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Abstract.  An analytical model of miscible flow in multi-component porous media is presented to 
demonstrate the influence of pore capacitance in extending diffusive tailing. Solute attenuation is 
represented naturally by accommodating diffusive and convective flux components in macropores 
amd micropores as elicited by the local solute concentration and velocity fields. A set of twin, 
coupled differential equations result from the Laplace transform and are solved simultaneously using 
a differential operator for one-dimensional flow geometry. The solutions in real space are achieved 
using numeric inversion. In addition, to represent more faithfully the dominant physical processes, this 
approach enables efficient and stable semi-analytical solution procedure of the coupled system that is 
significantly more complex than current capacitance type models. Parametric studies are completed 
to illustrate the ability of the model to represent sharp breakthrough and lengthy tailing, as well as 
investigating the form of the nested heterogeneity as a result of solute exchange between macropores 
and micropores. Data from a laboratory column experiment is examined using the present model and 
satisfactory agreement results. 

Key words: Miscible flow, micropore convection, micropore diffusion, heterogeneity, breakthrough 
curve. 

O. Nomenclature 

Roman Letters 

a rate coefficient of internal flow 
b velocity ratio (vl/v2) 
h dispersion ratio (D2/DO 
ca macropore concentration 
c2 micropore concentration 
Cl macropore concentration in Laplace space 
~2 micropore concentration in Laplace space 
c o macropore concentration at source location 
c o micropore concentration at source location 
D1 macropore dispersion coefficient 
D2 micropore dispersion coefficient 
f fraction of pore space occupied by fluid in primary channel 
L length of laboratory sample column 
K mass exchange rate 
t time from initial stage 
vl primary flow channel velocity 
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V2 
X 

Y 

micropore interstitial velocity 
distance from source 
dimensionless distance 
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Greek Letters 

7 equivalent P6clet number  
r dimensionless time, or injected pore volume 

1. Introduction 

For a homogeneous porous medium, miscible flow is usually defined in terms of 
a single fluid with the independent variable taken as the concentration. For multi- 
component media, where characteristic lengths are distinctly different between the 
flow-interacting units, two fluids remain separate and occupy their own volume, but 
fluids are interchangeable during the transport process due to their miscibility. It is 
generally recognized that heterogeneous porous media present capacitance effects 
during miscible displacement due to noninstantaneous equilibrium of concentration 
between mobile fluid in macropores and immobile fluid in micropores. The latter 
results from the stagnant fluid frequently isolated in dead-end pores. The geometric 
relationship between micropores and macropores is illustrated in Figure 1. Large 
open channels present in macropores comprise the primary flow pathways, with 
interstitial micropores acting as capacitors in storing or recharging the flow to 
the macropores, depending on the relative concentration gradient between the two 
component spaces. 

The impact of heterogeneities at various scales precludes the use of the clas- 
sical convection-dispersion approach because the transport process can not be 
represented by superposition of a simple diffusive process. Capacitance models 
have been applied to replicate the nonhomogeneous behavior observed in porous 
media exhibiting storage perturbation. Observation of abrupt solute breakthrough 
accompanied by extensive tailing is often attributed to the storage interchange 
between flowing liquid in macropores and stagnant fluid in micropores. (Deans, 
1963; Coats and Smith, 1964; Passioura, 1971; Passioura and Rose, 1971; Pique- 
mal, 1992, 1993). In addition to its utility in modeling tracer dispersion in naturally 
heterogeneous porous media, capacitance models has been used in the simulation 
of particle transport in partially clogged porous media where the heterogeneity 
may evolve with the progress of clogging. Consequently, local rectification of flow 
pathways corresponds to morphological and structural changes occurring in the 
clogged porous media (Bouhroum, 1993). Dual-porosity models provide a natural 
analog to capacitance models where fractures and matrix blocks are considered 
as interacting porous components. The rate of mass transfer depends on either the 
relative magnitude of concentration gradient, or the degree of permeability contrast 
between the two interacting media (Tang et al., 1981; Bibby, 1981; Huyakorn et al., 
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macropores micropores 

Fig. 1. Micropore-macropore media in capacitance model. 

1983; Nilson and Lie, 1990; Rowe and Booker, 1990; Sudicky and McLaren, 1992; 
Harrison et al., 1992; Leo and Booker, 1993). 

