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ABSTRACT. Opening-mode fractures in layered materials, such as sedimentary
rocks, pavement, functionally graded composite materials or surface coating films,
often are periodically distributed with spacings scaled to the thickness of the fractured
layer. The current general explanation is that when the fracture spacing to layer
thickness ratio changes from greater than to less than critical values the normal stress
acting perpendicular to the fractures changes from tensile to compressive. This stress
state transition is believed to preclude further infilling of fractures, and the critical
fracture spacing to layer thickness ratio at this point defines a lower limit, called
fracture saturation. To better understand the controls on fracture spacing, we have
investigated the problem using a progressive fracture modeling approach that shares
many of the natural kinematic features, such as fracture nucleation, fracture infilling
and fracture termination. As observed experimentally, our numerical simulations
demonstrate that fracture spacing initially decreases as extensional strain increases in
the direction perpendicular to the fractures, and at a certain ratio of fracture spacing
to layer thickness, no new fractures nucleate (saturated). Beyond this point, the
additional strain is accommodated by further opening of existing fractures: the
spacing then simply scales with layer thickness, creating fracture saturation. An
important observation from our fracture modeling is that saturation may also effec-
tively be achieved by the interface delamination and throughgoing fracturing, which
inhibit additional layer-confined fracturing. We believe that these processes may serve
as another mechanism to accommodate additional strain for a fracture saturated layer.
Because interface debonding stops the transition of stress from the neighboring layers
to the embedded central layer, which may preclude further infilling of new fractures,
our fracture modeling approach predicts a larger critical length scale of fracture
spacing than that predicted by a stress analysis approach based on stress transition
theory. Numerical simulations also show that the critical value of the fracture spacing
to layer thickness ratio is strongly dependent on the mechanical disorder in the
fractured layer. The spacing to thickness ratio decreases with increasing heterogeneity
of the mechanical properties.

introduction

Opening-mode fractures are common in both natural and manmade layered
materials, including sedimentary rocks, pavement, functionally graded composite
materials or surface coating films. They arise in materials which contract on cooling or
drying, and are in many instances confined by layer boundaries with their height equal
to the layer thickness (Helgeson and Aydin, 1991; Gross and Engelder, 1995; Fischer
and others, 1995). This contraction, coupled with adhesion to neighboring layers,
leads to a buildup of stress in the material, and when the stress exceeds the local tensile
strength, fractures nucleate in the material. This relieves the stress locally along the
sides of the fractures, but concentrates stress between the fractures. As a result, new
fractures may infill between existing fractures and the fracture spacing decreases. The
relation between fracture spacing and layer thickness has long been of interest in
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geosciences and material sciences, and has been studied by a number of investigators
(Price, 1966; McQuillan, 1973; Narr and Lerche, 1984; Huang and Angelier, 1989;
Narr and Suppe, 1991; Gross, 1993; Gross and others, 1995; Wu and Pollard, 1993,
1995; Becker and Gross, 1996; Ji and Saruwatari, 1998; Bai and Pollard, 2000a, 2000b;
Bai and others, 2000). Commonly cited as a theoretical explanation for the linear
relationship, Hobbs (1967) introduced for the first time the shear-lag model of Cox
(1952), and modified the mathematical derivation of the model to incorporate an
elastic layer-matrix system. In a more recent study (Ji and Saruwatari, 1998), the Hobbs
model was revised to account for the non-linear decay of shear stress in the matrix.

The subject of fracture spacing was also investigated by field study (Gross, 1993)
and experimental studies (Wu and Pollard, 1993, 1995). Wu and Pollard (1993, 1995)
have demonstrated this process in four-point bending experiments with brittle coating
materials. Their experiments showed that as the remote strain increases, the fracture
spacing decreases approximately as the inverse of the remote strain, by fractures
nucleating and propagating between earlier formed fractures. Eventually the fractures
reach such a close spacing that no more fractures can infill, even with increasing strain.
Instead, the existing fractures continue to open to accommodate the applied strain.

In the latest studies (Bai and Pollard, 2000a, 2000b; Bai and others, 2000), the
spacing of fractures formed during the extension of layered rocks has been investi-
gated using the finite element method. In these studies, the stress distribution between
two adjacent fractures has been investigated as a function of the fracture spacing to
layer thickness ratio using a three-layer elastic model with a fractured central layer. The
results show that when the fracture spacing to layer thickness ratio exceeds a critical
value, in the center between the fractures the normal stress acting perpendicular to the
fractures changes from tensile to compressive. Bai and Pollard (2000a) concluded that
this stress state transition precludes further infilling of new fractures unless either
existing flaws are present or the fractures are driven by an internal fluid pressure.

Although the aforementioned explanation of fracture saturation has been widely
accepted, few of the existing models can adequately reproduce the ongoing process of
fracture nucleation, propagation, infilling and saturation, as observed experimentally.
However, in our fracture modeling approach, we found that there are many other
reasons that drive the system to reach the stage of fracture saturation. Two of the
important reasons are the possible development of interface delamination and frac-
tures passing through the layer boundaries. In addition, the analytical and numerical
models considered so far tend to oversimplify the materials as a homogeneous
medium. We note that failure phenomena depend very strongly on the properties of
the material disorder and thus the involved materials cannot be treated as a homoge-
neous medium. Fracture of heterogeneous solids typically initiates from scattered weak
sites in the medium which nucleate fractures upon exposure to a tensile stress. The
nucleation of fractures is also heterogeneous in this case. The problem of how
fractures in an embedded layer, particularly one with heterogeneous mechanical
properties, initiate, grow and interact to produce the resulting fracture patterns
remains largely unsolved. Therefore, a new theoretical understanding is needed.

