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Summary

Approximate relations are developed to determine the steady stresses and displacements
that may develop in unlined and lined drifts heated above ambient, as representative of
conditions in a nuclear waste repository. For a series of parallel, unlined drifts, radial con-
vergence due solely to thermal effects is everywhere null at early-times; at late times it is a
maximum inward at springline, and an equivalent maximum outward at crown and invert.
Support pressures and hoop stresses are evaluated for a flexible liner placed in intimate
contact with the drift wall, following excavation, where a full slip condition is applied at the
drift-liner interface. For rock mass moduli of similar order to, or smaller than, the liner
modulus, hoop stresses and support pressures are shown insensitive to rock mass parame-
ters. Surprisingly, liner stresses are strongly controlled by liner modulus, liner Poisson ratio,
liner thermal expansion coefficient, and instantaneous liner temperature, and only weakly
by rock mass modulus. Response is shown independent of thermal expansion coefficient of
the rock mass, and temperature distribution beyond the drift wall. The “misfit” expansion
of the liner in the drift cavity controls liner stresses that rise linearly with the temperature of
the liner, alone. Importantly, the results demonstrate the potential to control magnitudes of
thermal stresses by the incorporation of compressible elements within the liner, or within
the blocking or backfill behind the liner. Although the results are partly conditioned by the
assumptions of a fully flexible liner and full slip conditions at the drift-liner interface, they
serve to define the important parametric dependencies in the mechanical response of heated
drifts.

1. Introduction

A variety of approaches have been applied to determine the stresses that develop
in lined and unlined tunnels in response to excavation. These approaches include
the linear elastic response of deep unlined circular section tunnels subject to hy-
drostatic or biaxial stress conditions (Kirsch, 1898 in Timoshenko, 1934; Savin,
1951; Terzaghi and Richart, 1952), shallow tunnels (Mindlin, 1940), and excava-
tions of various geometries subject to plane strain conditions (e.g. Hoek and
Brown, 1980). These analyses are useful to obtain rapid estimates of drift-wall
stresses and displacements, and for the evaluation of zones of local instability that



202 D. Elsworth

may result from material failure at the drift wall, or interior, or on planes of
weakness that may release key blocks (Elsworth, 1995; Yow, 1985). Local failures
within the drift wall may change the excavation cross-section and redistribute
stresses, requiring the use of numerical methods (e.g. Crouch, 1976; Eissa, 1980) to
track stress changes until a stable excavation contour results (e.g. Ewy et al.,
1987).

The underlying assumption that the drift-wall rocks behave elastically breaks
down where stress to strength ratios are high, or where the mechanical response of
the materials is either intrinsically nonlinear (e.g. Santarelli et al., 1986) or time
dependent (Gnirk and Johnson, 1964). Where failure develops within the drift-
wall, drift-local stress magnitudes are reduced as the load is shed away from the
excavation (Ladanyi, 1974), and a stable profile may result. Where local failure
occurs, the stresses developed within the drift wall rarely reach the magnitudes
predicted by elastic theory (Burns and Richard, 1964; Hoeg, 1968; Muir Wood,
1975; Ranken et al., 1978; Einstein and Schwartz, 1979). The magnitude of
induced stress is conditioned both by the choice of failure criterion (Brown et al.,
1983) and the time of application of support (Ladanyi, 1974), and may be rea-
sonably estimated if these parameters are known. These available solutions are for
isothermal conditions, only.

Where large temperature changes are induced around tunnels and boreholes,
the resulting thermal stresses may be significant. This is of some importance in
defining breakdown pressures in hydraulic fracturing (Stevens and Voight, 1982),
in defining the stability of petroleum wells (Perkins and Gonzales, 1981), and in
the thermal fracturing of wells by the injection of quenching fluids (Murphy, 1979)
in the development of hot dry rock geothermal reservoirs. In addition, the perfor-
mance of lined and unlined drifts comprising a nuclear waste repository, such as
that proposed in unsaturated tuffs at Yucca Mountain, Nevada (Department of
Energy, 1998), is strongly linked to induced thermal stresses. One potential layout
for the proposed repository will comprise a series of lined parallel drifts (Fig. 1),
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Fig. 1. Potential arrangement of drifts within a repository, typified by Yucca Mountain. Drift diameter
is 2a
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Fig. 2. Temperature distributions around drifts within a repository at both early-time (left), following
introduction of the thermal source, and at late-time (right). The early-time temperature profile is radi-
ally symmetric before the aureoles of adjacent drifts overlap. At late time, temperatures are near con-
stant in the horizontal direction, and decay linearly from the drift in the vertical direction. Where
thermal transport is convection dominated, vertical temperature gradients close to the drift are reduced