Despite the wide utilization of the capacitance concept, these models provide 
poor representation of the extended tailing phenomenon observed in moderately and 
highly heterogeneous porous media (Joy and Kouwen, 1991; Imdakm and Sahimi, 
1991; Koenders and Williams, 1992; Joy et al., 1993). The lack of a physical basis 
in supporting the capacitance model was noted by Bouhroum (1993) in reference 
to experimental results. Bouhroum (1993) showed that the early solute penetration 
and long tailing of breakthrough curves were the result of velocity fluctuations 
induced by layers of different permeability and particle clogging, respectively. 
The existence of low permeability zones delays the rate of solute transport while 
simultaneously increasing the skewness of the breakthrough curves. Although these 
experimental results were adequately approximated by capacitance models through 
manipulation of input parameters, the fidelity of the match was more a result of 
the curve-fitting procedure rather than an adequate physical replication of actual 
transport processes. One undesirable feature of capacitance approaches rests on its 
physically spurious assumption that there is no flow within the micropore space. In 
reality, flow in the micropores should be either diffusive at low flow velocities or 
convective at high local velocities. Under more significant concentration gradients 
and at higher local flow velocities, both diffusion and convection need be included 
in representing transport in micropores. As pointed out by Udey and Spanos (1993) 
in the construction of a mathematical model for miscible flow in nonhomogeneous 
media, the two sets of equations (one representing macropores and another rep- 
resenting micropores) should be identical. In other words, the effects of diffusion 
(dispersion) and convection should be maintained for both macropore and micro- 
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pore spaces. The incorporation of micro-convection and micro-diffusion in the 
formulation of an alternative capacitance model constitutes the primary objective 
of the following work. 

2. Analytical Formulation and Solutions 

The capacitance model developed by Coats and Smith (1964) can be equivalently 
expressed as 

D 02Cl Ocl = l o c i  
1-~x2 - V l ~ x  ~ Ot + K ( c l  - c2), (1) 

0 = (1 - -  f ~  0c2 -- IC(Cl -- C2) , (2 )  
" Ot 

where cl and c2 are the solute concentrations for macropores and micropores, 
respectively; D1 is the macropore dispersion coefficient, vl is the average velocity 
in primary flow channel, f is the fraction of pore space occupied by mobile fluid, K 
is the rate of mass exchange between macropores and micropores, x is the distance 
from source, and t is the time. The zero on the left hand side of Equation (2) implies 
that liquid in the micropores is stagnant. 

Considering the dispersive as well as convective flow processes within the 
micropores, two terms should be used to substitute the zero on the left-hand side 
of Equation (2). Therefore 

D 2c2 = (1 - f )Oc2  K(Cl - c2), (3) 0c2 
2-G-J2 - v2- 7 " Ot  - 

where D 2 is the micropore dispersion coefficient, and v2 is the micropore interstitial 
velocity. 

Equations (1) and (3) represent the governing equations of solute transport 
in porous media incorporating micropore dispersion and convection. It is more 
convenient to utilize dimensionless variables in the formulation by replacing the 
dimensional variables: 

D2 Vl b = - - ,  h -  
v2 D1 ' 

x v l t  
Y = L '  r = L ' '  

v l L  K L  
a = , (4) 

"7 - D2 ' vl 

where b is the coefficient representing the proportionality between flow velocities in 
macropores and micropores, h is the ratio of dispersion coefficients between micro- 
pores and macropores, L is an arbitrary length representing the longest possible 
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solute travel distance, y is the dimensionless distance, 7- is the dimensionless time 
or injected pore volume, 7 is the equivalent Peclet number considering the ratio 
between macropore velocity and micropore dispersion, and a is the rate coefficient 
of internal flow. 

In dimensionless form, Equation (1) and (3) may be written as 

1 02Cl OCl __ fOCl 
h 7 0 y  2 Oy 07- + a(cl - c2), (5) 

1 02C2 1 0C2 - (1 - f)Oc2 a(cl - c2). (6) 
0v2 ~ -b-V- 

For application of a step change in solute concentration at one end and no variation 
in solute flux at the other end, the boundary and initial conditions may be defined 
as 

Cl = c ~ c2 = c o ( y  = o ) ,  

0c~ 0c2 
- - o  ( y = l ) ,  

Oy Oy 

Cl = c 2 = O  ( t = o ) ,  (7) 

where c o and c o are the macropore and micropore concentration at source location, 
respectively. 

Using the Laplace transform, Equations (5) and (6) can be modified into ordinary 
differential equations and the time dependence removed as 

1 d2~l d~l 
- -  f S C l  q- a(~l - c-2), ( 8 )  

h7 dy z dy 

1 d2~2 I dc2 
- -  = (1 - f ) ~ 2  - a ( e l  - e2).  (9)  

7 dY 2 b dy 

The boundary conditions in the Laplace domain are given as 

~ 1 = - 1 ,  ~ 2 = -  ( y = O ) ,  
8 8 

d~l d~2 (10) 
- - - o  (y = 1). 

dy dy 

The method of differential operators (Mathematical Handbook, 1979) is applied 
in this work to accommodate the coupled behavior of Equations (8) and (9). The 
differential operators, D ~, is applied as 

D n f ( x i ) -  dnf(xi) 
dx~ ' (11) 
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where i indexes an arbitrary variable, and n is the order of the differential equa- 
tions. 

Applying the differential operators to Equations (8) and (9), gives 

where 

- D - f l 2  Cl + ae2 = 0, 

b "~ fll c.2 -[- a~l = 0, 

fll = - [ a  + (1 - f )s] ,  f12 = a + f s .  