The process of fracture formation in layered materials has been described as
‘sequential infilling’ (Hobbs, 1967; Gross, 1993), and the point where no more
fractures can infill is called fracture saturation (Wu and Pollard, 1995; Bai and Pollard,
2000a). Similar terms were proposed in other literature (Garrett and Bailey, 1977a,
1977b; Parvizi and Bailey, 1978; Cobbold, 1979; Narr and Suppe, 1991; Wu and
Pollard, 1991; Rives and others, 1992). To better understand the mechanisms of
sequential infilling and to explain fracture saturation, we present new numerical
modeling results, which are the focus of this paper. Of interest are the ensuing pattern
of fractures and the dependence of the fracture spacing on the strain. We consider
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three-layer material models with an embedded layer that fractures under a quasistati-
cal, slowly increasing strain (induced, for example, by temperature changes, by
desiccation, or by mechanical deformations); this situation is of common occurrence,
see Bai and others (2000) for a general survey. In most of the stress analysis ap-
proaches, the fractures have to be inserted in the model, and the fracture forming
process cannot be modeled. In this paper we describe a series of numerical simula-
tions, using a RFPA (Realistic Fracture Process Analysis) code in which the progressive
evolution of a fracture set is modeled during a controlled loading sequence, thus
providing direct observations of the different stages in the development of the fracture
set, from initiation to saturation. Unlike static stress analysis approaches in which the
fractures have to be inserted in the model (Bai and others, 2000), our numerical code
can model the complete fracture forming process. This fracture modeling technique
can provide valuable insight concerning fracture processes that are impossible to
observe in nature and difficult to consider using static stress analysis approaches. By
changing the layer thickness and the material heterogeneity of the model we are able
to examine how spacing is dependent upon thickness and heterogeneity at each stage
of development. For simplicity, we postulate that the mechanical central layer has a
lower strength so that the fracture nucleation is confined in this single layer.

We first validate the model by comparing the stress states between two adjacent
fractures for a typical three-layer model with available data from literature (for
example, Bai and Pollard, 2000a, 2000b; Bai and others, 2000). We then apply the same
three-layer model, but without pre-existing fractures, to investigate the progressive
evolution of fracture populations in space, as a function of the applied strain. Material
heterogeneity of the mechanical properties is considered in our modeling studies. The
models are loaded by mechanical stretch in a displacement-controlled manner, and
the process of fracture infilling and saturation is the consequence of the mechanical
loading. We check the fracture spacing as a function of the average applied strain, the
fracture spacing to layer thickness ratio, and the influence of heterogeneity of the
material properties on this ratio. Finally, the implications of the results for the study of
fracture spacing in layered rock are discussed.

In this paper, based on the definition by Bai and others (2000), the term
“fracture” is used to represent any fracture that cuts or almost cuts through the
fractured layer. The term “flaw” is used for a crack that is very short compared to the
thickness of the fractured layer. Fractures form by propagation of flaws or coalescence
of multi-flaws.

numerical method and verification

Numerical Method
We use a two-dimensional finite element code named RFPA2D (Realistic Failure

Process Analysis code). This code is based on the theory of elastic-damage mechanics,
and was originally developed by Tang (1997), based on FEM (finite element method)
and improved at Mechsoft, China (RFPA User Manual, 2005). The code and the user
manual can be freely downloaded from www.rfpa.cn.

In RFPA2D, the solid or material is assumed to be composed of many elements with
the same size, and the mechanical properties of these elements are assumed to
conform to a given Weibull distribution as defined in the following function:

f �u� �
m
u 0

� u
u 0
�m�1

exp��� u
u 0
�m� (1)

where u is the parameter of the element (such as strength or elastic modulus); the scale
parameter, u0, is related to the average of the element parameter and the shape
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parameter, m, defines the shape of the distribution function. According to the
definition, a larger m implies a more homogeneous material. We therefore call this
parameter (m) the homogeneity index. In general, we assumed that the Young’s
modulus and strength (compression and tension) of mesoscopic elements that are
used to simulate a rock specimen conform to two individual distributions with the same
homogeneity index. The mesoscopic elements are assumed to be isotropic and
homogeneous.

At the beginning, the element is considered elastic, and its elastic properties can
be defined by Young’s modulus and Poisson’s ratio. The stress-strain curve of an
element is considered linear elastic until the given damage threshold is attained, and
then is followed by softening. We choose the maximum tensile stress criterion and
Mohr-Coulomb criterion respectively as the damage thresholds (Brady and Brown,
1993; Tang, 1997).

In elastic damage mechanics, the elastic modulus of the element may degrade
gradually as damage progresses. The elastic modulus of damaged material is defined as
follows (Tang, 1997).

E � �1 � ��E0 (2)

where � represents the damage variable, E and E0 are elastic moduli of the damaged
and the undamaged material, respectively. Here the element as well as its damage is
assumed isotropic and elastic, so the E, E0 and � are all scalar.

When the mesoscopic element is under a uniaxial stress state (including uniaxial
compression and uniaxial tension), the constitutive relationship of elements is shown
in figure 1. At the beginning, the stress-strain curve is linear elastic and no damage
occurs, that is � � 0. When the maximum tensile strain criterion is met, the damage of
the element occurs.

The constitutive relationship of a microscopic element under uniaxial tension as
shown in the third quadrant of figure 1 can be expressed as

� � �
0 ε � εt0

1 �
ftr

E0ε
εtr � ε � εt0

1 ε � εtu

(3)

where ftr is the residual tensile strength defined as ftr��ft0 ��E0εt0; ft0 and � are uniaxial
tensile strength and residual strength coefficients, respectively; εt 0 is the strain at the
elastic limit (also called threshold strain); and εtu is the ultimate tensile strain of the
element, at which the element would be completely damaged. The ultimate tensile
strain is defined as εtu��εt0, where � is called ultimate strain coefficient. Equation (3)
can be expressed as

� � �
0 ε � εt0

1 �
�εt 0

ε
εtu � ε � εt0

1 ε � εtu

(4)

Additionally, we assume that the damage of a mesoscopic element in a multiaxial
stress condition is also isotropic and elastic. According to the method of extending a
one-dimensional constitutive law under uniaxial tension to a complex stress condition,
we can easily extend the constitutive law described above to use for three-dimensional
stress states when the tensile strain threshold is attained. Under multi-axial stress states
the element still damages in tensile mode when the equivalent major tensile strain ε�
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attains the above threshold strain εt0. The equivalent principal strain ε�t0 is defined as
follows:

ε� � ����ε1	
2 � ��ε2	

2 � ��ε3	
2 (5)

where ε1, ε2 and ε3 are three principal strains, and � 	 is a function defined as follows:

�x	 � �x x � 0
0 x � 0 (6)

The constitutive law of the element subjected to multiaxial stresses can be easily
obtained only by substituting the strain, ε, in equations (3) and (4) with the equivalent
strain, ε�. The damage variable is expressed as

� � �
0 ε� � εt 0

1 �
�εt 0

ε�
εtu � ε� � εt0

1 ε� � εtu

(7)

In order to study the damage of an element when it is under compressive and
shear stress, the Mohr-Coulomb criterion is chosen to be the second damage thresh-
old.