each containing hot radioactive waste cannisters, that may result in wall temper-
atures of up to 180°C. In this arrangement, the response of the composite liner-
rock mass response is of interest, both in the short-term, and in the long-term.
Distinction is made between these two temporal states, as the liner-rock interac-
tion can be shown to change over time. Simple but robust approximations of the
response are presented in this work to separately represent the early-time and
long-term thermal behavior. In the early time, the transient thermal pulse from the
drift wall decays rapidly with radius, as illustrated in Fig. 2; the thermal response
of the drift is isolated from the other drifts, and thermal stresses and displacements
are also largely independent of the adjacent drifts. In late time, the thermal aur-
eoles of the individual drifts will have coalesced, and result in a zone of elevated
temperatures that envelop the drift horizon (Fig. 2). Where thermal conduction
dominates, temperatures will fall linearly with elevation above and below the
horizontal drift axis, as shown in Fig. 2. Where the buoyant convection of water
vapor from the drifts dominates response, the vertical thermal gradient will be
flatter, and the temperature more homogeneous in the core of the drift horizon, as
also shown in Fig. 2. For either conduction or convection dominated systems, the
horizontal temperature gradient will be near zero. For these situations, the com-
posite response of the entire drift horizon must be considered, including the pres-
ence of adjacent drifts. Approximate solutions are developed to represent these
progressive responses in the following.

2. Drift Thermal Behavior

Thermal stresses may be evaluated if the evolving thermal region is defined. For
the multiple drift geometry of Fig. 3, the simplest rigorous solution is to solve the
thermal diffusion equation V? - T = x0T /dt, where « is thermal diffusivity, 7 is
temperature, ¢ is time and V is the del operator 0° /0x? + o? /0y?, for Heaviside
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Fig. 3. Repeating geometry for multiple drifts at separation L between drift-centers. Mechanical

boundary conditions are for full lateral restaint at x = +L/2. This current solution uses drifts cut

into a thermally stressed horizontal band, constrained from lateral displacement throughout, prior to
excavation

application of constant temperature boundary conditions on the repeating drift
perimeter that returns to ambient as y — +o0. At early time, and close to the drift,
this distribution approaches that for a solitary drift (Carslaw and Jaeger, 1959;
Stevens and Voight, 1982) and is radially symmetric in the environs of each drift.
At later times, and for multiple drifts, the distribution approaches a uniformly
heated horizontal band, as represented in Fig. 3. Noted in the following is that for
these end-member behaviors, the induced thermal stresses and displacements dis-
play some important and discernable patterns. This is the focus of the following,
showing that the mechanical response is sensitive to the magnitude of induced
drift-wall temperature, but insensitive to its interior distribution.

In this treatment, drift wall and liner stresses are evaluated by considering the
behavior of a thin liner embedded within a circular-section drift. Adjacent parallel
drifts are presumed sufficiently separated that mechanical interaction is minimal;
this condition is typically met for drift separations greater than six radii (Bray,
1980; Brady and Brown, 1985). In the early-time, defined as the period before the
zones of thermal influence overlap, the thermal response of any drift is not influ-
enced by its neighbors. In this case, the thermal response is adequately represented
by the behavior of a solitary drift (Fig. 2). At later times, the mutual interference
of adjacent drifts cannot be ignored; mechanical interaction of the drifts remains
inconsequential at all times for L > 6a; however, the thermal distribution loses its
radial symmetry and develops a predominant horizontal spread. The multiple-drift
response can be simplified by noting that the coalescing thermal aureoles produce
a horizontal band of near-uniform elevated temperatures (Buschek, 1997) that in
turn produce a zone of increased horizontal stress (Mack et al., 1989), as idealized
in Fig. 3. If this unperforated horizontal band is restrained from displacing later-
ally, but unrestricted vertically, conditions of zero lateral strain will develop. If a
single drift is subsequently excavated in this initially (laterally) restrained, hori-
zontal band, the resulting thermally-induced hoop and radial stresses, and dis-
placements may be determined. These results are exact for a single drift excavated
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in a band that is initially restrained laterally, and approximate for multiple drifts
that are sufficiently separated that their mechanical influence remains minimal
(L > 6a). This arrangement enables the thermally-induced strains and displace-
ments to be straightforwardly determined for the multiple drift geometry, and
subsequently applied to determine the response of lined drifts.