Solving Equations (12) and (13) simultaneously, yields 

(12) 

(13) 

(14) 

Cl = a b + fll C2. (15) 

Substituting Equation (15) into (12) results in 

(D 4 + B1 D3 + B2 D2 + B3D + B4)c-2 = 0, 

where 

B1 Bz = h7 + -~-  f12 , 

(16) 

B3 =- h72 ( ~ - f l l ) ,  B4=-hT2(fllf12+a2). (17) 

Equation (16) has four roots from the following equations (Mathematical Hand- 
book, 1979): 

D 2 + ~ID + (~1 = 0, (18) 

D 2 + ~2D + ffz = 0, (19) 

where 

Al = 8 z + B 1 2 - 4 B 2 ,  

= O.5(B  + ,/S71), 

BIZ -- B 3 
(ill = Zq- ~ , 

qC 2 = 0.5(B1 - k,'/-~l), 

BlZ -- B3 
4 2  = z ' ( 2 0 )  
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where z is any real root of the following equation: 

87, 3 -Jr- 4 E l z  z + E2z  + F-,3 = O, 

and where 

E1 = -B2~ 

E2 = 2 B 1 B 3 -  8B4, 

E3 = B 4 ( 4 B z - B  2 ) - B  2. 

Further, assume 

E1 Z - - - ~ U - -  - -  
6 '  

where the parameter u can be determined from the third-order equation 

u 3 + pu  + q = O, 

and where 

q = 0.125 \ ~-~ T + E3 �9 

The three roots of u may be described as 

Ul = v l  + F 2 ,  

U 2 ~--- ( . .olF 1 -~- r 

u 3 = co2t21 --~ W l ~ 2 ,  

where 

25 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

A * =  + , 

1 

COl = - 0 . 5  + --~-, ,  

1 

V•. 
o-'2 = - 0 . 5 -  --5-~. (27) 
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Three possible solutions of the real root, z, exist depending upon the signs of A* 
in Equation (27), as indicated in the following: 

When A* > 0, the real root is 

E1 
z~ = F~ + F2 - - - .  (28)  

6 

If A ~ = 0, then the real root becomes 

2:1 = _ ~ _  E__.J_I (29) 
6 

However, if A* < 0, the real root is recovered in trigonometric form as 

(3) Z 1 = 2 ~  cos 6 

where 

o~ = arccos ( - ~ ) .  (31) 

Once the real root, z, is determined for Equation (21), the four roots of Equations 
(18) and (19) can then be expressed as 

z x 2 -  ~ ,h A3 ~ ~ 4 ' ~- - ~b2, 

~31 ~Cl ~ 2 ,  ~32__ E1 V ~ 2 ,  
= - - 2 - +  2 

~33 ~2 ~2 V~3 .  (32) = - 7  + ,/zx3, ~4 - 2 

The solutions are further complicated as a result of uncertainty in the signs of 
A1, A2, and A 3. For a choice of representative physical parameters, A1 is predom- 
inantly positive. The solutions due merely to the changing signs of A2 and A 3 are 
reported in the following. For completeness, the solution for the negative A1 is 
described in the Appendix. 

2.1. SoLtrr~oNs WHEy A~ >/0, A 2 ) 0 AND A 3 ) 0 

Concentration in the micropores may be determined from Equation (16) as 

~2 ~- gl e ~lv + g2 e ~av + 93 e~3u + 94 e~b4v, (33) 
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where constants gl,  g2, g3 and g4 are determined by satisfying the boundary con- 
ditions. The concentration in the macropores can be derived from Equation (15) 
a s  

1 
Cl = --(11191 e 4~v + 112ff2 e ~zu + 113!73 e f3y + 114!74 e~4U), 

a7 
(34) 

where 

/]1 = , ~ 2  _{._ ~/~/3..__~l _ ")'/~1, /]2 = _ ~ 2  ..~ _ _  _ 
b 

~ 2  7~b3 
113 = - -  3 q- T - -  " ) ' i l l ,  /]4 -~" _ ~ 2  + _ _  _ 

7 ~ 2  
7ill, 

~ 4  
7/~1. (35 )  

A system of equations can be constructed through satisfying the boundary condi- 
tions given in Equation (10). After solving the system of equations through the 
method of elimination, the constants gl, g2, 93 and g4 are expressed as 

H1 H2 It3 1t4 
gl -- ~-- ,  g2 = -~- ,  93 = M '  if4 = M '  (36) 

and assume: 

/]5 = ~bl e ~ , /]6 = ~2 e r /]7 = ,/~3 e~'3,  118 = ~ 4  e ~ 4 ,  

/]9 

where 

---- 111115, 1110 = /]2/]6,  

N 8 

7111 ~--- /]3117, 7712 = 114118 

(37) 

M = (/]2 - /]1)(117/]12 - 1181111) -~- (771 - /]3)(/]61112 - /]81110) 

+ ( / ]4 - -  711)(/]6/']11 - -  117/]10) + (113 - -  /]2)(/]51112 - -  / ]8/]9)  

"~- ( / ]2  - -  114)(/]51111 - -  /]71]']9) -~- (Z]4 - -  /]3)(1151110 - -  /]6119). (38)  

