
ARTICLE IN PRESS
1365-1609/$ - se

doi:10.1016/j.ijr

�Correspond
E-mail addr
International Journal of Rock Mechanics & Mining Sciences 43 (2006) 1182–1199

www.elsevier.com/locate/ijrmms
Effects of local rock heterogeneities on the hydromechanics of fractured
rocks using a digital-image-based technique

W.C. Zhua,b, J. Liua,�, T.H. Yangb, J.C. Shenga, D. Elsworthc

aSchool of Oil and Gas Engineering, The University of Western Australia, WA 6009, Australia
bCenter for Rock Instability and Seismicity Research, Northeastern University, 110004 Shenyang, PR China

cDepartment of Energy and Geo-Environmental Engineering, Penn State University, PA 16802, USA

Accepted 21 March 2006

Available online 19 May 2006
Abstract

A digital-image-based (DIB) finite element approach is developed based on the numerical code rock failure process analysis (RFPA) to

characterize micro-scale rock heterogeneity, and to understand the impact of micro-scale rock heterogeneity on the macro-scale

hydromechanical response of rocks. The DIB technique incorporates small-scale spatial variability of initial deformation modulus,

strength and permeability directly into a coupled hydromechanical model. Variability in Young’s modulus, strength, and permeability is

applied by a property map defined from the pixel-scale of a digital image. In the RFPA, mechanical deformation is followed, including

the accumulation of damage applied in individual elements, which modifies modulus, strength, and permeability with the intensity of

damage. The RFPA simulates progressive failure in fractured rocks, representing both the growth of existing fractures and the formation

of new fractures, without having to identify crack tips and their interaction explicitly. In this DIB simulation approach, image voxels are

used to give equivalent mechanical and flow properties. These property maps are ported to the model capable of solving directly for the

evolving deformation, and fluid flow fields. The model is validated through comparisons of the simulated results with phenomenological

observations documented in previous studies. The validated model is then applied to investigate the hydromechanical response of

fractured rock characterized by digital image. The model is able to reproduce the spatial evolution of damage in the sample, the

coalescence of existing cracks, and the formation of new cracks.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This study deals with the impact of local rock hetero-
geneities on the hydromechanics in the failure process of
fractured rocks. Hydromechanical interactions are com-
mon in geological media because such media contain pores
and fractures which can be fluid-filled and deformable
[1–3]. When fractured rocks are damaged and fail under in
situ conditions, the characterization of mechanical and
transport properties presents a new challenge [4,5]. The
scientific challenges are twofold: the first relates to how to
characterize fractured rock at micro-scale, and the second
e front matter r 2006 Elsevier Ltd. All rights reserved.
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on how to translate that finely resolved characterization to
reproduce the macro-scale hydromechanical response.
In previous studies, the heterogeneity and microstruc-

tures of rock materials have been characterized by using
statistical tools including non-spatial and spatial statistics
[5–10]. In these studies, including the one used previously
in RFPA [5,10], the heterogeneity of rock is described by
assigning different material properties to the microstruc-
tures (such as fractures) for which the constitutive laws are
specified. These studies have demonstrated the importance
of rock heterogeneity. However, these methods can
misinterpret critical local-scale heterogeneities in the rock
because it is usually difficult to adequately specify the
statistical distribution parameters in order to reproduce
real microstructures in rock. Therefore, these artificial
internal heterogeneities or microstructure-based models

www.elsevier.com/locate/ijrmms
dx.doi.org/10.1016/j.ijrmms.2006.03.009
mailto:jishan@cyllene.uwa.edu.au


ARTICLE IN PRESS
W.C. Zhu et al. / International Journal of Rock Mechanics & Mining Sciences 43 (2006) 1182–1199 1183
may inadequately reflect the actual local geometrical and
constitutive variations of microstructures in rocks.

Some recent studies have shown that digitized image data,
such as the characteristics of different minerals and fractures
in rocks, can be used to establish the level of heterogeneity.
Digital image processing techniques are widely used in many
areas of research and application such as in medical
diagnosis, in the design of composite materials, and in
concrete mechanics [11–14]. Digital image processing has
been used in rock mechanics to detect discontinuity geometry
in rock masses [15–18] and to analyze failure processes and
fracture in rock [19]. Yue and his collaborators [20–22] have
proposed a digital-image-based (DIB) numerical modeling
method for the prediction of failure, which accounts for the
actual mineral distribution in the rock.

In this study, we integrate DIB rock heterogeneity
characterization directly into a well-established code
RFPA for simulating the coupled hydromechanics of
fractured rocks [10,23]. This integration is capable of
predicting the macro-scale hydromechanical responses
of fractured rocks, including the effects of the coalescence
of existing cracks and the formation of new cracks, on flow
rate, on stress re-distribution, and on localized deformation
and progressive failure.

This paper aims at providing a new DIB technique to
characterize the rock heterogeneity. The RFPA has been
widely used as a numerical code to simulate the rock failure
process under hydromechanical loading conditions, in this
respect, the calibration is concentrated on capabilities of
DIB technique in characterizing the rock heterogeneity.
Moreover, the failure process of rock during hydromecha-
nical process is modeled, and related mechanisms such as
permeability and damage evaluation, are clarified.

2. Model description

Detailed descriptions of the coupled fluid flow, stress and
damage model of RFPA has been presented previously
[5,23]. This presentation includes a summary of the
governing equations, a detailed description of the digital
image processing technique, and a description of the
implementation of DIB technique into RFPA.

2.1. Governing equations

The hydromechanics of saturated fractured rocks may be
represented by two sets of governing equations: the fluid
flow equation and the mechanical deformation and damage
equation. These two sets of equations are linked through a
number of cross-coupling relations.