F � 
1 �
1 � sin �

1 � sin �

3 � fc0 (8)

Fig. 1. Elastic damage constitutive law of elements under a uniaxial stress state where ft0 and ftr are
uniaxial tensile strength and residual uniaxial tensile strength of element, respectively; and fc0 and fcr are
uniaxial compressive strength and corresponding residual strength of element, respectively.
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where 
1 and 
3 are major and minor principal stress respectively; fc0 is the uniaxial
compressive strength and � is the internal friction angle of the mesoscopic element.
Again, compressive stresses are positive and tensile stresses are negative. As a matter of
fact, the numerical values of 
1 and 
3 indicate the magnitude of maximum and
minimum compressive stresses, respectively, when these two principal stresses are both
compressive. In the same way, when the element is under uniaxial compression and
damaged according to the Mohr-Coulomb criterion, the similar expression for the
damage variable, �, can be described as follows:

� � � 0 ε � εc 0

1 �
�εc0

ε
ε � εc0

(9)

where � is the residual strength coefficient. We assumed that fcr/fc0�ftr/ft0�� is true
when element is under uniaxial compression or tension.

When an element is under a multi-axial stress state and its strength satisfies the
Mohr-Coulomb criterion, damage occurs, and we must consider the effect of other
principal stresses in this model during the damage evolution process. When the
Mohr-Coulomb criterion is met, we can calculate the maximum principal strain
(maximum compressive principal strain)εc0 at the peak value of maximum principal
stress (maximum compressive principal stress).

εc 0 �
1
E0

�fc0 �
1 � sin �

1 � sin �

3 � ��
1 � 
2�� (10)

In this respect, we assume that the shear damage evolution is only related to the
maximum compressive principal strain, ε1. So, we use the maximum compressive
principal strain, ε1, of the damaged element to substitute the uniaxial compressive
strain, εc0 in equation (9). Thus, the former equation (9) can be extended to triaxial
stress states for shear damage.

� � � 0 ε1 � εc 0

1 �
�εc0

ε1
ε1 � εc0

(11)

In summary, our numerical approach to the fracture problem can be described as
the following: The embedded layer is brittle, so that each element can fail under stress.
Our numerical simulation involves the calculation of the stresses acting on the
elements and the mechanical property change of the damaged elements according to
the constitutive laws and strength criterion described above. The value at which a
particular element fails is random, but fixed at the start of the modeling process (that
is, the disorder is quenched). The statistical distribution of the breakdown thresholds
is a material property and is described by equation (1). Under a quasi-statically
increasing external stretch the stress or strain of the elements are given by the solution
of the FEM for mechanical equilibrium at each FEM node. If the stress of an element
attains its prescribed breakdown strength, the element fails irreversibly, and its elastic
constant is changed according to its post-failure law, as described above. This is
followed by additional relaxation steps, in which the new equilibrium positions are
calculated. In the brittle regime these steps may lead to the failure of additional
elements. Iterating the procedure leads to fracture propagation, where fractures are
defined by groups and alignments of failed elements.

Our method is similar to the one that Spyropoulos and others (2002) used in their
study of the problem of the crack population formation and its evolution on a brittle
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layer that is driven on the bottom by an extending layer. In their model, the lower
plastic layer is extended by a small amount. That in turn strains the top layer whose
equilibrium requirement is satisfied when the total stresses applied to it are lower than
its yield strength. If at any point on the brittle layer the yield strength is exceeded, a
crack is allowed to form. The crack accumulates slip until the stress on it satisfies the
boundary condition, and the system has reached quasistatic equilibrium. It gets driven
by additional extension applied to the bottom layer, and the process repeats itself.

Verification of the Numerical Method
Before reporting the results of our simulations in progressive fracture modelings

we first focus on verifying the model by carrying out analysis of stress that governs the
model’s behaviour. To do this we will consider a model put forth by Bai and others
(2000). In the same way as Bai and others (2002), we investigate the stress state
transition between adjacent equally spaced fractures. The model, its boundary and
loading conditions, and the FEM mesh are shown in figure 2. The mesh was refined by
reducing the sizes of the elements until calculated stresses differed by less than 0.1
percent in the central layer. The fractured central layer has a thickness Tf �30mm,
which is also the height of the fractures (H). The overall thickness of the model (T � Tf

2Tn) is 120mm. The model has a width W�400mm and contains a total of 48,000
elements, each 1 mm square. For this layered model, we postulate the two materials
across the layer boundaries are welded together, that is no slip is permitted along the
layer boundaries, and we postulate a plane strain condition for the entire model. The
Young’s moduli and Poisson’s ratios for the adjacent layers are listed in table 1.

We fix the whole bottom boundary of the model in the y-direction, the whole left
boundary of the model in the x-direction, and the left corner of the model in both x
and y-directions as well. Loading is applied through imposed uniform lateral displace-
ments prescribed over right vertical face with the opposite face fully restrained. The
top boundary is free to displace as necessary to produce the designed values of average
strain in the x-direction for the study of the average strain effect on the critical spacing
to layer thickness ratio. Vertical displacements are unrestrained on the vertical model
sides. Mean horizontal strain is applied to a maximum of 0.075 percent.