H I  = (~2/]2  - ~'1)(117/]12 - /]81111) + (~1 - ff2/]3)(/]61112 - /]8/']10) 

"]- (~2/ ]4  - -  ~1) ( / ]6 / ]11  - -  117/]10) (39) 

/ / 2  = (ffl - ff2/]1)(/]71112 - 1181]11) + (C2113 - f i )( / ]5/]12 - / ] 8 / ] 9 )  

-~- ( ( I  - -  (2/ ]4)( / ]51111 - -  / ]7/]9)" (40)  

t]-3 ~-" (ff21]1 - -  ~1)(116/]12 - -  /]81110) ~- (ff l  - -  ~2 / ]3 ) ( / ]5 / ]12  - -  / ]8/]9)  
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+ (~2774 -- ~1)(?]5~110 -- ?]6?]9) (41)  

/ / 4  -= (~1 --  ~2?]1)(?]6?]11 -- ?]77"]10) ~- (ff2~2 -- ~1)(?]5?]11 -- ?'/7?]9) 

q- (ffl --  ~2/']3)(?]57]10 -- /]6?']9) �9 (42)  

2.2.  SOLUTIONS WHEN /k 1 >/ 0~ A 2 < 0 AND /k 3 >t 0 

For this condition, two of the four roots from Equations (18) and (19) become 
complex variables, and may be rewritten as 

r = - ~  + i -x/-L-~2, ~z - ~1 i _x/L-~z" (43) 
2 2 

~b3 and ~b4 are unchanged from Equation (32). The concentration in micropores can 
be alternatively expressed as 

e2 ~- gl  eWly c o s  ( w 2 y )  q- g2 eWly s in  ( w z y )  -Jr g3 e•3Y -~ 94 e~b4Y, (44)  
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0 .8  

where 

Wl --  2 '  W 2 =  --k//-~-22" 

Similarly, the concentration within the macropores is described as 

1 
Cl = - - { g l  e~'Y[A1 cos (w2y) - A2 sin (w2y)] 

a7 

+ if2 eWly[/~l sin (way) + A2 cos (w2y)] 

q- A393 e "~b3y q- A494 er 

where 

A1 = -w,  ~ + w~ + W l ~ -  7;~1, 

T -- 7/31, "~4 = --'~342 -'F "Y~4 b 7/31" 

(45) 

(46) 

(47) 
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For convenience, assume 
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txl = eW'[Wl c o s ( w 2 ) -  wz sin(w2)], 

a2 = e~'[Wl sin(w2) + w2 cos(w2)], 

OZ3 : ~33 e~b3, oz4 : ~34 e ca, 

c~5 = e ~l[(Alwl - A2w2) cos (w2) -  (A2Wl + AlW2) sin(w2)], 

a6 = eWl[(AlW2 + Azwl) cos(w2) + (Azwl - Azw2) sin(w2)], 

OZ 7 ---- /~30~3, a 8 -= ,,~4OZ4 . ( 4 8 )  

Following a similar procedure as previously, the constants 91, g2,g3 and 94 in 
Equations (44) and (46) are derived as in Equation (36) but with the substitution 
o f M  andHi(i = 1 , 2 , 3 , 4 ) a s  

m = ( ~ 2 ~ 7  - c~3016)()~ 1 q- ,~4) q- ( ( ~ 2 ~ 8  - 0~4(~6) 

( a l  - -  ~ 3 )  -1- (OZlOZ6 - -  Ol20~5)(~4  - -  /~3) 

q-  A2[O~8(O~3 - -  O~1) --}- OZ4(O~ 5 - -  O!7) + O~10~ 7 - -  OZ30~5]. ( 4 9 )  

/-]'1 ---- ~2[/~2(O~30~8 - -  OZ4OZ7) - -  '~3(O~20~8 - -  O~40~6) q- /~4(O~2Oz7 - -  tX3OZ6)] 

- -  ~1(OZ40~6 - -  O~20~8 -t- O~2OZ7 - -  O~30~6). ( 5 0 )  

/ / 2  = --~2[/~1(OZ30~8 - -  O~40~7) - -  )~3(O~1Ol8 - -  O~40~5) q- '~4(O~10~7 - -  O~3Oz5)] 

+ f f 1 ( ~ 3 ~ 8  - -  ~Y4(X7 - -  (~1~8  q- ~4(~5  + ~ 1 ~  7 - -  ~ 3 ~ 5 ) .  (51) 

/ / 3  ---- f f2[ )~1(~2(~8 - -  ~ 4 ~ 6 )  - -  )~2(~10~8 - -  0~4~5)  q- ) ~ 4 ( ~ 1 ~ 6  - -  ~2C~5)]  

- -  ~1(0~20~8 - -  OZ40Z6 "l- O~lOZ6 - -  OZ20Z5). ( 5 2 )  

/ t 4  = - , 3c,6) - - + - 

-t- ~1(O~20~7 - -  OZ3OZ6 q- OqOz6 - -  OZ2OZ5). ( 5 3 )  