2.1 Early-Time Response

The early-time response may be approximated by the behavior of a solitary drift
in an infinite elastic medium, where the drifts are sufficiently separated that no
mechanical or thermal interaction occurs. This solution is only valid until the
thermal zones of adjacent drifts overlap, and the temperature distribution is no
longer radially symmetric about each individual drift axis. The timing of this
thermal transition is controlled by drift separation, relative to drift radius, and by
thermal diffusivity of the rock mass. For any prospective repository at Yucca
Mountain, drift centers would be separated by about 10 radii, and the early-time
response would last for periods of one to a few years (Buschek, 1997; Nolting,
1997).

Consider a circular drift of radius, a, within an infinite medium represented by
material coefficients representing coefficient of free thermal expansion, oy, rock
mass modulus, Eg and rock mass Poisson ratio, vg, as illustrated in Fig. 4.

Substituting linear elastic constitutive equations into the radial equilibrium
equation, and integrating, yields (Boley and Weiner, 1960; p. 289) the relevant
displacement, u,, radial stress, g,,, and tangential stress, gy, relations with radius,
r, and time, ¢, (Fig. 4) as:

1 " C
up(r, 1) :MJ Trdr+ C1r+—2, (1)

r a r

o E (" EC E G
(1 t) = Trdr — . 2
o (1, 1) 2 L rdr TR (2)
and:
wkEr [ EiC E G

tYy=———| Trd E\T — 3
ago(r, ) ) Ja rar —+ o £ d—w) +vl)r27 ( )
where E} = Eg/(1 —v%), vi = vg/(1 —vg) and oy = ag(l +vg). Ei,vi, and o

refer throughout to equivalent rock properties, and EL, v, and oF, introduced

later, will refer exclusively to equivalent liner properties. The temperature at
any location is defined as 7, and the constants of integration, C; and C,, must be
determined from the mechanical boundary conditions. Requiring that temper-
atures return to ambient at infinity, and that displacements also vanish, by corre-
spondingly setting u,(r — 00,7) =0 in Eq. (1), defines C; = 0. Substituting
C; =0 into Eq. (2) and requiring that radial stresses vanish at the unlined drift
wall, where a,.(r = a,t) = 0 also defines C, = 0. Resubstituting the null values of
integration coefficients C; and C; into Eqgs. (1) to (3) yields, for drift wall behavior:
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1 r
u(r 1) = WJ Trdr or u.a,t)=0 (4)
a
E; ("
on(r, 1) = “;2 IJ Trdr or oy(a,t)=0 (5)
a
wkEy ("
0'(-)0(7’, l) = _TJ Trdr +o0E\T or 095((17 t) = E Ty, (6)

which for an upper integration limit of r = a, for the drift wall, and a drift wall
temperature of T'(r=a,t) = T;, above ambient, yields zero displacement as
uy|,_, =0 and a drift wall stress of ogy(r =a,t) = agErTr/(1 — vg), invariant
with time, and independent of the thermal distribution within the surrounding
rock mass, provided it is radially symmetric. Stresses and strains are positive in
compression. Surprisingly, for a single drift in an infinite medium, no convergence
of the drift wall is expected (Murphy, 1979), regardless of the thermal loading
history. If the long-term temperature distribution is uniform, as expected in the
long term for a solitary drift, the hoop stresses and displacements would be
unchanged; however, the interaction with adjacent drifts is not accommodated,
and therefore must be treated in a different manner.

2.2 Late-Time Response

The late-time response may be represented by considering a horizontal band of
near-uniform temperature above initial ambient, 7, where mean horizontal dis-
placements are restrained and vertical displacements are unconstrained. This is the
geometry described in Fig. 3. The approach is to allow horizontal thermal stresses
to build in this laterally-constrained horizontal band, as it is heated to a near-
uniform temperature, 7. Vertical thermal stresses will be null. If a single drift is
then excavated, the exact stresses can be evaluated from well-known analytical
solutions (Kirsch, 1898). This solution is exact for a solitary drift, present within
a heated horizontal band where lateral displacements are fully restrained. It is
approximate for multiple drifts, and will yield adequate results provided drift
spacing is greater than about six drift-radii. In this instance it closely approximates
the rigorous solution where lateral displacements are restrained, u, =0 at
x= +L/2, as consistent with Fig. 3. Induced thermal-stresses may be readily
evaluated for this constrained geometry, and used to directly evaluate thermal
strains and thermal displacements.

