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SUMMARY

This paper presents a fracture mapping (FM) approach combined with the extended finite element method
(XFEM) to simulate coupled deformation and fluid flow in fractured porous media. Specifically, the method
accurately represents the impact of discrete fractures on flow and deformation, although the individual fractures
are not part of the finite element mesh. A key feature of FM-XFEM is its ability to model discontinuities in the
domain independently of the computational mesh. The proposed FM approach is a continuum-based approach
that is used to model the flow interaction between the porous matrix and existing fractures via a transfer
function. Fracture geometry is defined using the level set method. Therefore, in contrast to the discrete fracture
flow model, the fracture representation is not meshed along with the computational domain. Consequently,
the method is able to determine the influence of fractures on fluid flow within a fractured domain without
the complexity of meshing the fractures within the domain. The XFEM component of the scheme addresses the
discontinuous displacement field within elements that are intersected by existing fractures. In XFEM, enrichment
functions are added to the standard finite element approximation to adequately resolve discontinuous fields within
the simulation domain. Numerical tests illustrate the ability of the method to adequately describe the displacement
and fluid pressure fields within a fractured domain at significantly less computational expense than explicitly
resolving the fracture within the finite element mesh. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Deformation coupled with fluid flow in porous media is an important process in areas such
as groundwater hydrology, reservoir engineering and CO2 storage [1]. Coupled deformation and
fluid flow reservoir simulations are conducted in stress sensitive, naturally fractured hydrocarbon
reservoirs to accurately capture changes in stress-dependent permeabilities that may occur during
production as the fluid pressure varies with time. Although not all hydrocarbon reservoirs are
located in geologically naturally fractured reservoirs, coupled simulation still plays an important role
because compactive and shear deformations may still exert an important influence on reservoir
production [2]. Modelling coupled fluid flow and deformation within reservoirs is necessary for
predicting the impact of subsidence of production and well failures, guiding well placement and
avoiding ground subsidence or heave.
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The mechanics of the coupled behaviour within porous media was initially formulated by Biot [3].
Biot’s formulation treats the material skeleton as a single porosity/permeability poroelastic solid and
couples its deformation to the laminar flow of the pore fluid through compressibility and continuity.
Despite the effectiveness of this coupled formulation for porous media, it is not adequate when
dealing with fractured porous media that are composed of discrete fractions of differing solid
compressibilities and permeabilities [4, 5]. Barenblatt et al. [6] introduced the dual continuum
concept by modelling flow through a non-deformable, fractured porous medium. The dual
continuum concept provides a mathematical framework for the fluid flow interaction between the
matrix domain and fractures and was originally applied to the field of reservoir engineering by
Warren and Root [7] to characterize naturally fractured reservoirs.

The dual continuum concept is subdivided into the dual porosity and dual permeability approaches.
The dual porosity approach assumes that the porous matrix is discontinuous and flow within the
domain is achieved via the fractured network. The simulated fluid flow is directly affected by
fracture network connectivity and distribution. In contrast, the dual permeability model assumes that
the matrix is continuous and fluid flow occurs within both the matrix and fractures. Fracture network
connectivity is not required when using the dual permeability method.

An alternative to the dual continuum approach that has received considerable interest over the last
few years in the field of reservoir simulation and hydrology is the discrete fracture flow model
approach [8–11]. Fractures are represented within the domain in a spatially explicit manner and are
discretized along with the matrix domain. Although this approach considers the real fracture geometry
and orientation, the method is computationally expensive, and the meshes can be challenging and time
consuming to generate. Therefore, its use is restricted to domains with low fracture density.

The fracture mapping (FM) approach presented combines the merits of both the discrete and
continuum approaches; fracture geometry is preserved without having to mesh existing fractures
within the simulation domain. Elements intersected by a fracture are treated as two overlapping
elements, a matrix element and a fracture element. The orientation and permeability of the fracture
are then mapped to the fracture element. The approach adopts the transfer function presented by
Barenblatt et al. [6] to account for fluid flow interaction between the overlapping matrix and fracture
elements. Individual fractures are incorporated into the simulation domain by using the level set
method (LSM) introduced by Osher and Sethian [12]. LSM provides a mathematical description of
fractures within the domain rather than an explicit representation of the crack geometry. The method
represents an interface, in this case a fracture, as the zero of a function called the level set function [13].