2.1.1. Fluid flow equation

The governing equation for saturated fluid flow in
porous medium is described by a liquid mass balance as

Ss
qP

qt
�r

krlg
ml
ðrP� rlgrzÞ

� �
¼ 0, (1)
where P is the pore fluid pressure (Pa), rl the liquid density
(kg/m3), ml the dynamic viscosity of the fluid (Pa s), t the
time (s), k the permeability (m2), g the acceleration due to
gravity (m/s2), z the vertical Cartesian coordinate (m), and
Ss the specific storativity of the porous medium (1/m). If Ss

is specified to be zero, the equation represents steady-state
fluid flow.

2.1.2. Mechanical equilibrium equation

The equilibrium equation for stress is based on the
observation that stress fronts travel much faster than fluid
pressure fronts in the fluid or solid. Using tensorial
notation, the mechanical equilibrium equation for the
solid is expressed as

�sij;j ¼ F i; i; j ¼ 1; 2; 3, (2)

where sij is the stress tensor (Pa) in the solid and F i the
component of the body force (N/m3).
The constitutive equation defines the relation between

the total bulk stress components (Pa), sij and strain
components, eij when the effect of fluid pressure P is also
included. The stress–strain law is given by

sij ¼ Dijklekl � adijP; i; j ¼ 1; 2; 3, (3)

where Dijkl is the elasticity tensor (Pa), and is related to the
Young’s modulus E and Poisson’s ratio n for isotropic
elastic media, which is degraded with damage initiation
and development, a is Biot’s effective stress coefficient
(dimensionless), dij is the Kronecker delta function, eij ¼

ðUi;j þUj;iÞ=2 and Ui represents the displacement vector of
the solid. In this equation, the effect of fluid flow on the
mechanical response of the solid skeleton is included by
including the action of fluid pressure P via the effective
stress in Eq. (3).

2.1.3. Evolution of damage variable and permeability

In the RFPA code, a damage mechanics-based consti-
tutive law is proposed and incorporated into a finite
element code for simulating the failure process in rock. In
this code, when a crack is propagating within a finite
element, an element is deemed to have partially failed, but
is not removed from the computations. This treatment of
crack propagation in isotropic media allows the evolution
of fracture paths within individual elements and is able to
accommodate crack growth in any arbitrary direction
without the need for remeshing. The characteristics of the
elements can be described with a constitutive law based on
continuum damage mechanics [10].
As illustrated in Fig. 1, the damage constitutive relation

for an element under uniaxial compressive and tensile
stress is used to simulate the failure process. When the
stress of the element satisfies the strength criterion
(including the Coulomb criterion and maximum tensile
stress criterion), the element begins to accumulate damage.
In elastic damage mechanics, the elastic modulus of the
element is degraded gradually as damage progresses,
and the elastic modulus of the damaged element is defined
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Fig. 1. Elastic damage constitutive law of element under uniaxial stress

state. Here, ft0 and ftr are uniaxial tensile strength and residual uniaxial

tensile strength of the element, respectively; fc0 and fcr are uniaxial

compressive strength and residual strength of the element, respectively.
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as follows:

E ¼ ð1� oÞE0, (4)

where o represents the damage variable, and E and E0 are
the elastic moduli of the damaged and undamaged
elements, respectively. The element and its damage are
assumed to be isotropic, and so E, E0 and o are all scalar
quantities. When o ¼ 1, Eq. (4) predicts a zero value for
the elastic modulus, which may lead to ill-conditioning in
finite element calculations. To avoid this problem, the
elastic modulus of a damaged element should not be
allowed to fall below a very small value that was set to be
1.0� 10�5MPa in all numerical simulations of the present
study. The damaged elastic moduli are used to calculate the
elasticity tensor Dijkl in Eq. (3).

When the tensile stress in an element reaches its uniaxial
tensile strength, f t0,

s3p� f t0, (5)

the damage variable o of the element under uniaxial
tension, as shown in the third quadrant of Fig. 1, can be
expressed as

o ¼

0 e4et0;

1� let0=e etuoepet0;
1 epetu;

8><
>: (6)

where l is the residual strength coefficient, which is given as
f tr ¼ lf t0. The uniaxial tensile strength of elements is
considered to closely related to their uniaxial compressive
strength via f t0 ¼ kf c0, where k is the ratio between
uniaxial tensile and compressive strength of elements, and
is specified as 0.1 in this study. The parameter et0 is the
tensile strain at the elastic limit, and is called the threshold
strain, and etu is the ultimate tensile strain of the element,
describing the state at which the element would lose its load
capacity for tension. The ultimate tensile strain is defined
as etu ¼ Z et0, where Z is called the ultimate strain
coefficient.
Under multiaxial stress states the element still damages

in tensile mode when the equivalent major tensile strain ē
attains the above threshold strain et0. The equivalent
principal strain ē is defined as

ē ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�e1i2 þ h�e2i2 þ h�e3i2

q
, (7)

where e1, e2 and e3 are three principal strains, and o4is a
function defined as follows:

hxi ¼
x xX0;

0 xo0:

�
(8)

The constitutive law for an element subjected to multi-
axial stresses can be easily obtained by replacing the strain
e in Eq. (6) with equivalent strain ē. The damage variable is
expressed as

o ¼

0 ē4et0;

1� let0=ē etuoēpet0;

1 ēpetu:

8><
>: (9)

To describe the element damage under a compressive or
shear stress condition, the Mohr–Coulomb criterion is
chosen as the second damage criterion, which is

s1 � s3
1þ sin f
1� sin f

Xf c0, (10)

where s1 is the major principal stress, s3 is the minor
principal stress, f is the friction angle and f c0 is the
uniaxial compressive strength. The damage variable under
uniaxial compression is described as

o ¼
0 eoec0;

1� l ec0=e eXec0;