In the following validation analysis, four fractures are pre-assigned in the central
layer. They are equally-spaced along the central layer, perpendicular to the long axis,
and fully transect the layer height (300 mm) with an aperture of 0.1 mm. The two
central fractures are used to represent any two adjacent fractures in a row composed of
many members, as only the two end segments will have different stress distributions

Fig. 2. The three-layer model and its boundary conditions. The X direction is parallel to the layer
boundaries and perpendicular to the fractures. The Y direction is perpendicular to the layer boundaries.
The thickness of central layer and neighboring layers are indicated with Tf and Tn, respectively. The spacing
between adjacent fractures is denoted as S, and the model width is defined as W.
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from the other segments (Bai and Pollard, 2000). With this defined geometry, the
evolution of the stress distribution is examined as a function of the fracture spacing to
the fractured layer thickness ratio.

To develop a clear understanding of the transition in horizontal stress (
x) along
line O-O of figure 2 for a homogeneous medium, the homogeneity index is set to
represent a uniform material with m large enough to represent a very homogeneous
material. As shown in figure 3, the critical fracture spacing to fracture layer thickness
ratio is about 1.0 (normal stress is zero in the central area between the adjacent
fractures). This critical value determines the stress state between the adjacent frac-
tures: when the ratio is below this critical value the stress along the segment O-O is
compressive, and while above this critical value the stress is tensile. This is confirmed by
the results of the stress distribution in figure 3. As illustrated in figure 4, the periodic
distribution of stresses between fractures is shown to change as the fracture spacing to
layer thickness ratio (S/Tf) transits the threshold of unity.

As shown in figure 3, the stress along line O-O reaches a peak value at the
mid-point between adjacent fractures. This stress state varies with the S/Tf ratio, as
shown in figure 5. Our results agree well with the numerical results obtained by Bai and
Pollard (2000a). Bai and Pollard (2000a) recognized that the stress state between the
adjacent fractures is determined by three mechanisms. The first mechanism is the
transfer of stress from adjacent layers, which can only produce tensile stress (
Txx) in
the central area. The second mechanism involves the contraction of the fractured layer
in the vertical direction as the fractures shorten and correspondingly open. The
central layer contracts more when fractures are present than when they are absent, and
when longitudinal extension is applied, which can produce a vertical compressive
stress. Because of the constraint in the horizontal direction, the vertical compressive
stress can produce a horizontal stress (
Cxx). The third mechanism is the effect of the
traction-free fracture surface, which eliminates both the transferred stress and the
effect of horizontal constraint near the fractures. The horizontal stress (
x) between
two fractures is determined by the relative magnitudes of the transfer stress and the
compressive stress mentioned above, which can be described as 
x �
Cxx 

Txx . The
results from our model runs support these observations.

Table 1

Young’s moduli and Poisson’s ratios for adjacent layers
Refer to Layer level E (GPa) v σc 

(MPa)
σt 

(MPa)

m Layer size Number of 
elements 

Central layer 50 0.25 - - 100 30mm×400mm 12000 
Fig.2 

Top and bottom layer 10 0.35 - - 100 45mm×400mm 18000 

Central layer 50 0.25 - - 2 30mm×400mm 12000 
Fig.6 

Top and bottom layer 10 0.35 - - 6 45mm×400mm 18000 

Central layer 50 0.25 100 10 2 30mm×400mm 12000 
Fig.8 

Top and bottom layer 10 0.35 200 20 6 45mm×400mm 18000 

Central layer 50 0.25 100 10 2   
Fig.11 

Top and bottom layer 10 0.35 200 20 6   
Central layer 50 0.25 100 10  30mm×600mm 18000 

Fig.13 
Top and bottom layer 10 0.35 200 20  45mm×600mm 27000 
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As real materials, especially rocks, are never homogeneous because they contain
inhomogeneities and defects at various length-scales, it is necessary to consider this
local-scale heterogeneity in fracture modeling. In our numerical study, this is accommo-
dated by the implicit inclusion of heterogeneity through the Weibull parameter, m, as
described in equation (1). The FEM model we used comprises a large number of
elements, and its local heterogeneity is determined by assigning to each element a
group of mechanical parameters, such as Young’s modulus, strength, et cetera, from the
given statistical distribution [equation (1)]. The extent of the heterogeneity is repre-
sented by an index of m.

The situation for heterogeneous models is considerably more complex than in
homogeneous models. Here a different and very important feature appears, namely,
small scale stress fluctuation. We use a model with the same geometry as in figure 2, but
with heterogeneity considered in the model (m�2), as shown in figure 6. The other
parameters are the same as those used in figure 2 (see table 1 for fig. 6).

In figure 7, as in figure 3, we display the stress (
x) along the section O-O indicated
in figure 6. Stresses are shown to fluctuate around the mean stress of the homogenous
material, but give a local variation that is conditioned by the magnitude of mean stress.
Expected from this is that local fluctuations in stress and in strength will create local
conditions where fractures are more likely to nucleate and grow, which, in turn, may
correspondingly affect the resulting fracture patterns. Consequently, a smaller critical
length scale of fracture spacing comparing with the homogeneous model is expected.
The following numerical results regarding fracture pattern for heterogeneous materi-
als show that during the process of fracture infilling the new fracture does not always
initiate at the middle point between the earlier formed fractures. Instead, the new
fracture initiates at a point where the local element stress reaches its failure strength.

Fig. 3. The distribution of 
x along the line O-O with different fracture spacing to thickness ratios
(S/Tf), where the positive sign represents tensile stress and the negative sign represents compressive stress.
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The above analysis of stress between the pre-existing fractures shows that, as
fractures behave as free surfaces, as a result, the normal stress in the vicinity of a
fracture is greatly reduced, thereby inhibiting the formation of new fractures. This
zone of reduced stress, referred to as the stress reduction shadow (Becker and Gross,
1996), scales with fracture height and is considered to be responsible for the observed
correlation between fracture spacing and layer thickness (Cox, 1952; Lachenbruch,
1961; Hobbs, 1967; Pollard and Segall, 1987).

modeling of fracture processes in a three layer model

In the previous section, we confirm that there is a stress state transition between
two adjacent opening-mode fractures in a layered model under extension. In this
section, the numerical code described above is applied to model the fracture pattern of
the same three-layer model, but without pre-existing fractures. The models are loaded
by mechanical stretch in a displacement controlled manner, and the process of
progressive fracture infilling and saturation is the consequence of the mechanical
loading. This fracture modeling provides us with a unique opportunity to investigate
the mechanism of how a fracture set evolves with increasing applied strain, thereby
factoring out the effects of layer thickness and mechanical properties.