2.2.1 Stresses

For a solitary circular tunnel under plane strain conditions, the radial o,.(r) and
tangential ggy(r) stresses may be determined with radius, r, for the geometry of
Fig. 3, as (Kirsch, 1898 in Timoshenko, 1934):
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Fig. 4. Geometry of unlined drift and liner. Subscripts refer to liner (L) and rock mass (R) properties
with regard to free thermal expansion coefficient, o, deformation modulus, E, and Poisson ratio, v.
Temperatures are uniform within liner and drift wall, and of magnitude, 7. The liner is of exterior ra-
dius, @, and fits tightly in the drift generating a thermal reaction pressure, P,. Hoop (gg9) and radial
(o) stresses are defined at any arbitrary radius, r, as are radial (,) and tangential (v) displacements

an(r) :% [(SV +sH)(l - f—j) — (sy —sy) <1 - 4‘;—24— 36;—:) cos2¢9] (7)
aoo(r) :% [(SV +SH)<1 Jrfj) + (s — su) <1 + 3?:) 00529], (8)

where s and sy represent the vertical and horizontal far-field stresses and 6 is the
angle between the horizontal and the vector joining the drift center to the point of
interest (Fig. 4). Provided the drifts are sufficiently separated, the induced stress
fields will not be greatly affected. However, applying the requirement of null
lateral strain prior to drift excavation, to represent mountain-scale restraint in
the horizontal direction, enables the stresses around a heated drift to be directly
determined. The horizontal stress, sy, is augmented to sy + oy £ T, where T is the
uniform temperature, relative to ambient. Thermally-induced stresses (super-
scripted by AT, below) may be evaluated from the difference between ambient and

thermal states as:
o VAT PN N
{rr} {rr} { r;}, 9)
090 ) ago

where ambient and thermal regimes are superscripted by 0 and 7, respectively.
Correspondingly, thermally induced stresses are:

o VAT x
=_—oE\ T %, 10
{000} 2 {Xa} (10)

where y, and y, are derived from Egs. (7) and (8), as noted in equations (A.1) and
(A.2) in Appendix 1. These clearly satisfy a null change in radial stress at the
unlined drift wall, that horizontal stress changes (647 (0 = 0) and ¢} (0 = n/2))

r
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approach oy E;T, and that vertical stresses (o4 (0 =0) and o537 (0 = n/2)) are
unchanged as r — oo. At the boundary, thermally induced tangential stresses are
periodic, and may be determined from Eq. (10) as:

apl (r=a,t — o) = E;T[l — 2cos20), (11)

and are invariant with time, since the drifts are enveloped in a region of uniform
temperature, 7, above ambient. This is assumed to be equivalent to the drift wall
temperature.

2.2.2 Displacements

Radial (u,) and tangential (v) displacements may be evaluated directly from radial
(&) and tangential (egp) strains, through integration. The inverse stress-strain
relations for non-isothermal plane strain may be defined as (Boley and Weiner,

1960):
AT AT
Er 1 1 -1 O 1
=— —o T . 12
{890} El|:_V1 1 ]{090} “ {1} (12

The thermal strain field is then defined, for conditions on uniform temperature
change from ambient of AT, as:

1
ey’ =0 T3l —vizg—2 (13)
AT 1
Cop = “1T§ [xo — vix, — 2 (14)

and these may be converted to displacements through integration of the strain-
displacement relations, defined in radial coordinates as:

du,
= T T 1
¢ - (15)
u,  dup
oy — — L 0 1
€99 T (16)

Radial displacements may be determined by first integrating Eq. (15) to yield:

U = C3_J8)‘rdr7 (17>
where Cs is a constant of integration. Substituting Eq. (13) gives:
1
U, = C3—ocsz[x,,ﬁ,.—vl}(f,,,—h], (18)

where the requirement that u.(r,6 =0) — 0 as r— oo, or u(r,0 =n/2) —
o1(1 +v)Tr as r — oo, defines C3 = 0. Correspondingly, radial displacements
around the drift are defined from Eq. (18), and the nondimensional convergence,
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%: — oy T2 cos 20. (19)

Of particular note is the periodicity, from springline to crown and invert, defining
maximum convergence on the horizontal axis and maximum divergence, of equal
magnitude, on the vertical axis. This conservation of the cross-sectional area of the
drift is the equivalent of the null convergence anticipated for a solitary drift, ap-
parent in Eq. (4). This null change in section, or drift circumference, is indepen-
dent of the mechanical properties of the rock mass. Maximum convergence mag-
nitudes are linked only to the coefficient of thermal expansion, and Poisson ratio,
both typically defined within relatively narrow expected ranges. Convergence
magnitudes are directly proportional to rock temperature, relative to ambient.