A finite element continuum approach can be used to describe the coupled deformation and fluid flow
within a fractured porous medium [14, 15]; however, without modification, this method is unable to
address the discontinuity that exists in the displacement field across fractures within the domain
[16–18]. The FM method is therefore combined with extended finite element method (XFEM) to
capture the effect that deformation across fractures may have on the fluid flow within a domain. The
FM-XFEM formulation presented assumes that the geometry of fractures within the domain remains
constant, that is, fracture length and width remains the same during numerical simulations. Unlike
the standard finite element method, XFEM can be used to model discontinuities independently of
the mesh. The method has gained much attention in recent years because of its accuracy and
versatility in simulating discontinuities [19–28].

The remainder of this paper is outlined as follows. The next section covers the governing equations
that describe coupled deformation and fluid flow in porous media. The FM that is used to capture the
flow interaction between the porous matrix and fracture is then described. General concepts of XFEM
and the element decomposition required for numerical integration are briefly recalled followed by the
discretized form of the coupled deformation and fluid flow governing equations. Finally, numerical
simulations are performed on a two-dimensional (2D) plane strain example and the results discussed.
2. GOVERNING EQUATIONS

Biot’s theory [3] describes the physical process of elastic deformation and fluid flow in porous media.
The stress and strain matrices take the following forms in 2D by using Voigt notation:
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2916–2936
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s ¼ sx;sy; txy
� �T

;

« ¼ ex; ey; gxy
� �T

;

(1)

where sx, sy and txy represent the stress in the x and y directions and shear stress, respectively, and ex,
ey and gxy represent the strain in the x and y directions and shear strain, respectively. A saturated soil/
rock mass can be viewed as a two-phase deformable porous medium in which the pores are filled with
a liquid.

Biot’s theory defines the force equilibrium of the soil–water mixture:

rT
ssþ rg ¼ 0; (2)

wheres is total stress tensor, g is gravity, r is the averaged density of a multiphase system andrs is the
symmetric gradient operator matrix given by

rs ¼
@=@x 0
0 @=@y

@=@y @=@x

2
4

3
5: (3)

The total stress of the system, assuming that tension is positive, is given by

s ¼ s00 � �amPw; (4)

where s 00 is a general form of the effective stress, Pw is the water pore pressure in the porous matrix,
m = [110]T in two dimensions and �a is the Biot’s compressibility coefficient that is defined by

�a ¼ 1� KT

Ks
; (5)

where KT is the bulk modulus of the skeleton and Ks is the bulk modulus of the grain material. Equation (5)
represents Terzaghi’s effective stress principle that has been modified to take into account the
compressibility of the system through the inclusion of Biot’s compressibility coefficient.

The constitutive stress–strain relationship of the solid phase is given by

ds00 ¼ Dd«; (6)

in which D is the linear elastic material matrix and « is the strain of the system. For 2D plane stress
problems, D is defined as

D ¼ E

1� n2

1 n 0
n 1 0

0 0
1� n
2

2
64

3
75; (7)

and for plane strain, it is defined as:

D ¼ E

1þ nð Þ 1� 2nð Þ

1� n n 0
n 1� n 0

0 0
1
2
� n

2
64

3
75; (8)

where E is the modulus of elasticity and n is Poisson’s ratio.
The relationship between the change in strain, d«, and the change in displacement, du, is given by

d« ¼ rsdu: (9)
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2916–2936
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This linear relationship is only valid under the assumption of small strain theory where the
components of rsu are much smaller in magnitude than 1.

Darcy’s seepage velocity is given by

vd ¼ Km

mw
�rPw þ rgð Þ: (10)

The flow through the porous material is equal to the reduction in volume and is given by

r�vd ¼ ��amT @«

@t
: (11)

The rate of change of grain volume due to pressure changes within the domain is given by

�a� n

Ks
þ n

Kw

� �
@Pw

@t
; (12)

where Kw represents the bulk modulus of water, mw is the fluid viscosity and Km is the material/matrix
permeability. Equations (10)–(12) together define the continuity/mass balance equation that is given by

�a� n

Ks
þ n

Kw

� �
@Pw

@t
þr� Km

mw
�rPw þ rgð Þ

� �
þ �amT @«

@t
¼ 0: (13)
3. INITIAL AND BOUNDARY CONDITIONS

Initial conditions that specify the displacements and water pressures at t= 0 are given by

u ¼ u0 in Ω∪Γ; (14)