(
(11)

where ec0 is the compressive strain at the elastic limit, l is a
residual strength coefficient, and f cr=f c0 ¼ f tr=f t0 ¼ l is
assumed to be true when the element is under uniaxial
compression or tension.
When the element is under a multi-axial stress state and

its strength satisfies the Mohr–Coulomb criterion, the
maximum principal strain (maximum compressive princi-
pal strain) may be evaluated at the peak value of the
maximum principal stress (maximum compressive principal
stress) ec0.

ec0 ¼
1

E0
f c0 þ

1þ sin f
1� sin f

s3 � nðs2 þ s3Þ
� �

, (12)

where n is Poisson’s ratio, s1 and s3 are major and minor
principal stresses, respectively.
We assume that the shear damage evolution is only

related to the maximum compressive principal strain e1.
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Correspondingly, we use the maximum compressive
principal strain e1 of the damaged element to substitute
for the uniaxial compressive strain e in Eq. (11). Thus,
Eq. (11) may be straightforwardly extended to triaxial
stress states for shear damage as

o ¼
0 e1oec0;

1� lec0=e1 e1Xec0:

(
(13)

Experimental results indicate that permeability is
strongly affected by stress level. This results both from
the closure of pore walls, and from the generation of new
pore volume. In the following, the variation of perme-
ability is specified to be dependent on the stress and the
accumulating damage to the rock. Zhu and Wong [24]
concluded that for sandstone in the brittle field, for rocks
with less than 15% porosity, permeability increased after
the onset of dilatancy, whereas above 15% porosity the
permeability constantly decreases, even when dilatancy
(i.e., porosity increase) occurs. As early as 1975, Zoback
and Byerlee [25] reported an increase of the permeability of
granite when the granite sample became dilatant due to
microfracturing. Brace [26] reported an increase of nearly
threefold in the permeability of granite at high stress.
Therefore, for the different rock and for the same rock with
different porosity, the stress-dependent permeability evolu-
tion is actually different. In this study, we focused on a
kind of granite, which is a crystalline rock similar to the
one experimented by Zoback and Byerlee [25] and Brace
[26], therefore, permeability enhancement after microfrac-
turing is expected. During elastic deformation, rock
permeability decreases as the rock compacts, and increases
when the rock expands. However, the variation of
permeability in these situations is limited in the pre-failure
region. In the post-failure region, a dramatic increase in
rock permeability can be expected as a result of the
generation of numerous micro-fractures. The damage-
dependent permeability can be defined as

k ¼
k0 exp½�bðsv � aPÞ� o ¼ 0;

xk0 exp½�bðsv � aPÞ� 0oop1;

(
(14)

where k0 is the initial permeability, sv ¼ ðs1 þ s2 þ s3Þ=3,
P the fluid pressure, b the coupling coefficient, and x the
permeability scaling factor when damage occurs. When
damage occurs, the local permeability in the damaged
elements can change instantaneously from an initial value
to a large value, x is used to reflect the increase in
permeability.

The above formulations have been implemented into our
self-developed numerical code rock failure process analysis
(RFPA) [5,10,23]. Previous work with the code [5,10] has
shown that, provided the residual strength coefficient l and
ultimate strain coefficient Z are in the range 0olp0:1 and
2pZp5, respectively, the effect of constitutive parameters
on failure evolution is minor. Therefore, when RFPA is
used to study the brittle failure of rock, these two
parameters must be specified within their respective ranges.
In the all simulations below in this study, l ¼ 0:1 and Z ¼
2:0 are adopted. The code has been verified extensively and
been used to investigate fracture initiation, propagation
and breakdown behavior in permeable rocks. In this study,
the RFPA is extended from a statistical realization-based
simulation tool to a DIB tool.
2.2. Digital image processing technique

Digital images of rocks are obtained by photograph-
ing fresh cross-sections of rock samples with a digital
camera, or by recovering a volumetric map of some
proxy variable by using some non-destructive character-
ization methods. These include maps of density recovered
by X-ray CT scanning, acoustic velocity or seismic
imaging, or a variety of other geophysical indices. These
digital images may be processed to enhance the recovery
of the material microstructure. The pre-treatment inclu-
des image contrast enhancement and noise removal [20].
For a gray image, one integer value represents the gray
intensity at each pixel. For true color (RGB; red, blue,
green) images, there are three integer values to represent
the red, green and blue level at each pixel. Therefore, the
color image data consist of three discrete functions, fk(i, j),
where k ¼ 1, 2 or 3, in the i and j Cartesian coordinate
system:

f kði; jÞ ¼

f ð1; 1Þ f ð1; 2Þ � � � f ð1;MÞ

f ð2; 1Þ f ð2; 2Þ � � � f ð2;MÞ

..

. ..
. ..

.

f ðN; 1Þ f ðN; 2Þ � � � f ðN;MÞ

2
6666664

3
7777775

ðk ¼ 1; 2; and 3 for RGB imageÞ, ð15Þ

where i varies from 1 to N, and j from 1 to M, and M and N

are the number of pixels in the horizontal and vertical
directions, respectively. For gray images, only a single
variable (k ¼ 1) is necessary.
In this work the discrete function, fk(i, j) of a digital

image of JPEG or Bitmap format is utilized (this is
recovered via a macro-routine programmed in MATLAB).
As an alternative to the RGB color space, the hue,
saturation, intensity (HSI) color space may be used, as it
is close to how humans perceive colors [27]. The hue
component (H) represents repression related to the
dominant wavelength of the color stimulus. Therefore,
the hue is the domain color perceived by human beings.
The saturation component (S) represents how strongly the
color is polluted with white. The intensity component (I)
stands for brightness or lightness and is irrelevant to colors.
In general, hue, saturation, and intensity are obtained by
different transformation formulae by converting numerical
values of R, G, and B in the RGB color space to the HSI
color space. The values of S and I vary from zero to one.
But the value of H varies from 0 to 360, which can also be
normalized to be from 0 to 1.
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Distinct microstructures (such as fractures and minerals)
with different perceived colors in the rock sample are
acquired according to the values of H, S, or I of individual
pixels, and the different material properties (such as
Young’s modulus and permeability) are specified for each
pixel according to its catalog of minerals or colors. In
theory, the material properties of different minerals or
structures must be known based on mineralogical analysis
of the rock sample, by this means, the relation between
values of I (H or S) of the digital image pixels and
their materials properties can be uniquely established.
Since this study is to tentatively illustrate the capability
of DIB technique and the effect of heterogeneity on
hydromechanics, the parameters such as Young’s modu-
lus and permeability are only specified based on artifi-
cial specification of reasonable values. Anyway, hetero-
geneity characterization based on DIB techniques
provides a novel method that permits the particular
effect of rock microstructures and heterogeneity on the
hydromechanical process to be clearly isolated and
studied.