2.3.  SOLUTIONS WHEN A 1 ~> 0,  A 2 < 0 AND A 3 < 0 

Under this condition, all four roots from Equations (18) and (19) become complex 
variables. ~bl and ~b2 have identical forms to equation (43). ~b3 and 44 are 

~b3 ~2 ~2 i _x/c2~3. (54) 
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The concentration in micropores can be written as 

62 = gl e ~ y  cos(w~y) + g2 e ~~ sin(w~y) 

+ g3 eWJV cos(w~y) + g4 e ~Jy sin(w~y), (55) 

where w~" and w~ are identical to wl and w2 given in Equation (45), with w~ and 
w~ defined as 

w 3 = - ~-, w~ = v / - A 3 .  (56) 

The concentration in macropores can be derived as 

61 = ~ l { g l  e~V[A1 c o s ( w ~ y ) -  ,~3 sin(w~y)] 
a7 

+ g2 e~O;v[,~l sin(w~y) + ,~3 cos(w~y)] 
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+ g3 e~~ cos(w~y) - ~ 4  sin(w~y)] 

+ y4eW~Y[~2 sin(w~y) +/~4 COS(Wz~ff)]}, (57) 

where 

/~I = --(%0~) 2 -{-(/0~) 2 + Z O ~ -  "{ill, 

'~2 = --(//3;) 2 -]- (2/3~) 2 "~ ZO;~ -- "Yfll, 

)~3 = --%0~ (2//)T-- ~ ) ,  ,'~4----- --//~ (2zt3;-- ~ )  �9 (58) 
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After satisfying the boundary conditions, the system of equations for obtaining the 
constants gl, g2, g3, and g4 can be constructed as follows: 

1 0 1 0 ] gl  ~i 
A1 A3 A2 A4 92 = (59) 
Cq ~ 2 0 ~ 3  C~4 g3 

~  Ce8 g4 0 

where 

O~ 1 : eW~ 

O~ 2 : eW~ " 

Ct 3 ~--- eW~ 

o~ 4 -~- eW~ 

a5 = e w[ 

OZ 6 -~- eW~ 

oz 7 = eW~ 

a8 = e w~ 

[w~ cos(w~)- w~ sin(w~)], 

[ ~  s in(~)  + ~ cos(~)], 

[w~ cos(w~)-w~ sin(w])], 

[w~ sin(w~) + w,] cos(w~)], 

[(AlW~ - A3w~) cos(w~) - (A3w~ + Alw~) sin(w~)], 

[(A~w~ + A3w~) cos(w~) + (A~w~ - A3w~) sin(w~)], 

[(/~2W~ -- /~4W~) COS(W~) -- (~4W~ --}- -~2W~) Sin(W~)], 

[(A4W~ + A2W~) COS(W~) + (A2W~ + A4W~) sin(w~)]. (60) 

Because the condition of A3 < 0 is unlikely encountered for parameters selected in 
the present study, detailed discussion of the solution of Equation (59) is omitted. 

Solute concentrations cl and e2 may be recovered in time by invoking a numer- 
ical inversion technique. In this work the Stehfest algorithm (Stehfest, 1970) is 
utilized. 

3. Modeling of Miscible Flow 

The model incorporating micropore diffusion and convection developed in this 
paper is compared to the analytical results obtained from a conventional dispersion- 
convection model (Bear, 1972), and to the model developed by Coats and Smith 
(1964). The sensitivity of the model is tested through parametric investigation. 
The model is also verified against experimental data. The relative concentration is 
represented for the macropore space only. Table I summarizes the selected modeling 
parameters for the designated figures. 

The comparison of spatial concentration between the conventional single- 
porosity model (SP), the Coats and Smith's model (CS) and the present model 
(DP) for various equivalent P6clet numbers, 7, is shown in Figures 2-4. For the 
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TABLE I. Parameters for analytical modeling 
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Fig. 3' f a h b c o c o r y 

2 10 0.95 0.1 0.4 

3 20 0.95 0.1 0.4 

4 50 0.95 0.1 0.4 

5 50 0.9 0.1 0.1-1 

6 50 0.5-0.9 0.1 0.5 

7 50 0.9 0.1-10 0.5 

8 50 0.9 0.1 0.5 

9 50 0.9 0.1 0.5 

10 50 0.9 0.1 0.5 

11 50 0.9 0.1 0.01-0.5 2 1 0.5 

12 1-100 0.9 0.1 0.5 2 1 0.5 

13 50 0.9 0.1 0.5 2-50 1 0.5 

14 80 0.9 0.1 0.4 1.25 1 0.9 

1.25 1 0.8 0.2 0-1 
1.25 1 0.8 0 . 2  0-1 

1.25 1 0.8 0.2 0-1 

2 1 0.5 0.2 0-1 

2 1 0.5 0.2 0-1 

2 1 0.5 0.2 0-1 

1-10 1 0.2 0.2 0-1 

2 1 0.1-0.9 0.2 0-1 

2 1 0.5 0-2 0.1-0.9 

0-2 0.5 

0-1 0.5 

0-1 0.5 

0.4-1,2 0.9 

1.0 

~ ' 0 . 8  

~ 0 . 6  
0 

.p..~ 

0.4 

0 

0 
CD 

0:2 

0.0 
0.0 0.2 

f = 0 . 5  
' - -  f = 0 . 7  

f = 0 . 9  

%% 

\ %%% 

\ x x 

\ x x 

\ \ x  

\ x 
\ 

\ x 
\ x 

0.4 0.6 
DisLance (x/L) 

0.8 

Fig. 6. Spatial concentration for various ' f ' .  