Fig. 4. Modeled fringe contours in layers under different fracture spacing to thickness ratio. (Note: One
of the most widely used techniques to visualize stress fields is the technique of photoelasticity. Photoelasticity
provides the contours of difference in principal stresses. The contours are generally observed as fringes, and
fringes are usually numbered as 0, 1, 2, 3,. . . et cetera, depending on the specific optical arrangements
employed. The fringes in general appear as broad bands, the thickness of the fringe is indicative of the
gradient of the stress variable. The fringes are very broad when the gradient is small, and vice versa. Further, a
zone of high density of fringes indicates a zone of stress concentration. Thus, a mere qualitative observation
of the fringes can yield a wealth of useful information about stress distribution)
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Fracture Infilling and Fracture Saturation
Table 1 (for fig. 8) also lists the mechanical properties and the model and mesh

characteristics adopted for this analysis. Strains are applied to the model through the
application of lateral displacements to the model ends. The total strain is applied in
240 increments, from an initial value of 0 to a final value of 0.048 percent.

Figure 8 illustrates the numerically obtained fracture infilling process and fracture
saturation. According to the order of the fracture formation, we can divide the whole
process into four stages. In the first stage (figs. 8A and 8B), before strain reaches
0.086x10-3, randomly distributed short fractures form in the central layer at its weak
locations, where the local tensile stress reaches the local tensile strength. During this
stage, the tensile stress results mainly from the tensile strain applied to the model ends.
The initial fractures are isolated from these seed locations and do not interact. In the
second stage (figs. 8B and 8D), four long fractures form sequentially. In the third stage
(figs. 8E–8J), six additional fractures nucleate and infill between these first four
fractures. Finally, upon reaching the ultimate strength of the neighboring layers,
catastrophic failure occurs when a large, opening mode fracture propagates across the
entire model. This throughgoing fracture precludes further fracture infilling, so that
even large increments of strain did not result in the formation of additional infilling
fractures (figs. 8K and 8L). Prior to throughgoing fracture, all the fractures are
mechanically confined, and arrest at layer boundaries during sequential infilling.

Figure 9 shows the temporal distribution of fracture events that occurred during
the loading process. The curve correlates the fracture event counts with the fracture
infilling phenomenon very well. It is seen from figure 9 that in the less advanced stage
I, a steadily increasing number of small fractures occur, because lower strength flaws
propagate earlier due to their lower critical fracture stresses. However, during the
stages II and III, the number of flaw nucleation events no longer increases systemati-
cally with increasing strain. Rather, the progressive development of fracture events
with increasing strain is characterized by a shift from a broad distribution to a narrow
distribution. The dramatic decrease in local tensile stress between adjacent fractures
and the increase in critical fracture stress cause additional fracturing to occur only
after an incremental threshold strain. In other words, once a thickness cut-through
fracture nucleated, the layer generally remains stable during gradual increases in
extensional strain up until the point where critical stress is achieved between adjacent
fractures. As shown in figure 9, whereas the magnitude of extensional strain increases
gradually within the layer, changes in fracture spacing are abrupt. A comparison

Fig. 5. The transition of stress 
x at the middle point of the line O-O relative to fracture spacing to
thickness ratios (S/Tf). Tensile stresses are positive, and compressive stresses are negative. The material is
homogeneous. (A) Obtained from RFPA2D, (B) Results of Bai and Pollard (2000) for the same problem.
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between figure 8 and figure 9 reveals that each abrupt increase in fracture event counts
corresponds to an event of fracture infilling. For the throughgoing fracture that
occurred in the final stage, the curve shows a sudden stress drop to zero and an abrupt
increase of fracture event counts.

Figure 10 shows the numerically obtained relationship between the fracture
spacing to layer thickness ratio and strain. It is shown that this ratio decreases with
increasing strain.

Critical Ratio of Fracture Spacing to Layer Thickness
In order to study the dependence of critical fracture spacing on the layer

thickness, five models with different values of layer thickness (Tf � 15, 20, 25, 30 and
35mm) are used. We select Tn � 2Tf . All the other mechanical properties are shown in
table 1 for figure 11. Strains are applied to the model through the application of lateral
displacements to the model ends. The total strain is applied in 110 increments, from
an initial value of 0 to a final value of 0.022 percent.

Figure 11 shows the three layer models and the numerically obtained fracture
spacing at saturation. All of the simulations produce a similar relationship between
spacing and thickness: spacing decreases rapidly with strain in the early stages of the
simulation and then decreases less rapidly, finally reaching a nearly constant value. In
other words, great applied strain beyond some limiting value will not change the
spacing significantly. This is the so-called “fracture saturation” (Wu and Pollard, 1991,

Fig. 6. The three-layer model and its boundary conditions with heterogeneity of mechanical properties
considered. The X direction is parallel to the layer boundaries and perpendicular to the fractures. The Y
direction is perpendicular to the layer boundaries. The thickness of central layer and neighboring layers are
indicated with Tf and Tn, respectively. The spacing between adjacent fractures is denoted as S, and the model
width is defined as W. The box shows in detail the heterogeneity in the model. As the model has 48000
elements and the scale of the elements is too small to identify the element mesh, we show a small portion of
the model in a big box. The different gray color in the box represents different value of mechanical
properties of the individual element.
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1992). Comparing the two extreme thicknesses from our numerical simulations, Tf
�15mm and Tf �35mm, critical ratio for saturation spacing increases systematically
from 1.67 to 2.28 under the same applied strain.