2.3. Digital-image-based (DIB) simulation

In DIB simulations, an image of a rock sample is
discretized into many square elements of identical size, and
these elements map directly onto finite elements used for
stress analysis. The material parameters for each pixel are
specified for the corresponding finite element. When the
Young’s moduli and permeability of these minerals are
defined for an individual element, the distributions of
Young’s modulus and permeability throughout the med-
ium is also specified. Using this technique, the basic
governing equations are the same for all components (i.e.,
minerals), but the material properties may differ.

During simulation, the model is loaded in a quasi-
static fashion. At each loading increment, the fluid flow
and stress equations in the elements are solved and a
coupled analysis is performed. The stress state of each
element is checked at each calculation step. Tensile or
shear damage occurs when the stress or strain state of
elements meets the maximum tensile stress criterion or the
Mohr–Coulomb criterion in compression, respectively.
At a given deformation/loading level, the tensile damage
threshold is always checked first and if found to be
attained, then a check of the Mohr–Coulomb threshold
is omitted; the Mohr–Coulomb threshold is checked
only when the tensile threshold is not attained. Damage
applied to overstressed elements leads to the reduction
of stiffness and strength, and an increase in permeability.
In this respect, totally damaged elements (o ¼ 1.0)
are considered as microcracks. Macroscopic cracks may
form where these microcracks propagate and coalesce.
Subsequently, the next load increment is added only
when there are no more elements strained beyond
the strength threshold level at an equilibrium strain
field.
3. Verification

The code RFPA has been verified comprehensively and
been used to investigate fracture initiation, propagation
and breakdown behavior in permeable rocks [5–7,10]. The
numerical simulations of hydromechanical problems by
RFPA have also been presented elsewhere [5,23]. There-
fore, the verification in this study is mainly focused on the
DIB technique. Two verification examples are conducted to
examine the capability of DIB technique and its imple-
mentation into RFPA. In the first example, we used an
artificial image of rock including a pre-existing crack with
an inclination angle of 451. The digital image was
incorporated directly into the finite element simulation.
The simulated wing crack propagation patterns are
compared with previous experimental observations. In
the second verification example, a Weibull distribution is
used to generate material property maps. These statistically
generated images are then incorporated directly into the
finite element simulation. In this case, the exact relations
between the color index and material properties are known.
This example was used to determine the impact of digital
image processing on simulation accuracy. The results are
reported in the following sections.

3.1. Wing crack propagation

Fig. 2(a) presents the artificial digital image of a
fractured rock with a pre-existing crack (the inclination
angle is 451). The dimension of the simulation domain is
100mm� 200mm, and the length of the pre-existing crack
is 30

ffiffiffi
2
p

mm. We assume that the fracture is not open, but
filled with a weak material. A low magnitude of the
Young’s modulus (1.0� 10�8MPa) is specified to the
infilling material in the fracture. The fracture is pre-
existing, and will not be damaged again, and therefore a
relatively high strength of 900MPa is specified. In this case,
only two distinct materials are present in the domain, and
these are the fracture and matrix. We use the color index as
a criterion to specify the material properties as shown in
Table 1. The internal frictional angle and ratio of
compressive and tensile strength are fixed to be 301 and
10, respectively, for both fracture and matrix. As illustrated
in Fig. 2(b), a displacement of 0.002mm is applied step by
step in the vertical direction, whilst a zero vertical
displacement is imposed at the base.
Fig. 3 presents the load–displacement curve (Fig. 3(a)),

the simulated cracking patterns (Fig. 3(b) and the
experimental observations (Fig. 3(c)). The simulated
cracking patterns compare well with experimental observa-
tions. The fracturing starts at the tips of the fracture and
propagates in a curvilinear path as the load increases. Wing
cracks are tensile cracks, and they grow in a stable manner,
since an increase in load is necessary. Therefore, during the
propagation of wing cracks, the load–displacement curve
remains linear until the peak load. Wing cracks tend to
align with the direction of the applied uniaxial compressive



ARTICLE IN PRESS

Fig. 2. The artificial rock image as well as the quantified Young’s modulus map based on DIB technique: (a) rock image; (b) Young’s modulus map.

Table 1

Young’s modulus and strength of artificial fractured rock

Values of I Material Young’s

modulus

(MPa)

Uniaxial

compressive

strength (MPa)

0.0pIo0.01 Filled material in

fracture

1.0e�08 900.0

0.01pIp1.0 Rock matrix 90,000.0 200.0
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stress. After the peak load is reached, secondary cracks
initiate from the tips of the fracture, which leads to
the sudden loss of load capacity of the rock sample.
These numerical results agree well with experimental
observations [28].
3.2. Comparison with statistical-based simulation