1.0 



MISCIBLE FLOW IN MULTI-COMPONENT POROUS MEDIA 35 

1.0  -- 

"~'0.8 
rD 

L.) 

0.6 
0 

.p , i  

c~ 

0.4 
r 
CJ 

O 
T_) 

0.2 

0.0 

" \ ' \ 'x  

a = 0 . 1  
"X~,x . . . . . . .  a = l . 0  

,~,,, . . . .  a = 2 . 0  
~,~ - - -  a = 1 0 . 0  

\,,~ 

'C,,\ 
';'3 \ 

\,\ \ 
- , x  \ 

�9 \ \ 

I I I I I l l l l l l l l  I I I l l l l l l l  - - - ~ ' ~ - I -  ~' j 
1.0 0 .2  0 .4  0 .6  0 .8  

Distance (x/L) 
Fig. 7. Spatial  concent ra t ion  for  various ' a ' .  

dispersion dominated case, Figure 2 indicates a good match between the SP and CS 
models, whereas the result from the DP model appears to be comparatively more 
diffusive at both upstream and downstream locations. The flow in micropores con- 
tributes very little to the concentration change in the central portion of the solute 
transport front with insignificant local flow velocity. The disparity between the 
present model and the other two models becomes more apparent as -7 increases 
(Figure 3), due to the dominance of the flow in macropores. The most significant 
difference occurs in locations remote from the source. In view of the difference 
between the CS and DP models, the apparent time lag is attributed to the dom- 
inant diffusion and less dominant convection within the micropores. The spatial 
concentration profile can be dramatically modified as 7 increases further (Figure 
4). In comparison, convection becomes more pervasive than diffusion within the 
micropores, resulting in a sharper moving front for the DP model. It is of interest 
to note that, although the CS model is also based on a multi-component mecha- 
nism, no significant difference can be readily identified between the CS model and 
traditional SP model for the present analysis. Therefore, modeling the mechanism 



36 M. BAI  A N D  D. E L S W O R T H  

1.0 

~ ' 0 . 8  
r.) 

~0.6 
o 

- F...,I 

0.4 
r 
o 

o 

0.2 

0.0 

Fig. 8. 

m 

I I I ! t I I I I I I I I I I 1 I I ' I * ' ~ 1 " ~  " 1  I [ I I I I I I I I ] 

0 .0  0 .2  0 .4  0 .6  0 .8  
D i s t a n c e  (x/L) 

Spatial concentration for various 'b'. 

of transport within micropores indeed provides additional fiexibilities to matching 
the experimental data. 

The equivalent Peclet number 7 indexes the ratio between macrolJore con- 
vection and micropore dispersion. As shown in Figure 2-4, the values of 7 con- 
trol the profiles of solute concentration, with larger 3' representing sharper front. 
The solute concentration profiles are also regulated by the ratio of dispersion (h) 
between micropores and macropores. Accurate definition of hydrodynamic dis- 
persion should include both molecular diffusion due to concentration gradient and 
mechanical dispersion as a result of velocity variations. In multi-component media, 
diffusion is likely to dominate behavior in micropores of low velocity regions, in 
contrast to the dispersion dominated macropore areas where flow rate is relatively 
more substantial. For completeness, however, this difference is not emphasized in 
this study. In general, h is less than unity (Sardin and Schweich, 1991). As depicted 
by Figure 5, smaller h, reflecting more significant dispersion in macropores, results 
in the dominant diffusive type of transport. As h increases, the macro dispersion 
is progressively overshadowed by the dispersive flow within micropores; conse- 
quently, convective flow becomes more influential in the transport process. On the 
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other hand, larger h represents more prominent macropore-micropore interaction, 
which leads to more localized concentration changes. 

The factor f represents the percentage of pore space taken by the fluid traveling 
through macropores. For transport under the condition that f --+ 1, the response 
resembles the normal dispersion-convection process. Reduced f reflects the more 
obvious effect of the transport in micropores, which leads to the activities of more 
localized solute attenuation. This effect appears to be significant and is depicted in 
Figure 6. 

The magnitude of the coefficient a describes the intensity of the interporosity 
flow between macropores and micropores. As depicted in Figure 7, larger a corre- 
sponds to a greater exchange rate, and results in more linear and extensive solute 
spreading away from the source area. For smaller a, the effect of variation in the 
interporosity rate appears to be less significant. 