Pw ¼ P0
w in Ω∪Γ; (15)

where Ω is the domain of interest and Γ its boundary. Boundary conditions can be imposed pressures
on Γfield (Dirichlet boundary conditions) or fluxes on Γq

field (Neumann boundary conditions), where the

boundary Γ ¼ Γfield∪Γq
field . Dirichlet boundary conditions for displacements and pore water pressures

are given by

u ¼ û on Γu; (16)

Pw ¼ P̂w on Γw; (17)

whereas Neumann boundary conditions for imposed stresses and flux conditions are as follows:
t� ¼ n�s on Γq

u; (18)

qw ¼ rw
Km

mw
�rPw þ rwgð ÞT�n on Γq

w; (19)

where n is the unit normal vector to the surface,�t is the prescribed external traction force and qw is the
applied mass flux normal to the boundary.
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2916–2936
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Although it is appreciated that the simulation of large domains often involves unbounded continua and
the use of Dirichlet/Neumann boundary conditions cannot realistically represent the far field deformation
(mechanical) and fluid flow (hydraulic) interaction in an infinite domain [29–31], the use of these
boundary conditions are considered adequate to demonstrate the validity of the proposed scheme.
4. FRACTURE MAPPING

This section presents the new FM approach that is used to capture flow interaction between the porous
matrix and existing fractures [1]. In this approach, an element intersected by a fracture is treated as a
superposition of two elements, a matrix and fracture element, which interact via a transfer function
(see Figure 1). The transfer function provides a mathematical description of the fluid flow interaction
between the matrix and the fracture. The function adopted in this study is based on the quasi steady-
state function proposed by Barenblatt et al. [6], which assumes that the flow within an element is
directly proportional to the difference between the matrix pore pressure and the fracture fluid
pressure, that is,

Tr ¼ �sKf

mw
Pwm � Pwf

� �
; (20)

whereKf is the fracture permeability, mw is the fluid viscosity, Pwm is the matrix fluid pore pressure and
Pwf is the fracture fluid pressure. The fracture permeability can be determined using the following
relationship proposed by Witherspoon et al. [32]:

Kf ¼ b2

12
; (21)

where b is the fracture width. In the original transfer function presented by Barenblatt et al. [6],
�s represents a shape factor that is dependent on the width and geometry of existing fractures. Because the
FM accounts for the width and geometry of a fracture within a fracture element, the shape factor is not
required; however, it has been retained to ensure dimensional consistency when the transfer function is
introduced into the coupled deformation and fluid flow formulation. The variable �s has dimension L�2,
where L represents length and has been assigned the value of 1.

The amount of the fluid transferred between the matrix and fracture elements is characterized by the
fracture permeability Kf. It should be noted that because fracture elements share mesh nodes with
neighbouring fracture elements, the fluid pressure is continuous across these elements (see Figure 1).
Figure 1. Schematic representation of the matrix and fracture elements/nodes extracted from discretized
fractured domain.
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When fractures intersect within an element, the FM is accomplished by creating a fracture element
for each fracture that exists within the element (see Figure 2).

The fracture permeability is represented within a fracture element through the following mapping:

Kfe ¼ Af

Ae
K0

f ; (22)

where Kfe is the fracture element permeability, Af is the area of the fracture within the element, Ae is
the area of the element and K 0

f is the fracture permeability tensor aligned to the global Cartesian axes
(see Figure 3). This mapping equates the total flow through the fracture to the total flow through the
fracture element and ensures an effective representation of the fracture flow within the fracture element.
5. FRACTURE REPRESENTATION

The LSM is commonly used in conjunction with XFEM to represent discontinuities instead of using an
explicit representation [13, 23, 24, 28, 33–36]. In this work, it has been used to represent existing
fractures. A fracture is represented as the zero level set of the signed distance function f(x), that is, by

f xð Þ ¼ 0: (23)