As in previous numerical simulations of RFPA, we
assign rock heterogeneity based on a statistical distribution
[5–7,10,23]. In those simulations, the rock is assumed to be
composed of many mesoscopic elements of identical size,
with the mechanical properties of elements assumed to
conform to a given Weibull distribution as defined in the
following probability density function (pdf):

f ðuÞ ¼
m

u0

u

u0

� �m�1

exp �
u

u0

� �m� �
, (16)

where u is the mechanical parameter of the element (such as
strength or elastic modulus); the scale parameter u0 is
related to the average of the element parameters and the
parameter m defines the shape of the distribution function.
From the properties of the Weibull distribution, a larger
value of m implies a more heterogeneous material and vice
versa. Therefore, the parameter m is called the homo-
geneity index in these numerical simulations. Using the pdf
in a computer simulation of a medium composed of many
mesoscopic elements, one can produce a heterogeneous
material numerically.
Fig. 4 shows a numerical specimen which is produced

based on a Weibull distribution with a homogeneous index
of m ¼ 3.0, with the histogram of Young’s modulus also
shown. This numerical specimen is composed of 40,000
elements. The gray scale in this Fig. 4(a) denotes the
relative magnitude of Young’s modulus. Fig. 4(b) shows
the distribution of Young’s moduli of the elements, whose
maximum and minimum values are 114,000 and 6000MPa,
respectively.
In this verification example, we conducted two parallel

simulations. The first one is the statistically based simula-
tion using the RFPA code, in which the material
heterogeneity is specified directly according to Eq. (16).
The second is the DIB simulation, in which the material
heterogeneity is characterized and quantified based
on the image of Young’s modulus produced by RFPA
during the first simulation. If high accuracy of DIB
technique is achieved, two numerical simulations will give
the same results. This verification includes the following
steps.
Firstly, the statistically generated material properties (for

example, Young’s modulus) were incorporated directly
into the finite element simulation. The failure process of
this numerical specimen (Fig. 4(a)) was simulated. Sec-
ondly, using RFPA, we used the following gray scale to
create the material property images of Young’s modulus:

Gd ¼
E � EMIN

EMAX � EMIN
, (17)

where Gd is the gray scale [0,1], E the Young’s modulus of
any element, and EMAX and EMIN the maximum and
minimum values of Young’s modulus of all the elements.
The resulting image is shown in Fig. 4(a).
Thirdly, we setup another numerical specimen with

RFPA, using the digital image processing technique to read
the material property image and to assign the Young’s
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Fig. 3. The load–displacement curve and cracking patterns of the rock sample with a pre-existing crack: (a) load–displacement curve (numerical results);

(b) failure patterns (numerical results); (c) cracking patterns (experimental results after Lajtai (1974)).

Fig. 4. The statistically generated numerical specimen. The material properties of elements in the numerical specimen conform to the Weibull distribution

with homogeneity index of m ¼ 3.0: (a) numerical specimen; (b) histogram of material properties of elements.

W.C. Zhu et al. / International Journal of Rock Mechanics & Mining Sciences 43 (2006) 1182–11991188
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modulus based on the following equation:

E ¼ EMIN þ ðEMAX � EMINÞGd. (18)

We applied a similar procedure to define the material
strengths.

In theory, the material properties should be completely
identical because we knew exactly the relations between the
gray scale and the material properties (as expressed by Eqs.
(18) and (19)). Therefore, any discrepancies between two
simulations would have to come from the digital image
processing technique.

In these two simulations (statistical based simulation and
DIB simulation), the same specimen size and boundary
condition are specified. The numerical specimens are subjec-
ted to uniaxial compression in the vertical direction. A verti-
cal displacement of 0.002mm is applied step by step, while a
zero vertical displacement is applied at the base. Fig. 5(a)
presents the curve between Young’s moduli given according
to the statistical generation and those quantified by using
Fig. 5. Comparison of the Young’s moduli specified according to the

Weibull distribution (Estat) and those (EDIB) defined by the DIB technique:

(a) the correlation between Estat and EDIB; (b) relative errors between Estat

and EDIB.
the DIB technique. It can be seen that their correlation is
small with a largest relative error of only 0.008%.
Fig. 6 shows the failure process of numerical specimens

when simulated based on the statistical generation and the
DIB technique, respectively. It is found that the failure
patterns at each strain level are almost identical to each
other, although there are some small local differences for
the crack propagation path. This also means that the
failure patterns are very sensitive to the local heterogeneity
of rock, which determines where the crack initiation
occurs, and sometimes the small distinctions in some
locations can lead to a quite different crack propagation
path and the final failure pattern.

4. Effects of heterogeneities on hydromechanics

In DIB simulations, digital images are incorporated
directly into the DIB micro-hydromechanics model. Image
voxels are mapped directly to equivalent mechanical and
flow properties as defined by the voxel color. These
property maps are ported to the model and are capable
of solving directly for the evolving deformation, and fluid
velocity fields. In this section, we apply this DIB simulation
approach to a 2D case to investigate the hydromechanics of
a fractured rock sample under applied uniaxial compres-
sion. The following 4 steps show how the DIB finite
element simulation technique works:

Step I: A digital image of the fractured rock with high
resolution is taken by a digital camera, and its HSI values
are obtained and analyzed.

Step II: A two-dimensional DIB model is developed, in
which Young’s modulus, strength and permeability are
chosen as heterogeneous input parameters.

Step III: Different boundary conditions are applied to
the rock sample in order to study their effect on the rock
failure process and associated flow characteristics.

Step IV: Simulation results are presented through
graphical animations.