By plotting the critical fracture spacing to layer thickness ratio (S/Tf at fracture
saturation) versus layer thickness (Tf ), we obtain the relation shown in figure 12. Each
point on this graph represents the mean value of four simulations of spacing S at the
critical strain. Although there is scatter in the data on spacing, the slope of the curve in
this figure is found clearly to be positive. That is, the critical fracture spacing to layer
thickness is linearly related to the layer thickness. We did more than 20 runs with the
same models and found that this is not a result of mesh effect problem. We then
believe that this is a size scale dependent problem. It is important to mention that
when we studied this relationship with the same models based on a stress analysis
approach (that is, only calculate the stress distribution without fracture modeling), we
found that the critical ratio (close to 1) of the fracture spacing to layer thickness is
independent of the layer thickness (the dashed line shown in the same fig. 12). In
addition, the fracture modeling approach also shows a 67 to 128 percent higher critical
value of the fracture spacing to layer thickness ratio than that obtained from a stress
analysis approach. Unfortunately, no published experimental data except those from
numerical tests in the present paper are available on the observed differences in
critical ratio of fracture spacing to layer thickness. We hope that our work will
encourage more systematic studies, particularly experiments.

A difference of scale length of fracture spacing between fracture modeling
approach and stress analysis approach is observed in our studies. As shown in figure 12,
when we calculate the critical fracture spacing to layer thickness ratio, we found that
the stress analysis approach predicts a linear relationship between critical fracture

Fig. 7. The distribution of 
x along the line O-O shown in figure 2 with different fracture spacing to
layer thickness ratios (S/Tf ). The homogeneity indices are m�2 for the thick lines representing relatively
heterogeneous material, and m�1000 for the thin lines representing relatively homogeneous material,
respectively. Positive stresses are tensile.
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spacing and layer thickness, whereas the fracture modeling approach reveals a non-
linear relationship between critical fracture spacing and the layer thickness.

Effects of the Heterogeneity on Critical Fracture Spacing to Layer Thickness Ratio
In order to study the influence of heterogeneity on the fracture patterns and the

critical fracture spacing to layer thickness ratio, we chose eight different values of the
homogeneity index, m�1.1, 1.5, 2, 4, 6, 8, 10 and 15, for the central layer to setup
models representing relatively heterogeneous to relatively homogeneous materials,
while keeping other parameters constant. The mechanical properties and the model
size are shown in table 1 for figure 13.

Figure 13 shows the eight models and the final stage of the modeling after the
fractures are well-developed (that is, saturated). From our modeling we observed a

Fig. 8. Numerically obtained sequence of images of a portion of a crack pattern forming in a central
layer (m�2, relatively heterogeneous) embedded between two neighboring layers. This sequence illustrates
the “fracture infilling process and fracture saturation” described in the text. The numbers, 1-10, indicate the
sequence of the fracture infilling. Note: the dark elements represent the nucleated flaw. Fractures form by
connection of flaws. The shading intensity indicates the relative magnitude of the maximum shear stress
within the elements. This figure shows how the evolution of fracturing in the model affects the stress
distribution. The sequence of fracture formation is shown by the sequential notation on the figures.
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change in the way in which fracture occurred as the heterogeneity in the model was
varied: for a relatively homogeneous model (as shown in figs. 13G and 13H), fracture
formed through the propagation of newly nucleated small fractures in lines more or
less perpendicular to the layer. For highly heterogeneous material model, however, it
is found that fractures did not form by crack propagation, but rather formed by the
coalescence of independent flaws (weaker elements).

Numerical results show that even a crack starts to propagate, it does not mean that
it will propagate all the way to cut the thickness. In addition, the fracture nucleation
sometimes starts from the interface, rather than from the interior of the layer, and the
fracture propagation more or less takes a wavy path across the layer. As mentioned
above, the theories mentioned by Hornig and others (1996) predict that cracks will
tend to form in the middle of existing fractures of the layer, as that is ideally where the
stress in the area will be largest, and the length scale of fracture spacing pattern
decreases by a factor of 2 with each generation of fractures. In our models with
heterogeneity considered, however, new fractures are observed to form at locations
that are not always in the middle between the existing adjacent fractures.

Except for the influence of heterogeneity on fracture mode, numerical results
also demonstrate that fracture event patterns are influenced greatly by the degree of
heterogeneity of the materials. Figure 14 shows the cumulative fracture events as a
function of loading step for various homogeneity indexes. The results show that the
relatively heterogeneous models produce more fracture events than that of the
relatively homogeneous model.

It is noted that the existence of plateau in each curve shown in figure 14 clearly
indicates the reaching of fracture saturation.

The numerical results also show that although the patterns of fractures can be very
complex, the length scale of fracture spacing shows an overall scaling behavior closely
related to that in homogeneous materials. However, quantitatively, difference in
length scale of fracture spacing is found between the heterogeneous and homoge-
neous models. Numerical simulations show that the critical fracture spacing to layer
thickness ratio increases with increasing homogeneity index (representing heterogene-
ity’s strength). By plotting the critical spacing to layer thickness ratio versus the

Fig. 9. Plots of numerically obtained mean stress (
) and fracture event count (N) as a function of
average strain (ε)
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homogeneity index, m, we obtain the unique relation shown in figure 15. The critical
spacing to layer thickness ratio is non-linearly related to the homogeneity index: a
sharp change of the critical spacing to layer thickness ratio occurs in the range of
1�m�2. As this index, m, goes to infinity (homogeneous), we observe a decrease in the
curve slope and it can be predicated that the critical spacing to thickness ratio should
asymptotically approach a constant value. This can be explained in terms of stress
inhomogeneity or stress concentration. First, increasing heterogeneity of the layer
increases the variation magnitude of the local stress concentrations, which results in
more fractures forming in a lower loading stress level. Thus, increasing heterogeneity
of the model will cause stress inhomogeneity or concentration and the critical fracture
density will be reached at lower levels.

discussion
Numerical simulations have shed considerable light on fracture set development

in layered model. In this section, we compare our fracture analysis approach with the
former stress analysis approach, and discuss the implications of our fracture modeling
results to the fracture pattern dynamics in layered materials.