The signed distance function is defined by

f xð Þ ¼ sign n� x� x�� �� �
min
x�2Γfr

x� x��� ��; (24)

where x is a finite element mesh node, x� is the normal projection of the point x onto the fracture defined
by Γfr and n is the unit outward normal from the fracture at x� (see Figure 4). The fracture tips are
defined by a tangential level set ci(x) given by

ci xð Þ ¼ x� xið Þ�̂t; (25)

where t̂ is a unit vector tangent to the fracture at its tip and xi is the location of the ith fracture tip. When
more than one fracture tip exists in the domain, the tangential level set can be represented by a single
function and given as

c xð Þ ¼ max
i

cið Þ: (26)
Figure 2. Schematic representation of fracture mapping for intersecting fractures.
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Figure 3. Fracture permeability is aligned with the Cartesian axes using the rotation tensor R.
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By using the signed distance function and tangential level set, a fracture in 2D is defined by

f xð Þ ¼ 0 and c xð Þ≤0: (27)

The level set functions f(x) and ci(x) and the representation of the fracture are also illustrated
in Figure 4.
6. ASSIGNMENT OF FRACTURED ELEMENTS

This section briefly illustrates how fractured elements are determined. For a given fracture, whose
input geometry is defined by a single line segment or a series of line segments, the values of
f(x) and c(x) are calculated for all the finite element nodes within close proximity to the
fracture (see Figure 5). An element is defined as a fracture element if the values of f(x) and
c(x) determined at its nodes satisfy the following conditions [24]:

fmaxfmin≤0; c < 0; split element;
fmaxfmin≤0; cmaxcmin≤0; tip element:

	
(28)

Split elements are defined as those elements that are completely cut by a fracture, and tip elements
are those elements that contain a fracture tip. FM is applied to both split and tip elements.
Figure 4. Level set fracture representation.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2916–2936
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Figure 5. Assignment of fractured elements using level set values.
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7. THE EXTENDED FINITE ELEMENT METHOD

The XFEM was introduced by Belytschko and Black [37] and exploits the partition of unity property of
finite elements. Local enrichment functions are added to the finite element shape functions that allow
the approximated field and its derivatives to be discontinuous within an element. Therefore, a
domain can be modelled by finite elements without explicitly meshing discontinuities.

The enrichment terms consist of a modified Heaviside function and Branch functions that represent
the Westergaard near tip asymptotic fields ([21, 38]). The Heaviside function is applied to elements
entirely cut by a fracture and is given by

H xð Þ ¼ þ1 f xð Þ≥0;
�1 f xð Þ < 0;

	
(29)

where f(x) is the signed distance function normal to the crack and Branch functions that represent the
Westergaard near tip asymptotic fields [21, 38].

Φg xð Þ� �4
g¼1 ¼

ffiffi
r

p
sin

θ
2
;

ffiffi
r

p
cos

θ
2
;

ffiffi
r

p
sinθ sin

θ
2
;

ffiffi
r

p
sinθ cos

θ
2

� �
; (30)

where r and θ are the polar coordinates of the point x (integration point or finite element node) in the
coordinate system centred on the tip of the fracture with the x-axis aligned with the fracture direction
(Figure 6).

The addition of these enrichment terms results in the following displacement field within a
fractured domain:
Figure 6. Coordinate configuration for fracture front enrichment functions in 2D. x* represents the fracture
tip, and x represents either an integration point or finite element node.
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u xð Þ ¼
X
I2N

NI
u xð ÞuI

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Standard

þ
X
J2N cr

N̂ J
u xð Þ H f xð Þð Þ � H f xJð Þð Þ½ �aJ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Heaviside

þ
X

K2N tip

N̂K
u xð Þ

X4
g¼1

xð Þ Φg xð Þ �Φg xKð Þ� �
bgK

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Branch

;
(31)

where uI is the nodal displacement vector associated with the continuous part of the finite element
solution (standard approximation), NI

u , N̂
J
u and N̂K

u are finite element shape functions, N is the set
of all nodes in the mesh, N cr is the set of nodes whose support element is cut by the fracture and
N tip is the set of nodes whose support element contains a fracture tip. aJ is the nodal enriched
degrees of freedom vector associated with the modified Heaviside function, and bgK is the nodal
enriched degree of freedom vector associated with the elastic asymptotic fracture tip functions.
Both aJ and bgK represent additional degrees of freedom associated with enriched nodes.