Tangential displacements may similarly be recovered by the integration of
Eq. (16) to yield:

ug = C3 + C40—J800d0—J%d0, (20)

where uy is a non-dimensional (angular) displacement and C; and Cy are again
constants of integration. The actual lineal displacement (units of length), v, is
given as v = ruy. The constants of integration, C3 and Cy, are defined by noting
from symmetry that u,(r,8 = 0) = u,(r,0 = n/2) = 0. Substituting Eqs. (14) and
(18) into Eq. (20) and sequentially applying null drift-wall displacements for 8 = 0
and 0 = /2 yields C3 = C4 = 0. This result may also be recovered by inspection,
since both integrals are individually null over any full quadrant, from 6 =0 — 7/2
or § = — 3x/2, for example. For the first integral, it is because tangential dis-
placements must be zero at crown, invert and springline. The second integral is
null over these limits because of the cos 26 periodicity of u,, apparent in Egs. (18)
and (19). Correspondingly, tangential displacements are defined as:

1 1
up =~ T35 o0 = VX0 =201 = v = ViXto,ro — 20] . (21)

At the drift wall, r = a, and:
Uy = o T2 sin 20 (22)

for the non-dimensional tangential displacement, and v = ruy, to yield the actual
lineal tangential displacement, v, as:

2 = oy T2sin 20, (23)

that complements the periodicity of the drift wall convergence. Again, the magni-
tude of the tangential displacement is conditioned only by the coefficient of free
thermal expansion of the rock mass and Poisson ratio, and is in direct proportion
to the change in temperature.
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3. Liner Thermal Behavior

A thin liner is assumed placed in intimate contact with the rock mass after initial
excavation-induced displacements have occurred. From the foregoing analysis of
tunnel convergence, the null change in circumference of the heated drift is noted,
under both short-term and long-term conditions. If flexural rigidity of the liner is
assumed to be small, and a full slip condition applied at the contact between the
liner and the tunnel wall, the thermal loads applied to the liner may be approxi-
mately represented as radially symmetric. The response of a liner, of nominal
radius, @, and thickness, w, as illustrated in Fig. 4, may be correspondingly deter-
mined from thin-wall theory. Under the assumption of a perfectly flexible liner,
the resulting solution applies uniformly to early- and late-time response.

3.1 Thin-Walled Liner

For a thin-walled circular liner, subject to plane strain conditions, the radial dis-
placement is conditioned by the drift reaction pressure, P,, the liner-radius to
thickness ratio, M; = a/w, and the liner temperature above ambient, 7, as:

Pa _
Ef
where E[ and o now represent the equivalent liner properties [Ef = E; /(1 — v7),
vE=vr/(1 —vp),af = or(1+ )], rather than those of the rock mass, as defined
in Section 2.1. For the thin wall of the liner, the circumferential stress, gy, is
assumed to be of uniform magnitude, and is scaled by the liner-radius to thickness
ratio, My, as:

% =M obT, (24)

apo = MLPa- (25)

3.2 Drift Reaction

With the displacement of the thin-walled liner defined relative to the uniformly
applied drift reaction pressure, P,, the response of the composite drift and liner
may be evaluated. Where a uniform pressure of magnitude P, is applied to the
drift wall, the nondimensional displacement is:

U P, a
a  2Grr’

where Gy is the shear modulus of the rock mass, defined as Gr = Er/2(1 + vg).

(26)

3.3 Composite Drift Behavior

The expression representing radial displacement of a thin-walled liner (Eq. (24))
may be determined by equating the drift-wall and liner displacements as:
u P,

b My —ofT. (27)



Mechanical Response of Lined and Unlined Heated Drifts 211

Notably, the elastic and thermal constants, E{f and «F, refer to liner materials,
only, and M, defines the liner geometry as M; = a/w.
The uniform radial drift-liner reaction pressure, P,, may be defined as:
kT
1 My’
2Gx EL

P, = (28)

where, perhaps surprisingly, the behavior is only weakly linked to rock mass
parameters through the shear modulus, Gg. All other coefficients are for the liner
materials.