4.1. Digital image of rock sample and its processing

Fig. 7(a) presents the digital image of a rock sample
(granite from King’s Park, Perth, Western Australia). The
size of the rock sample is 200mm� 200mm, and the
resolution of the image is 200� 200 pixels. That is to say,
the size of a pixel is 1mm. In order to capture the
heterogeneous details of rock surface as accurate as
possible, the higher resolution of the digital image is
necessary. The size of finite elements must be small than the
size that a pixel represents, in order to avoid losing the
heterogeneous information that the pixel contains. In
routine application, we are not intending to simulate the
microscopic details of the rock, and therefore much too
fine digital image is not necessary. The exposed face
provides a cross section that includes several distinct
macroscopic fractures. Fig. 7(b)–(d) presents the distribu-
tions of the values of H, S and I, for the image. Through
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Fig. 6. Comparison of failure patterns that are simulated using statistical generation and the DIB technique. The applied displacement in vertical direction

is 0.002mm/step: (a) statistical generation; (b) DIB technique.
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comparisons, we conclude that the distribution of I values
can capture the most important heterogeneous features
such as fractures in the rock sample. Of course, the
identification of minerals is depended on the resolution of
the image, in order to exactly distinct the minerals with
their I values should be based on professional mineral
analysis.
4.2. Rock heterogeneity characterization and quantification

In theory, the identification of minerals in the rock must
be based on mineral analysis using microscopy. Because
this is only a tentative study that illustrates the feasibility of
digital image technique to characterize and to quantify the
rock heterogeneity, the relation between hydromechanical
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Fig. 7. The digital image of section of the rock sample cross-section, and its HSI values of pixels: (a) digital image of rock sample; (b) I values of pixels; (c)

H values of pixels; (d) S values of pixels.

Fig. 8. The fractures distributed in the heterogeneous rock (here the black

color denotes the fractures, while white color denotes rock matrix).
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properties of rock and the I values of DIB on mineral
analysis and related experiments is needed for further study
in near future.

In this tentative study, we characterize the rock
heterogeneity at two hierarchical levels. For the first level,
we set two different thresholds to distinguish rock fractures
and matrixes, respectively. For the second level, we
distinguish the rock fractures further into two sub-levels
without mineral analysis, namely M1 and M2, and the rock
matrixes further into three sub-levels, namely M3, M4 and
M5, respectively. We assume that fractures are not open,
but filled with two minerals, which are M1 and M2. This
two-level scheme can represent the heterogeneities both in
fractures and rock matrix in fine details, as shown in Fig. 8.

Thresholds of the values of I for these five components
are artificially chosen and listed in Table 2. Correspond-
ingly, the Young’s modulus, strength and permeability
maps are shown in Fig. 9. In a qualitative sense, lower
magnitudes of the Young’s modulus and the strength and
higher magnitudes of permeability are assigned to the
fracture components, M1 and M2.

4.3. Simulation models

In order to investigate the influence of local rock
heterogeneities on the hydromechanical responses, simu-
lations were conducted under four different loading
conditions, namely, BC-I, BC-II, BC-III, and BC-IV,
respectively. They are illustrated in Figs. 10(a)–(d). The
rock sample is simulated as a plane stress problem. For the
case of BC-I, the applied external displacement (de) of
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0.004mm is applied step by step in the vertical direction.
Similar settings are applied for the case of BC-II. For the
case of BC-III, a vertical displacement (de) of 0.004mm is
applied step by step under constant confining pressure until
the rock loses its load-bearing capacity completely, while
Dirichlet boundary conditions of constant fluid pressures
Ph ¼ 7.5MPa and Pl ¼ 6.0MPa are applied on the upper
and lower boundaries, respectively, while no flow condi-
tions are imposed on the lateral boundaries. For the case of
BC-IV, the axial loading and pressure gradient are applied
in the horizontal direction, while the confining stress is
applied in the vertical direction. With regard to the Biot’s
effective stress pressure coefficient a, as discussed by Al-
Wardy and Zimmerman [29], the effective stress coefficient
for the permeability is not a constant, but is sensitive to the
pore structure, clay content, pore pressure and so on.
During the failure process of rock, the pore structure of
rock varies with time, and so is not a constant. However,
because it is very difficult to obtain this parameter when all
these factors are considered, for simplification, in this
manuscript, the effective stress coefficient is assumed to be
0.9, and it is the same as for the macroscopic stress–strain
curve. Other material parameters, such as the coupling
coefficient b, the permeability index x and other material
fitting parameters, which are selected based on previous
simulations of RFPA [23], are also listed in Table 3.
Table 2

Young’s modulus and hydraulic conductivity of minerals in the

heterogeneous rock

Values of I Minerals Young’s

modulus

(GPa)

Uniaxial

compressive

strength (MPa)

Permeability

(m2)

0.0pIo0.2 M1 8.0 20.0 1.0e�14

0.2pIo0.4 M2 30.0 100.0 1.0e�15

0.4pIo0.6 M3 80.0 150.0 1.0e�16

0.6pIo0.8 M4 70.0 250.0 1.0e�16

0.8pIp1.0 M5 90.0 150.0 1.0e�16

Fig. 9. Distribution of Young’s modulus and permeability in this rock sample

map.
4.4. Simulation results

In the following, we use grayscale figures to show the
magnitude of a parameter, where the intensity of the gray
scale indicates the relative magnitude of the parameter. In
our simulation results, damage of elements causes degrada-
tion of their elastic modulus and the completely damaged
ones are displayed as black. Therefore, the figure of
Young’s modulus is useful to show the failure patterns as
damage is accumulated. Similarly, in the maximum shear
stress figures the brightness indicates the magnitude of
maximum shear stress. In addition, in the figure of damage
elements, all the damaged elements are denoted by different
shades, i.e., white and dark gray for shear- and tension-
damaged elements at the current step, respectively, and
black for elements damaged in all the preceding steps.
4.4.1. Case BC-I: vertical loading