Heterogeneity Effect
The initiation and propagation of fractures in the central rock layer causes a

significant redistribution of the stresses surrounding the fractures. Correspondingly,
the evolution of the fracture pattern and its interaction with the stress state is path
dependent, and must be followed in the correct sequence if meaningful results are to
be obtained. One of the important advantages of our modeling is that fractures are not
pre-assigned to the layered models, but are allowed to evolve as the models are loaded

Fig. 10. Plot of the numerically obtained fracture spacing to layer thickness ratio (S/Tf ) as a function of
average strain (ε). (The number shown in the bracket is the number of fractures counted).
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gradually. This will help us more clearly to understand the fracture spacing evolution
and fracture saturation mechanisms.

As demonstrated in our modeling, opening-mode fractures form in response to
tensile stress in the direction perpendicular to the fracture plane. The fracture
formation process numerically obtained in this paper verifies that an opening-mode
fracture cannot form between two fractures with a spacing to layer thickness ratio less
than the critical value. There exists a critical ratio of fracture spacing to layer thickness
that gives the lower limit for the fracture spacing to layer thickness ratio, that is the
ratio at fracture saturation. Theories of fracture-pattern formation based on a static
stress analysis approach (Bai and others, 2000) indicate that each generation of
fractures should appear in the middle between the existing fractures, leading to
successive halvings of the length scale of the pattern. This follows from the fact that
ideally the stress between the existing fractures of the layer will be a maximum midway
between two fractures. However, as shown in figures 8, 11 and 13, a near-perfect
halving of existing fractures was seen only rarely in our numerical modeling. This is
due to unevenness in the local stress distributions resulting from the existence of
heterogeneity in the models.

The statistical description of failure phenomena in heterogeneous or disordered
materials has drawn much attention in the past two decades; since then the understand-
ing for the basic mechanisms leading to failure has grown and we have recognized the
important role played by the material heterogeneities on the fracture patterns (for

Fig. 11. Three layer models and the fracture spacing at saturation. The three layers with equal width,
600mm, have a central layer with height of Tf � 15, 20, 25, 30 and 35 mm, sandwiched between top and
bottom layers with height of Tn � 30, 40, 50, 60 and 70 mm, respectively. Note: the dark elements represent
the nucleated flaw. Fractures form by connection of flaws.
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example, Horning and others, 1996). Our modeling shows clearly the dynamics of
fracture pattern formation in models with heterogeneity considered. In the first stage
of fracture pattern development, fractures nucleate at a small number of points or at a
large number of points, depending on the degree of material heterogeneity of the
models. In the case of a relatively homogeneous model, fractures propagate in fairly
straight lines, usually in a direction sub-perpendicular to the layer interfaces. In runs
with a relatively heterogeneous model, fractures tend to nucleate at the weaker points,
and in many cases do not propagate long distances across the layer, but rather move in
short steps from one weaker point to the next, occasionally meeting another fracture
moving in a similar fashion.

Another regime of fracture patterns exists for a highly heterogeneous model,
where fractures tend to have spacing that is very irregular and much less than the
spacing in a homogeneous model. This spacing regime may be responsible for fracture
swarms, such as discussed by Olson (2004). As shown in figure 15, although the
numerically obtained length scale of the final fracture spacing is also proportional to
the layer thickness, the constant of proportionality is found to be smaller for more
heterogeneous models. With increasing heterogeneity, the stress in the layer will grow
more nonuniformly and so there will be more opportunities for locations to reach the
critical stress for fracture.

Effect of Delamination on the Critical Fracture Spacing to Layer Thickness Ratio
As shown in figures 11 and 13, another very commonly observed mode of fracture

pattern formation is that fractures may nucleate and propagate along the interface

Fig. 12. Plot of the numerically obtained mean fracture spacing to layer thickness ratio (S/Tf) as a
function of layer thickness (Tf ) (each point showing the average value of four modeling results).
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between layers, that is, delamination or decohesion (Hu and others, 1988; Drory and
others, 1988). Physically, delamination will partially disconnect the fractured layer
from the neighboring layers. In other words, once delamination begins the deforma-
tion in the fractured layer becomes less affected by the neighboring layers.

The mechanisms of delamination have been discussed by several authors such as
He and Hutchinson (1989), Thouless (1989), and Cherepanov (1994), and Bai and
others (2000) among others. Experimental results of Wu and Pollard (1995) show that
delamination between the fracture layer and neighboring layers plays a significant role

Fig. 13. Three layer models and the fracture spacing at saturation, with different homogeneity index,
m�1.1, 1.5, 2, 4, 6, 8,10,15. The three layers with equal width, 600mm, have a central layer with height of
Tf � 30mm, sandwiched between top and bottom layers with height of Tn � 45mm.
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in affecting fracture behavior and leads to a larger spacing to layer thickness ratio than
the ratio for completely bounded interface. Narr and Suppe (1991) and Wu and
Pollard (1995) suggested that saturation is achieved at certain levels of strain when slip
along layer interfaces and opening of pre-existing fracture replaces the development
of new fractures as the dominant mechanism for strain accommodation. Bai and
others (2000) numerically studied this delamination effect by postulating a model with

Fig. 14. Plots of the numerically obtained accumulated count of fracture events as a function of loading
step for various homogeneity indices, showing the influence of heterogeneity on fracture patterns. (It is
noted that the existence of plateau in each curve shown in figure 14 clearly indicates the reaching of fracture
saturation.)

Fig. 15. Plots of the numerically obtained critical ratio of fracture spacing to layer thickness as a
function of homogeneity index, showing the influence of heterogeneity on critical length scale (m�1.1, 1.5,
2, 4, 6, 8, 10 and 15).
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a very soft thin layer between the fractured layer and the underlying layer. They used a
static stress analysis approach to this problem and found that the critical fracture
spacing to layer thickness ratio is about 9 to 10 times the value for the case of no
delamination.