The determination of both Heaviside and tip enriched nodes is illustrated in Figure 7. Tip enriched nodes
can be determined via topological or geometrical/fixed area enrichment. Only the nodes of elements
containing the fracture tips are enriched if topological enrichment is implemented. If geometrical
enrichment is used, nodes within a fixed area centred on the fracture tip become tip enriched nodes
(see Figure 7). Although topological enrichment is usually adequate, geometrical enrichment
improves the method’s rate of convergence [39–41]. Geometrical enrichment was used for the
numerical example presented in this paper with a fixed area of radius (R) 1/20 of the domain width.
8. NUMERICAL INTEGRATION

Standard Gaussian integration causes numerical inaccuracies and creates ill-conditioned system
matrices when performed on elements enriched by the discontinuous Heaviside function (29) and
Branch functions (30) [40, 42, 43]. To remedy the numerical issues associated with the integration of
these discontinuous enrichment functions, elements intersected by a fracture are decomposed into
sub-elements. The edges of these sub-elements are aligned along the discontinuity surface, and a
higher order of Gaussian quadrature is used in these elements to improve the accuracy of the
numerical integration.

Element decomposition is carried out only for the purpose of numerical integration and does not
introduce any additional degrees of freedom (nodes) to the discretized domain. Decomposition of
finite elements that are intersected by a fracture is a straightforward procedure that is carried out
using computational geometry because no restrictions are placed on the shape of the generated sub-
elements. Figure 8 illustrates element decomposition for quadrilateral and triangular elements.
Figure 7. Assignment of enriched nodes. ○, Heaviside enriched; □, tip enriched.
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Figure 8. Element decomposition into sub-elements: (a) elements containing fracture tip and (b) elements
completely cut by fracture.
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9. SPATIAL DISCRETIZATION

The discrete equations are obtained by applying the Galerkin-based finite element approach to the
governing and continuity equations. To simplify the discretized system equations, the effect of gravity
is neglected, and the material grains are assumed incompressible, that is, Biot’s compressibility
coefficient, �a, is equal to 1. Before discretization, the transfer function term that accounts for the fluid
flow interaction between the matrix and fracture, and a source/sink term are introduced to the continuity
equation, which then takes the form

r� �Km

mw
rPw

� �
þ �sKf

mw
Pwm � Pwf

� �þ Qw þ n

Kw

@Pw

@t
þmT @«

@t
¼ 0: (32)

After Ghafouri and Lewis ([14]), the continuity equations can be written for both the porous matrix
and the fractures as

r� �Km

mw
rPwm

� �
þ �sKf

mw
Pwm � Pwf

� �þ Qw þ nm
Kw

@Pwm

@t
þmT @«

@t
¼ 0 (33)

for the porous matrix and

r� �Kf

mw
rPwf

� �
� �sKf

mw
Pwm � Pwf

� �þ nf
Kw

@Pwf

@t
¼ 0 (34)

for the fractured zone. When solving Equations (33) and (34), boundary conditions are only applied
to the matrix domain. These boundary conditions can be either Dirichlet or Neumann boundary
conditions. Enforcing Dirichlet boundary conditions involves specifying displacements and/or
pressures at the matrix domain boundaries. Neumann boundary conditions require the specification
of stresses and/or flow rates at the domain boundaries.

The dependent pressure variables are approximated by

Pwm ¼ Np
�Pwm;

Pwf ¼ Np
�Pwf ;

(35)

where P
�

wm and P
�

wf are the vectors of nodal unknowns of matrix and fracture excess pressures,
respectively, and Np is the approximating shape function. A second-order polynomial is used as the
displacement shape function, Nu, whereas a first-order polynomial is used for the pressure, Np. This
element pair satisfies the Babu�ska–Brezzi convergence condition, particularly when approaching the
Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:2916–2936
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undrained limit state [29, 44–46]. A combination of eight-noded quadratic and bi-linear elements is
used for the numerical tests carried out in this paper (Figure 9). Displacements are calculated at the
element vertices, and mid-side nodes of the quadratic elements and pressures are calculated at the
vertices of the linear elements.

It is important to note that a first-order polynomial is also used for the shape function of the
discontinuous part of (31), N̂u (see Figure 9(a)). Stazi et al. [34] demonstrated that this combination
of a higher-order shape function for the continuous portion of the enriched approximation performs
well within the XFEM framework.