The resulting mean liner circumferential stress, ogg, may be recovered from the
drift-liner reaction pressure as:

agpg — MLPa. (29)

Approximate relations may be recovered for the support pressure and hoop stress,
where M /EL > 1/2Gg, as:

oFEET

Pox T (30)

and:
gy ~ OC]LEILT (31)

This condition represents thin liners where the liner and rock moduli are of com-
parable magnitude, a situation commonly met in rock tunneling. These provide a
full suite to define thermally induced stresses, subject to the assumptions of full slip
and zero flexural rigidity.

4. Discussion and Results

Expressions (28) and (29) describe the response of a thin-walled liner. Surprisingly,
reaction and hoop stresses are primarily conditioned by the thermal and elastic
coefficients of the liner, oy and E;, and only mildly conditioned by rock mass shear
modulus, Gg. Where rock mass modulus or the corresponding shear modulus, Gg,
is of the same order as liner modulus, E;, and drift diameter to liner thickness
ratio, My = a/w, is large (M > 10), then My /E; > 1/2Gg, and these relations
may be approximated as:

arEp
Pix ————— 32
a ML(l — VL) ( )
and:
GCLEL
=M P,~ ——T, 33
00 L = (33)

where the subscripted L refers to liner properties. These expressions yield the
important results that:
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1. Thermal liner stresses, ayy, are controlled primarily by the effective liner prop-
erties of modulus, E;, Poisson ratio, vy, thermal expansion coefficient, oy, and
liner thickness, w. These parameters are controllable, to some degree during
design and fabrication, including the potential to provide compressible lagging
or blocking, backfill, compressible joints, and the indeterminate influence of
liner creep, and thereby control the magnitude of thermally induced stresses.

2. Perhaps surprisingly, there is only weak dependence on the rock mass defor-
mation modulus and Poisson ratio. This is a direct consequence of the null
aggregate displacement of the drift wall, the only influence being the stress
reaction of the expanding liner ring against the drift wall. Where the liner is
perfectly flexible, the periodic displacements induce no stresses within the liner.
The only resulting stresses are the reaction against the drift wall due to thermal
expansion of the liner.

3. Liner thermal stresses are surprisingly independent of the coefficient of thermal
expansion of the rock mass, ag, and depend only on the instantaneous liner
temperature differential above ambient, 7.

Representative data for Yucca Mountain (CRWMS, 1998) define mass moduli in
the range 4-40 GPa, thermal expansion coefficients of the order 6-10 x 107¢/°C,
and sensible magnitudes of Poisson ratio of the order 0.2. Convergence estimates
are defined proportional to ag(l + vg)T and, for a 5.5 m diameter drift, with a
increase in temperature of 135°C, are of the order of 14 mm. These are compared
with numerical results obtained from FLAC, for drifts separated by 22.5 m, as
documented in Table 1 (Nolting, 1997), which are in the range 8—11 mm. Notably,
these are not influenced by modulus, and are of directly opposite sense in vertical
divergence and horizontal convergence, as jointly predicted by Eq. (19). The slight
mismatch between the analytical and numerical results, and the spread in values
for the numerical results reflect a range of different initial stress states and mild
material nonlinearities incorporated within the FLAC simulations, and not
accommodated in the analytical solutions. The FLAC simulations use conditions
of zero lateral displacement at x = +L/2, correctly representing the repeating

Table 1. Comparison of numerical results obtained from using FLAC (Nolting, 1997) with the solution
developed in this paper (This work). Results are for unlined and lined drifts of diameter 5.5 m (2a)
separated by 22.5 m (L). Rock properties are Egx = 6 GPa and 24 GPa, vg = 0.22, and ag = 8 pe/°C.
All results are for unlined drifts, except for the final evaluation of liner stresses. Properties of the 0.2 m
thick (w) liner are E;, = 27 GPa, vg = 0.22, and ag = 10 pe/°C. Temperature change is 135°C

FLAC results (Nolting, 1997) This work
E =6 GPa E =24 GPa E =6GPa E =24 GPa
Vertical convergence (mm) —-81to —10 —10 —14
Horizontal convergence +11 +10 +14
mm
Drift-wall hoop stress, crown 18-26 60-70 24 96
(MPa)
Liner hoop stress, crown 62 80 30 41

(MPa)
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drift geometry. The analytical solution assumes a drift is cut into a horizontally
stressed horizon (pre-mining zero lateral strain).