The coefficient b defines the proportionality of flow velocity between macrop- 
ores and micropores and is typically greater than unity (Gerke and Van Genuchten, 
1993). For comparison purpose, Figures 8 illustrates the spatial concentration 
changes for various magnitudes of the coefficient b. The smoothed, typically dif- 
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fusive concentration curve is generated for the case with larger b, which reflects 
the reduced interactive flow between macropores and micropores, or dominant 
flow within macropores. In contrast, the sharper solute front appears to be asso- 
ciated with the case using smaller b, which is likely attributed to the increasing 
modification on solute concentration due to prominent flow within micropores. 

The concentration gradient between macropores and micropores at the source 
location may provide a noticeable effect on the degree of mass interaction between 
the two media. As shown in Figure 9, smaller c o represents larger concentration 
difference, consequently results in the more dramatic interporosity transport, and 
thus more localized change of concentration. Conversely, larger c o corresponds to 
reduced constraint to the flow in macropores due to micropore flow, and therefore 
promotes more extensive solute migration. However, the effect of change in c o 
appears to be less significant. 

The temporal variation of concentration at various positions relative to the 
source location is illustrated in Figure 10. Solute breakthrough is more abrupt at the 
locations near the source since the dispersive behavior is less fully developed. The 
tailing of the response is more apparent at the places remote from the source. Since 
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the tailing is usually considered to be the result of capacitance effects, the impact 
of micropore flow becomes more significant at lower local flow velocities. 

For various values of h, different breakthrough curves are described in Figure 
11. It is particularly interesting to note that the slope changes of the relative concen- 
tration occur for smaller h. This phenomenon, indicating the interporosity solute 
exchange between macropores and micropores, cannot be revealed by a conven- 
tional dispersion-convection model. This variable change of solute concentration 
in breakthrough profiles has been reported in the laboratory for single fracture col- 
umn tests (Neretnieks, 1993). As mentioned previously, smaller h represents the 
dominant dispersion in macropores. Under this scenario, the solute breakthrough 
at the examined point can be so rapid and abrupt that the miscible displacement 
may be temporarily slowed down due to the decrease of mass in macropores until 
receiving sufficient mass replenishment from micropores. For larger h, the devel- 
opment of dispersion in macropores and micropores is harmonic. As a result, the 
breakthrough curve follows a similar trend as in a homogeneous medium, except 
that the extended tailing in the curve may appear due to the influence of micropore 
transport. 
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The equivalent Peclet number 3' exerts significant influence on the temporal 
change of solute, as shown in Figure 12. For the cases with smaller 7, breakthrough 
profiles appear to possess the patterns of sudden occurrence accompanied by the 
extensive tailing. For the significantly larger 7, the breakthrough curve appears to 
follow a regular style, depicting a pronounced mechanical dispersion process in 
macropores. 

The influence of velocity ratio b on the breakthrough curves is illustrated in 
Figure 13. It is seen that the excessive tailing may be attributed to the increase 
of the velocity contrast between macropores and micropores. The variation of b, 
however, appears to have little impact on the initial occurrence of solute. 

Bouhroum (1993) presented the results from miscible displacement experiments 
which were performed on two parallelepipedal prototypes with NaCl-water solu- 
tion (0.25 g/l). The prototypes were made of plexiglas to observe the migration of 
dye tracer injected simultaneously with NaC1. The in situ conductivity measure- 
ment techniques equipped with conductivity detectors were utilized to provide time 
variation of concentration at different distance from the inlet. Selecting identical 
dimensionless time and location and adjusting other parameters shown in Table I, 
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the result of using the present model has been compared with the experimental data 
reported by Bouhroum (1993), as depicted in Figure 14. A match with good accu- 
racy between the modeling result and the test data is readily recognized. Although 
it may not reflect the true physical mechanism of solute transport through het- 
erogeneous porous media, the excellent agreement indeed demonstrates the added 
flexibilities of using the proposed model. 

4. Conclusions 

A model is presented to represent miscible flow in strongly heterogeneous media. 
This model utilizes the concept of micropore convection and diffusion as an alter- 
native to the assumption of stagnant liquid in micropores, as postulated in current 
capacitance models. This alternative conceptualization is shown to represent the 
heterogeneity of porous media on a more realistic and complete physical basis. 
Unusual transport behavior, including abrupt early solute breakthrough and length- 
ly tailing that are frequently observed is readily accommodated by allowing the 
local diffusive and convective flow to develop, and proceed, within micropore 
space. This local effect is also shown to result in a rapidly moving, but more dif- 
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fusive, migration front. Comparative study reveals apparent flexibilities added to 
the present model, beneficial to matching with laboratory and field measurements. 
Variable concentration changes are identified in the analysis of solute breakthrough, 
analogous to the dual-porosity behavior of fractured porous media. The mathemat- 
ical formulation of this new conceptualization leads to a coupled partial differential 
equation. Analytical solutions have been obtained by invoking the method of dif- 
ferential operators in Laplace domain. From a practical stand point, the additional 
attenuation mechanism present in representing the micropore diffusion and con- 
vection effects give added flexibility in replicating observed response in strongly 
heterogeneous media. The analytical solutions provide utilities in approximating 
the 'real' physical processes present in the system, depicted as solute attenuation 
as a result of diffusive and convective flow into and out of low-velocity pore 
spaces. 
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Appendix: Solutions when Am < 0 