Fig. 11 shows the stress–strain curve as well as the
evolution in the number of damaged elements with strain,
for the sample under vertical compression. The stress–
strain curve has a shape similar to that observed in many
physical experiments. The Young’s modulus and uniaxial
compressive strength of this numerical specimen are
53.5GPa and 38.2MPa, respectively. It can be seen clearly
that some elements are damaged under approximately 60%
of the maximum load, but these damaged elements release
little elastic strain energy. The stress–strain curve stays
nearly linear up to the maximum load. Beyond the peak
load, the load-bearing capacity drops rapidly, followed by
a small residual strength.
Because the rock is inhomogeneous, the stress state in

the numerical specimen varies from point to point. The
shear and tensile stresses around the fractures maybe
enhanced or diminished, depending on the orientation,
geometry and stiffness of the fractures. The failure
processes of the numerical specimen at 6 strain levels (as
indicated by A–F in Fig. 11) are shown in Fig. 12. Initially,
the damaged elements are distributed mostly in the
, defined using DIB technique: (a) Young’s modulus map; (b) permeability
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Table 3

Material parameters used for the analysis of hydromechanical processes

Parameters Value

Gravity acceleration, g (m/s2) 9.8

Specific storativity, Ss (1/m) 0.0

Biot’s effective stress coefficient, a (dimensionless) 0.9

Coupling coefficient, b (dimensionless) 0.02

Internal frictional angle, f (deg) 301

Poisson’s ratio, n (dimensionless) 0.25

Permeability increase factor, x (dimensionless) 500

Liquid dynamic viscosity, m1 (kg/m s) 1.0� 10�3

Density of fluid, r1 (kg/m
3) 1.0� 103

de = 0.004 mm/step
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Fig. 10. Four cases of boundary conditions applied on the rock sample: (a) BC-I, uniaxial compression in vertical direction; (b) BC-II, uniaxial

compression in horizontal direction; (c) BC-III, axially loaded and pressure gradient in vertical direction and with confining pressure in horizontal

direction; (d) BC-IV, axially loaded and pressure gradient in horizontal direction and with confining stress in vertical direction.
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fractures. These damaged elements subsequently induce
stress concentrations around them, causing tensile damage
in the adjacent elements. At higher stress levels, adjacent
damaged elements merge. At the first strain level after the
peak load (point C: ea ¼ 0:00071), a large number of
elements are damaged in tensile mode. This causes the
initiation of cracks parallel to the loading direction, leading
to a sharp decrease in the load-bearing capacity of the
sample. As the applied vertical displacement increases,
more elements are damaged in tension, especially at the
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Fig. 12. The failure process of rock sample under uniaxial compression in

vertical direction (BC-II); ea is the strain in the loading direction: (a)

damaged elements; (b) Young’s modulus; (c) maximum shear stress.
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bridge between the cracks that previously formed in the
fractures (for example, point E: ea ¼ 0.0008). This leads to
the propagation of macroscopic cracks parallel to the
loading direction. The fractures have a significant effect on
the initiation of cracks in the rock sample; however the
macroscopic cracks that contribute to the instable failure
do not solely propagate in the fractures, but also penetrate
into the rock matrix. In this regard, we can come to the
similar conclusion as previously pointed by many research-
ers [30–32]: ‘‘under compression, a macroscopic crack can
not develop from a single, pre-existing crack, but must be a
result of the coalescence of crack branches and grain
boundaries.’’

4.4.2. Case BC-II: horizontal loading

When the sample is loaded under horizontal (uniaxial)
compression, the stress–strain curve as well as the number
of damaged elements is shown in Fig. 13. The Young’s
modulus and strength under this loading condition are
56.5GPa and 30.9MPa, respectively. The failure patterns
are also shown in Fig. 13(b). Under this loading condition,
the crack propagation path is more closely coincident with
the distribution of fractures, where most of the damage is
found. This is because the fractures in the rock sample are
roughly distributed in the horizontal direction. The main
macroscopic cracks are nearly parallel to the loading
direction (horizontal direction).
The main macroscopic cracks are always nearly parallel

to the loading direction no matter how the local hetero-
geneity affects the initiation of local damage. The
numerical results of above two cases of boundary condi-
tions indicate that the main macroscopic cracks that
contribute to the instable failure of rock are locally
controlled by the local heterogeneity of rock, but its final
pattern is dominated by the loading directions.

4.4.3. Case BC-III: vertical loading and flow

Fig. 14 presents the permeability variation during the
complete failure process of rock for Case BC-III. The
overall permeability of the rock sample is obtained from
the numerical sample as the ratio of volumetric flow rate
per unit area to pressure gradient as

k ¼
LQ

Ph � Pl

ml
rlg

, (19)

where L is the length of the sample (200mm), and Q the
total flux flowing through the rock sample in the direction
of pressure gradient. At the initiation of the test, the overall
permeability of this heterogeneous rock sample, without
stress, is calculated as 5.4� 10�15m2.
The damage of elements leads the variation of Young’s

modulus and permeability. Because of the local variation in
permeability, the distribution of flow velocity is also
modified. Fig. 15 shows the variation of Young’s modulus
(failure pattern), permeability, and flow velocity at
different stages of loading, corresponding to strain levels
as denoted A through D in Fig. 14.
In the pre-peak region of the stress–strain curve, the

permeability decreases with the axial stress due to
compaction. In this region, although some microcracks
initiate in fractures, they do not coalesce to form a
continuous flow channel (Fig. 15A), therefore the overall
permeability decreases monotonically (Fig. 14). Because of
the high permeability in the fractures, preferential flow in
these fractures is observed, as shown in Fig. 15A.
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Fig. 13. Stress–strain curve of the rock sample under uniaxial compression in horizontal direction (BC-II): ea is the strain in loading direction: (a) the

stress–strain curve as well as the number of damaged elements; (b) failure patterns (Young’s modulus) at strain levels A, B and C as denoted in (a).
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At a critical damage density, the stress peaks, and
immediately post-peak cracks rapidly initiate in the
fractures (Fig. 15B), which in turn lead to instable localized
failure in the rock sample—permeability increases drama-
tically in this area. With an increase of the externally
applied displacement, cracks propagate both upwards and
downwards to the top and bottom boundaries, where that
flow is facilitated by preferentially connected fracture
patterns.
In the post-peak region of the stress–strain curve,

damage evolves to other groups of elements (Fig. 15C),
which leads to the continuous increase in permeability and
decrease in load-carrying capacity. In general, from the
stress–strain curve, it can be seen that the rock sample
gradually loses its load-carrying capacity, and no flow-
through channel from top to bottom boundaries is formed.
The overall permeability increase is to 1.25 times of its
initial value.
As being found by other researcher [33], the per-

meability enhancement induced by local damage can
dramatically alter the flux distribution (Fig. 15C). It is
evident that the fracture patterns resulting from mecha-
nical localization influence the large-scale transport
properties.

