A2, the solution of the equations gov- 

erning flow may be expressed as: 

P,,j=V,,,+ln(r,,,) -ln(r,)) (i=1,2) (B2) 

The governing equations for V,,; possess an identical 

form to Eqs. A3 and A4. The boundary and initial 

conditions are: 

(B3) 

I V,,, =V,321,,,=0= - [ln(r,d -ln(~Il)l 

The boundary value problems can be solved using a 
general finite Hankel transform defined as: 

-1 (B4) 

(i=1,2) 

where: 

,‘I 

and G, is a coefficient to be determined from the initial 

conditions. QJ( r,,), which satisfies the boundary con- 

ditions in Eq. B3, may be expressed as: 

(B9) 

where D, and F, are related to Gj; all other coefficients 

have been previously defined where 6 replaces ,$. Using 

orthogonal properties, Dj and Fj are obtained to satisfy 

the initial condition in Eq. B3. Hence: 

D,= -(c,, +c,*) 
(B10) 

[]n(r,,,) --In(r~~)l~(~*)~’ 

F,= - (~2, +.c,,) (B11) 

[]n(r,,,>-ln(r,))l7T(d*)~’ 

The governing equations for fluid pressure may 

finally be written as: 

P,,,= C~,(r,,)(c,,D,e~“““-c,,F,e~“““) 

,= I 

+ln(r,d -ln(rd 
m 

(B12) 

P,,2= C$,(r,,)( -cZ,D,e~C”‘D+c,,F,e~r’22”)) 

j=t 

+ln(r,,,) -In(r,) 

(J313) 

After obtaining P,,, and P,,* from Eqs. B 12 and B 13, 
the dimensionless displacement V,, is determined from 

Eq. A27, which satisfies the boundary conditions given 

by Eq. B 1: 

+&ln(r,,) -In(rdl - I 
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+ ln(h> - ln(rd I> (B14) 

where: 

(B15) 
+ (czI + 4 ( dvII - 41cde-(‘2*‘“l 

The derivative of the displacement may be derived 

from Eq. 31 as an alternative to direct differentiation 

from Eq. B15. 

Strains and stresses can be readily obtained follow- 

ing a procedure similar to that used for Eqs. A29, A30, 

A31 and A34. 
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