Our direct fracture modeling approach demonstrated how delamination would
affect the fracture saturation behaviour and associated critical value of the spacing of
fractures to the thickness of the fractured layer. During the fracture infilling process,
the top and bottom layers apply a local traction at all points to the central embedded
layer which has a nonzero shear modulus. Although the interface between layers is
assumed to be perfectly bonded, numerical simulations show that the interface may
not remain perfectly bounded at large strains and delamination may occur if the shear
stress near the layer boundary is high enough. This delamination could change the
local stress state significantly. One of the most important effects is that delamination
will stop the transition of stress from the neighboring layers to the embedded central
layer, and, in turn, prevent further infilling of fractures between existing fractures in
the central layer. Consequently, this will result in a longer length scale of fracture
spacing, and makes the critical spacing to layer thickness ratio much greater.

Effect of Throughgoing Fracture on the Critical Fracture Spacing to Layer Thickness Ratio
If the strength of the neighboring layer is not high enough, throughgoing fracture

may occur. Although the increasing strain will result in sequential infilling that results
in a decrease in fracture spacing, the subsequent development of throughgoing
fracture precludes further fracture infilling, so that even larger increments of strain
will not result in the formation of additional infilling fractures.

Generally, fractures in the confined layer terminate at the layer boundaries
because the stress at the fracture tip drops below critical upon entering the layer
boundaries. This occurs due to differences in mechanical properties such as Young’s
modulus or strength [refer to Watkins (ms, 1992) and Watkins and Green (1994) for
analytical solutions]. In order for throughgoing fracture to grow, stress must remain
critical as the fracture passes through neighboring layers of different mechanical proper-
ties. Thus, for a layer-confined fracture to grow into a throughgoing fracture, the
fracture-normal tensile stress must increase to the tensile strength as the fracture passes
into the neighboring layers. Under conditions of fracture-normal stretching as the driving
mechanism, this can only be accomplished through an increase in extensional strain.

Once the fracture spacing is well-developed, however, less energy is required to
extend an existing layer-confined fracture forming a throughgoing fracture cutting
across the layer boundaries than to propagate a new fracture from a flaw within the
layer between adjacent fractures.

It is worthy to mention that there are two types of fractures: (1) fractures may
initiate at points (that is, a single failed element) and then grow upwards or down-
wards, one failed element at a time, or (2) they may coalesce from failed elements that
are simply near one another. Our modeling shows that which type the fracture takes
strongly depends on the heterogeneity of the material properties or the homogeneity
index. Generally, a homogeneous material model will have more fractures of the first
type, and a heterogeneous material model will have more fractures of the second type.
In our simulation, as shown in figure 8, both fracture types are observed. As the central
layer is relatively heterogeneous (m�2), most of the fractures demonstrate a second
type fashion, that is, they coalesce from nearby failed elements. Whereas in the top and
bottom layers, as the material is relatively homogeneous (m�6), we observed that a
throughgoing fracture grows upwards and downwards, one failed element at a time.

It is found from the modeling that although the fractures in the central layer are
formed by coalescence between isolated fractures, most of them are not shear mode
fractures, they are opening mode fractures.
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conclusions

In this paper we performed numerical studies of fracture pattern formation in
three layer models under quasistatical, slowly increasing strains; and reproduced many
of the qualitative features seen in experiments and nature. We analyzed the pattern of
fractures, and the dependence of the length scale on the strain. Generally, numerical
simulations demonstrate that fracture spacing is inversely proportional to the magni-
tude of applied strain. As applied strain increases, the fracture spacing systematically
decreases through the process of sequential infilling.

An important concept that we have numerically confirmed and quantified during
these simulations is fracture saturation, which is attributed to stress relaxation caused by
several reasons. The first way fracture may tend toward saturation levels requires a
mechanism of strain accommodation: the fracture spacing initially decreases as exten-
sional strain increases. At a certain ratio of fracture spacing to layer thickness, however, no
new fractures form and the additional strain is accommodated by further opening of
existing fractures. A second way fracture may tend toward saturation levels does not
require a switch in strain accommodation mechanisms. As spacing between adjacent
fractures decreases, overlapping stress reduction shadows dramatically reduce the effective
fracture-normal tensile stress between the fractures, which when combined with the
decrease in low strength flaws, requires extremely large additions of strain to cause further
fracture infilling. Small regional variations in strain will not suffice to produce further
infilling, and consequently the fractured layer can attain a “natural” state of fracture
saturation without the need for opening along the pre-existing fractures. Such a situation
predicts a higher critical ratio of fracture length scale. The third way fractures attain
saturation relates to additional fractures, such as the interface delamination or the
throughgoing opening-mode fracture that passes through the neighboring layers reaching
their ultimate strength. All these fractures may prevent further infilling of new fractures,
and may serve as another important mechanism to accommodate the applied strain.

We find that although the fracture spacing, as predicted theoretically by many
other investigators using a static stress analysis approach, is proportional to layer
thickness, the fracture modeling approach predicts a higher value of critical fracture
spacing to layer thickness ratio. A comparison between stress analysis and fracture
modeling of the three layer models reveals that the prediction of fracture spacing
based on the stress state transition overestimates the fracture densities and predicted a
lower value of critical fracture spacing to layer thickness ratio. Our numerical simula-
tions demonstrate that fracture spacing at saturation increases as a function of layer
thickness, but spacing is not linearly proportional to thickness. Instead, the fracture
spacing to layer thickness ratio is found to be linearly proportional to the layer
thickness. This observation may be considered as a theoretical explanation to fracture
spacing data scatter observed in field or laboratory experiments.

The modeling results show that fracture patterns strongly depend on the heterogene-
ity of the model, that is, the distribution of mechanical properties in terms of the elastic
constant and the breakdown strength. For weak disorder the fractures form through crack
propagation, whereas for strong disorder the fractures form through the coalescence of
initially independent smaller fractures nucleated from weak elements. The fracture
distribution for heterogeneous model initially is sparser, and the final fracture pattern
comprises many closely spaced short fractures. Another regime of fracture pattern exists
for a highly heterogeneous model, where fractures tend to have spacing that is very
irregular and much less than the spacing in a homogeneous model. This spacing regime
may be responsible for fracture swarms, such as discussed by Olson (2004). Quantitatively,
the critical value of fracture spacing to layer thickness ratio decreases as the disorder of the
mechanical properties increases.
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