Thermally-induced stress magnitudes in the drift-wall may also be evaluated.
The pre-mining stress magnitudes at a depth of 300 m are of the order 7 MPa
vertical and 2.5 MPa horizontal (CRWMS, 1998). The post-excavation stresses
are compressive at the springline, and near zero at the crown and invert. The ad-
dition of thermal stresses, after heating by 135°C results in a switching of stress
magnitudes to high compression in the crown and invert, and near zero at the
springline. The resulting total crown and invert stresses are estimated to be of the
order of 30-90 MPa, and are consistent with magnitudes evaluated from FLAC
simulations (Nolting, 1997), defined in Table 1, that span 20-70 GPa. Notably the
numerical results incorporate a modulus that varies with ambient stress level,
hence a four-fold increase in initial rock modulus results in only a three-fold pre-
dicted increase in thermal stresses.

Where a concrete segmented liner is installed, with a comparable modulus to
that of the rock, as E; =27 GPa, and with a comparable thermal expansion
coefficient oy = 10 x 107¢/°C to that of the rock mass, liner stresses may also be
evaluated. For a liner thickness of 0.2 m and for rock mass moduli of 6 GPa and
24 GPa, the resulting hoop stresses are given in Table 1. As anticipated, these
stress magnitudes are only slightly influenced by rock mass modulus. A four-fold
increase in rock modulus only increases the stress magnitudes by about a third,
confirming the expected diminished dependence of liner stresses on rock modulus.
The numerical results incorporate friction between the liner and drift-wall, and
therefore differ from the assumptions assumed in the solutions developed in this
paper; hence the mismatch in results. Despite these differences, the overall corre-
spondence between the numerical and analytical results suggests that the sim-
plifying assumptions regarding non-interacting drifts, are indeed justified. The
analytical solutions provide useful order-of-magnitude estimates of behavior.

These results underscore the relevance of the physical dependencies defined in
the relatively straight-forward analytical solutions for unlined and lined drifts.
Although the analysis is limited to a circular section drift within an infinite
medium, and where liner bending stresses are neglected, the results are broadly
applicable in defining the functional dependencies for other tunnel geometries.
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Appendix 1

The following coefficients may be defined directly from Egs. (7) and (8). The root
equations are:
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a? a? at
a? at
Yo = (l +r—2) - <l + 3r_4> cos 20, (A.2)
with the integrals of these relations defined in shorthand as [y, dr = y, , for:
2 2 4
J;(,dr: (r+a—> + (r+4a——a7> cos20=y,, (A.3)
r rooor ’
a? at
JXH dr = (r — 7) — (r — r_3) cos20 =y, (A4)
a’ a’ at\ 1 .
J;{,.d@: (1_ﬂ)9+ (1_4r2+3r4>25m28:)(“9 (A.5)
a’ at\ 1 .
}(gd@z 1+}’7 9— 1+3r7 ESIHZG:XH,f)? (A6)

where the constants of integration, C; etc., are omitted for clarity. The double
integrals of these functions are defined as [ [y, drdf = y, ,, for:

a’ a’> a*\1 .
JJ}{,drdQ: <r+r)9+ <r+4r—r3) 3 sin20 = y, . (A7)

a? at\ 1 .
X0 drdf = (r— 7 0—r— ri?’ i sin 20 = X@,rﬁ? (A8)

where, again the constants of integration, of the form C;0 + Cy4, are omitted for
clarity, but incorporated where needed, such as in the solution of Eq. (20).

References

Boley, B. A., J. H. Weiner (1960): Theory of thermal stresses. Wiley, New York.

Brady, B. H. G., Brown, E. T. (1985): Rock mechanics for underground mining. Allen
Unwin, Cambridge.

Bray, J. W. (1980): Personal communication.

Brown, E. T., Bray, J. W., Ladanyi, B., Hoek, E. (1983): Ground response curves for rock
tunnels. J. Geotech. Engng. ASCE 109, 15-39.

Burns, J. Q., Richard, R. M. (1864): Attenuation of stresses for buried cylinders. Proc.,
Symp. on Soil-Structure Interaction, University of Arizona, Tucson, 378-392.