If A1 < 0, then ~m, ~2, ffm and ~b2 in Equation (20) all become complex variables 
such as: 

~1 = 0.5(Bl  + i -k/-~-7), ~2 = 0.5(Bm - i ~ ) ,  

.Bmz -- B3 .Bmz - B3 

~m = ~ - ~  vC-k-  7 , ~ e = ~ + *  
(61) 

and 

~34 = W3 + iW4. (67) 

The form of the solution depends on the signs of We and W4. If W2 /> 0 and 
W4/> 0, then one has 

ce =gm e w~u cos(Wey) + g2 e w3y sin(W4y) 

+ g3 e W~ sin(Wey) + g4 eW3y cos(W4y)~ (68) 

The respective four roots of Equations (18) and (19) can be determined as 

~)1 = W1 + iW2, (62) 

where 

R, = -16(B12 + A 1 ) -  z,  

Bl-v/-S~l B l z -  B3 
R 2 - -  + 8 4 - 2 - ~ '  

a* = 0.5 arctan 

W1 = -0.25B1 + (R 2 + R22) ~ cos(a*), 

Wz = (R 2 + R2) ~ s i n ( a * ) -  0.25 -x/Z-~I. (63) 

42 = W3 - iW4,  (64) 

where 

w3 = -0 .25Bm-  (R~ + R~) ~ cos(a*), 

W4 = (R 2 + R22) ~ sin(a*) + 0.25 -x/-Z-~l. (65) 

~b3 = W m  - iWe ,  (66) 
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and 

where 
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Cl = 1 { 9 1  e Wly [)~1 cos(W2y) - )~z sin(W2y)] 
a7 

q- g2 e W3u [)~3 cos(W4y) "~ )~4 sin(W4y)] 

+ g3 e W~y [)~2 cos(W2y) + )q sin(Wzy)] 

+ g4 e W3~ [)~4 cos(W4y) - )~3 sin(W4y)]} (69) 

(70) 

Assuming 

a l  = e Wl [Wl cos(Wz) - W2 sin(W2)], 

a2 = e w3 [W3 sin(W4) + W4 cos(W4)], 

a3 = e W1 [W1 sin(W2) + W2 cos(W2)], 

OZ 4 = e W 3 [ w 3  c o s ( W 4 )  - w4 sin(W4)], 

a5 = e wl [()qW1 - )~2W2) cos (W2) -  ()~2W1 + )qW2) sin(W2)], 

a 6  --= eW3[(, '~3W3 q- )~4W4) c o s ( W 4 )  -t- ( ,~4W3 - ,~3W4) sin(W4)], 

a7 = eW~[(A2W~ + )~lW2) cos(W2) + (),1W1 - )~2W2) sin(W2)], 

a8 = eW3[()~4W3 - )~3W4) cos(W4) - ()~3W3 + ,k4W4) sin(W4)]. (71) 

After satisfying the boundary conditions, the constants gl, g2, g3 and 94 in Equations 
(68) and (69) are derived as follows: 

gl - -  M"' g 2  - -  M*' g 3  - -  M*' g 4  - -  M * '  (72) 

where 

M *  = ~2[oz3(oz8 - 0~5) + oz7(oz 1 - 0~4) ] - )~3[0~2[0z8 - oz5) qt_ oz6(oz 1 _ 0~4) ] 

-t- (A4 - A1)(0~20~7 - 0~3oz6). ( 7 3 )  

/ / ~  _- ff2[/~3(oz3oz8 - 0~40~7) - /~2(0z20~ 8 - 0~40~6) ] 
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a t- (~2/~4 -- ~1)(OL20~7 -- O~30~6). (74) 

_[/~ = --~2[)~1(OL30~8 -- O~40~7) -- )~2(OqO~8 -- 0~40~5) q- /~4(O~10~7 -- O~3Ol5) ] 

~- ~1(O~30~ 8 -- O~40~ 7 a t- O~IO~ 7 -- O@O~5). (75) 

H ~  : ~2[/~1(0~20~ 8 - 0~4016) - As(cylOl8 - Ol4Ot5) + A4(OllO~ 6 -- Ot2Ol5) ] 

-- ff1(Ol20~8 -- r 6 --[- O~10~ 6 -- Ol2r (76) 

f-f~ : --ff2[/~1(O~20~7 -- O@O~6) -- /~3(O~10~7 -- O@O~5) 

"-[- )~2(O~10~6 -- O~2OZ5) ] + ffl(Ol20~ 7 -- O@a6). (77) 

Solute  concent ra t ions  el and c2 in real t ime m a y  be obta ined by  numer ica l  inversion.  

For  brevity,  solut ions  when  W2 < 0 and/or  W4 < 0 are omitted.  
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