4.4.4. Case BC-IV: horizontal loading and flow

Under boundary conditions BC-IV, the variation in
permeability with loading is shown in Fig. 16. In contrast
to the numerical results in Fig. 14, the confined compres-
sive strength varies from 47.1MPa in Case BC-III to
51.9MPa in Case BC-IV. Under this boundary condition,
the permeability decreases to 62% of its initial value at
peak stress, and increases to 133% of its initial value in the
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Fig. 15. The variation of Young’s modulus, permeability and flow vector of rock sample under boundary condition BC-III. The confining stress is

8.0MPa, the hydraulic pressures at the top and bottom boundaries are 7.5 and 6.0MPa, respectively, and ea is the axial strain in vertical direction.

W.C. Zhu et al. / International Journal of Rock Mechanics & Mining Sciences 43 (2006) 1182–11991196
final state. Except for these specific changes in critical
values of strength and permeability, the stress versus strain
and permeability versus strain curves show the same
tendency as that in Fig. 14.
Fig. 17 presents the evolution of the Young’s modu-
lus, permeability and flow velocity at each of four
strain levels. The damage within fractures leads to an
increase in permeability. With an increase in external
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displacement, these two damage zones become connected,
and result in the formation of a preferential flow channel
that is parallel to the direction of the applied hydraulic
gradient.

By contrast, the flow velocity fields in the rock samples
under these last two applied displacement boundary
conditions are quite different from each other—due both
to the existence of pre-existing fractures and to the newly
formed macroscopic cracks. Before the peak stress is
reached, although some cracks are also initiated in
fractures, they do not link with each other to form
new flow channels, therefore the overall permeability
decreases monotonically even if these cracks have
induced a local increase in permeability. At the post-peak
region, the permeability increases obviously as a result
the corresponding fluid flow patterns evolve from rela-
tively uniform distributed porous flow, to highly focused
flow along fractures. This phenomenon has been discussed
in the previous studies [24,33]. In our simulation, the
permeability of the damaged elements is specified to its 500
times; however, from these two simulations including flow
process, it can seen that the overall permeability increase is
still very limited. Therefore, these simulation results denote
that it is localization, together with its spatial arrangement,
that dominates the overall hydro-mechanical behavior of
the materials.

5. Conclusions

In this work, a DIB method is used to incorporate the
characterization of rock heterogeneity directly into a well-
established code named RFPA for the fully coupled
hydromechanics of fractured rocks. This direct incorpora-
tion has made it possible to quantify the important impact
of local rock heterogeneities on the coupled hydromecha-
nical behavior of fractured rocks. This approach is
fundamentally different from the contemporary mathe-
matical models in which statistical realizations are used
to characterize the local rock heterogeneities. In statis-
tical realization-based models, critical local-scale hetero-
geneities in rock may be overlooked because it is usually
difficult to specify the statistical distribution of parameters
that may fully represent the real microstructures of rock.
In the DIB model presented here, the rock sample is
discretized into many square elements, each of the same
size, which directly correspond to the finite elements
used to represent the mechanical and transport proper-
ties. Magnitudes of modulus and permeability may be
assigned to elements, representative of the mineralogical
composition based on DIB technique. A catalog of
properties links the digital recognition with the appropriate
mechanical or transport property. Using this technique,
the basic governing equations are same for all components
(i.e., minerals), but the material properties differ. The
approach incorporates the small-scale variability in the
initial deformation modulus, strength and permeability
directly into a coupled hydro-mechanical model. In
this DIB simulation approach, image voxels are mapped
directly to equivalent mechanical and flow properties
as defined by the voxel color or gray degree. These
property maps are ported to the model capable of solving
directly for the evolving deformation, and fluid flow.
Because material properties can be resolved at pixel scales
through the DIB processing technique, this approach can
capture important heterogeneous effects which are cru-
cially important for the coupled hydromechanics of
fractured rocks.
Simulation examples demonstrate that depending on

the loading conditions, the initial distribution patterns of
rock heterogeneities, such as fractures, determine the
coupled hydromechanical behaviors of fractured rocks.
These behaviors include the coalescence of existing cracks,
and the formation of new cracks. Subsequently, these
behaviors would in turn affect the flow rate, stress re-
distribution, localized deformation and progressive failure
process. In particular, we have graphically demonstrated
that the pre-peak coupled hydromechanical responses are
significantly different from those observed post-peak. In
the pre-peak portion of the stress–strain curve, the
permeability decreases with the axial stress and some
cracks propagate from the existing fractures. However,
these cracks do not coalesce to form flow-through
channels. Therefore, the overall directional permeability
is reduced monotonically with strain although the cracks
may have induced local increases in permeability. In
the post-peak regime, the cracks that form from exis-
ting fractures coalesce, and lead to unstable localized
failure in the rock sample. Correspondingly, the per-
meability increases, and preferential flow channels are
formed. These simulation results also demonstrate that
it is localization, together with its spatial arrangement,
that dominates the overall hydro-mechanical behavior of
the materials.
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Fig. 17. The variation of Young’s modulus, permeability and flow vector of rock sample under boundary condition BC-IV. The confining stress is

8.0MPa, the hydraulic pressures at the top and bottom boundaries are 7.5 and 6.0MPa, respectively, and ea is the axial strain in the horizontal direction.
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