Buschek, T. (1997): Personal communication.

CRWMS M&O (1998): (Civilian radioactive waste management system, management and
operation contractor), Cross drift geotechnical predictive report: geotechnical data re-
port BABEA0000-01717-5700-00001 Rev. 01. Las Vegas, NV.

Crouch, S. L. (1976): The displacement discontinuity method. Int. J. Num. Meth. Engng. 10.

Department of Energy (1998): Viability assessment for a repository at Yucca Mountain,
Nevada. Vol. 1-5, http://www.ymp.gov/va.htm.



Mechanical Response of Lined and Unlined Heated Drifts 215

Einstein, H. H., Schwartz, C. W. (1979): Simplified analysis for tunnel supports. J. Geotech.
Engng. Div. ASCE 105, 499-518.

Elsworth, D. (1986): Wedge stability around a circular tunnel: Plane strain condition. Int. J.
Rock Mech. Min. Sci. 23(2), 177-182.

Eissa, E. A. (1980): Stress analysis of underground excavations in isotropic and stratified rock
using the boundary element method. Ph.D. Thesis, University of London, Vols. 1 and 2.

Ewy, R. T., Kemeny, J. M., Zheng, Z., Cook, N. G. W. (1987): Generation and analysis of
stable excavation shapes under high rock stress. Proc., Int. Cong. of Int. Soc. Rock.
Mech., Montreal, 875-881.

Gnirk, P. F., Johnson, R. E. (1964): The deformation behavior of a circular mine shaft
situated in a viscoelastic medium under hydrostatic stress. Proc., 6th Symp. on Rock
Mechanics, University of Missouri, Rolla, 231-259.

Hoeg, K. (1968): Stresses against underground structural cylinders. J. Soil Mech. and
Foundations Div., ASCE 94, SM4, 833-858.

Hoek, E., Brown, E. T. (1980): Underground excavations in rock. Institution of Mining and
Metallurgy, London.

Kirsch, G. (1898): Die Theorie der Elastizitit und der Bediirfnisse der Festigkeitslehre.
V.D.J. 42(29).

Ladanyi, B. (1974): Use of the long-term strength concept in the determination of ground
pressure on tunnel linings. Proc., 3rd Int. Soc. Rock Mech., Denver, Vol. 2B, 1150-1156.

Mack, M. G., Brandshaug, T., Brady, B. H. G. (1989): Rock mass modification around a
nuclear waste repository in welded tuff. NUREG/CR-5390.

Muir Wood, A. M. (1975): The circular tunnel in elastic ground. Geotechnique. 25(1), 115—
127.

Mindlin, R. D. (1940): Stress distribution around a tunnel. Trans. ASCE 105, 1117-1140.

Murphy, H. D. (1979): Thermal stress cracking and the enhancement of heat extraction
from fractured geothermal reservoirs. Geotherm. Energy Mag. 7(3), 22-29.

Nolting, R. (1997): Personal communication.

Perkins, T. K., Gonzales, J. A. (1981): Changes in earth stresses around a well bore caused
by radially symmetrical pressure and temperature gradients. Paper SPE 10080, Proc.,
SPE 56th Ann. Tech. Conf. and Exhib., San Antonio, TX, Oct. 5-7.

Ranken, R. E., Ghaboussi, J., Hendron, A. J., Jr. (1978): Analysis of ground-liner inter-
action for tunnels. Report UTMA-IL-06-0043-78-3. Department of Transportation.

Santarelli, F. J., Brown, E. T., Maury, V. (1986): Analysis of borehole stresses using pres-
sure-dependent, linear elasticity. Int. J. Rock Mech. Min. Sci. 23, 445-449.

Savin, G. N. (1951): Stress concentrations around holes. Pergamon Press, Oxford.

Stephens, G., Voight, B. (1982): Hydraulic fracturing theory for conditions of thermal
stress. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 19, 279-284.

Terzaghi, K., Richart, F. E. (1952): Stresses in rock about cavities. Geotechnique 3, 57-90.

Timoshenko, S. (1934): Theory of elasticity. Ist edn., McGraw-Hill, New York.

Yow, J. L. (1985): Field investigation of keyblock stability. Ph.D. Thesis, University of
California, Berkeley, and UCRL-53632, 227 pp.

Author’s address: Derek Elsworth, Department of Energy and Geo-Environmental
Engineering, Pennsylvania State University, University Park, PA 16802-5000, U.S.A.