The resulting spatial discretization takes the form

AXþ B
dX
dt

¼ C; (36)

where

A ¼
0 0 0 0 0
0 0 0 0 0
0 0 0 Hm þHTr �HTr

0 0 0 �HTr Hf þHTr

2
664

3
775; (37)

B ¼

Keuu Keua Keub �L 0
Keau Keaa Keab �La 0
Kebu Keba Kebb �Lb 0
LT LT

a LT
b Sm 0

0 0 0 0 Sf

2
66664

3
77775; (38)

X ¼

u
a
b

P
�

wm

P
�

wf

2
66664

3
77775; (39)

C ¼

dF
dFa

dFb

f
�
0

2
66664

3
77775: (40)
Figure 9. Element combination used for interpolation of the coupled solid–fluid interaction. (a) Quadratic
elements are used for displacement with enriched vertices, and (b) bi-linear elements are used for pressure.

The pressure field is treated as continuous in each domain; therefore, no enrichment is required.
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Elements of the aforementioned listed matrices are given in Appendix A.

10. TEMPORAL DISCRETIZATION

Using an implicit time discretization scheme with the following approximations:

dX
dt

� �
nþθ

¼ Xnþ1 � Xn

Δt
; (41)

Xnþθ ¼ 1� θð ÞXn þ θXnþ1: (42)

Then, substituting (41) and (42) into (36) produces

Bþ AΔtθð ÞXnþ1 ¼ B� AΔt 1� θð Þð ÞXn þ CΔt: (43)

The final discrete equations can be written as

Keuu Keua Keub �L 0
Keau Keaa Keab �La 0
Kebu Keba Kebb �Lb 0
LT LT

a LT
b Δtθ Hm þHTrð Þ þ Sm �HTrΔtθ

0 0 0 �HTrΔtθ Hf þHTr

� �
Δtθþ Sf

2
66664

3
77775

u
a
b

Pwm

Pwf

2
66664

3
77775
nþ1

¼

Keuu Keua Keub �L 0
Keau Keaa Keab �La 0
Kebu Keba Kebb �Lb 0
LT LT

a LT
b Sm � Δt 1� θð Þ Hm þHTrð Þ HTrΔt 1� θð Þ

0 0 0 HTrΔt 1� θð Þ Sf � Hf þHTr

� �
Δt 1� θð Þ

2
66664

3
77775þ

dF
dFa

dFb

f
0

2
66664

3
77775Δt:

(44)

The value of θ determines the accuracy and stability of the time integration scheme. When θ = 1, the
scheme is fully implicit (backward Euler) and imposes no requirements on the time step size (Δt)
chosen for both stability and the elimination oscillatory effects in the solution. The fully implicit
scheme has been implemented in the numerical tests conducted in this paper.

11. FM-XFEM IMPLEMENTATION

This section summarizes the implementation procedure for the FM/XFEM method. The method
implementation has the following steps:

1. Generate mesh: the domain is divided into a series of finite elements.
2. Calculate the level sets of nodes in the vicinity of the line segments that describe the fracture

geometry. Nodal enrichment is also assigned at this step.
3. Determine fracture elements using the equality conditions discussed in Section 6.
4. Loop over all elements (matrix assembly):

a. Determine element contributions to discrete system equation (44): if an element is a fracture
element, calculate element permeability using the procedure. Element contributions are also
made to the fracture permeability and transfer matrix (Hf and HTr) for fracture elements.

b. Add element contributions to the global system matrix.

5. Apply boundary conditions.
6. Solve the system equations given by (44) to obtain field variables, nodal displacements and pres-

sures, at each time step.
This implementation procedure assumes that the fracture geometry remains constant over the

simulation period. Both the matrix and fracture permeabilities are also assumed constant.
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12. NUMERICAL EXAMPLE

The validity of the FM-XFEM model is demonstrated on a 2D plane strain problem shown in
Figure 10. The domain is fully saturated and allowed to freely drain at the top, that is, excess pore
water pressure is equal to zero. The domain is assumed to be sealed on the right, left and basal
boundaries. A static load of 10 kN/m2 is applied at the top of the block at time t= 0 and maintained
throughout the duration of the simulation. The block is homogenous and assumed to behave in a
linearly elastic manner with the material properties shown in Table I. The fracture is 8m long, is
inclined at a 45� angle and is centred in the middle of the block. The fracture is assumed traction
free, that is, contact forces are neglected.

The current model is compared with a standard finite element model (SFEM) in which the fracture
is modelled as an elliptical soft inclusion with its interior meshed along with the domain using Taylor–
Hood elements (triangular six/three node element pair-T6/T3). The inclusion has an aspect ratio of
~1:40 with a Young’s modulus three orders of magnitude lower than the surrounding matrix material
and a Poisson’s ratio of n= 0. Because the fracture geometry remains constant throughout the
simulation for the FM-XFEM model, that is, the fracture does not close or open during the
simulation, the nodes of the elements used to model the soft inclusion are assigned a cross-
displacement of zero to ensure consistency between the SFEM and FM-XFEM models.

The computational meshes used for the both the SFEM and FM-XFEM are shown in Figure 11
along with the level of refinement used around the tip of the fracture in the SFEM mesh. A uniform
mesh was used for the FM-XFEM to demonstrate the method’s ability to produce fairly accurate
results in the vicinity of the discontinuity without the need for mesh refinement.

The resulting displacement fields after 100 days are shown in Figure 12, and they are qualitatively
identical. The vertical displacement at A (point located at the surface shown in Figure 10) during
100 days is given in Figure 13. The plot also illustrates the displacement variation for the SFEM
Figure 10. Two-dimensional fractured domain with assigned boundary conditions.

Table I. Material properties.

Parameter Definition Magnitude Units

E Modulus of elasticity 40 MPa
n Poisson’s ratio 0.3 —
nm Matrix porosity 0.1 —
nf Fracture porosity 0.05 —
Km/m Matrix mobility 1� 10�6 m4/(MNs)
Kf /m Fracture mobility 1� 10�1 m4/(MNs)
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Figure 11. Computational meshes used to conduct method comparison.

Figure 12. Displacement field after 100 days for SFEM and FM-XFEM.
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Figure 13. Surface displacement at point A obtained for SFEM and FM-XFEM.
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model and the current method at varying mesh resolutions. The FM-XFEM results adequately match
the results of the SFEM model and show very little change in the resulting displacement at higher
mesh resolutions.

The excess pore pressure fields are given in Figure 14, and they are also qualitatively identical. The
variation in the excess pore pressure within the domain at point B (point located at basal boundary
shown in Figure 10) has been plotted in Figure 15. The plot shows the variation in pressure for the
SFEM and the current model at varying mesh resolutions. The pressure variation is essentially
identical for all mesh resolutions used for the FM-XFEM and the SFEM results.

A point of interest observed on the pore pressure plot of both models is the increase in the initial
pressure before it starts to dissipate. The increase in excess pore pressure from the initial pressure
and then the decrease are described as the Mandel–Cryer effect [47, 48]. The initial contraction of
the domain that occurs as the fluid rapidly escapes the top of the domain causes an increase in the
excess pore pressure above the initial value. The results obtained illustrate that on a coarse mesh,
FM-XFEM, is able to provide a physical description of the pressure dissipation comparable with that
of the SFEM.

The rate of convergence of the FM-XFEM has also been determined using this 2D plane strain
example. In the absence of an exact solution for this particular problem, a reference solution
obtained on a 512� 512 mesh was used to represent the exact solution, and mesh resolutions used
to determine the rate of convergence were 32� 32, 64� 64, 128� 128 and 256� 256. The error
Figure 14. Excess pore pressure field after 100 days for SFEM and FM-XFEM.
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Figure 15. Excess pore pressure at point B obtained for SFEM and FM-XFEM.
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measure of the coupled formulation was calculated as the sum of the L2-norm of the displacement
gradients and the L2-norm of the pressure given by [49]

uex � unumk k1 þ pex � pnumk k0 ¼ O hmin k;lþ1ð Þ
� �

; (45)

where uex and pex are the exact values of the displacement and pressure, respectively, unum and pnum are
the numerically determined displacement and pressure values, respectively, k and l are the orders of the
displacement and pressure interpolations and have the values of 2 and 1, respectively.

The norms in (45) are given by

uex � unumk k1 ¼
Z
Ω

uex � unumð Þ2 þ ruex �runumð Þ2dΩ
0
@

1
A

1=2

; (46)

pex � pnumk k0 ¼
Z
Ω

pex � pnumð Þ2dΩ
0
@

1
A

1=2

: (47)

These norms are normalized by the norm of the exact solution before determining the rate of
convergence and are given by [50]

uex � unumk k1
uexk k1

¼

Z
Ω
uex � unumð Þ2 þ ruex �runumð Þ2dΩ

� �1=2

Z
Ω
uexð Þ2 þ ruexð Þ2dΩ

� �1=2
; (48)

pex � pnumk k0
pexk k0

¼

Z
Ω
pex � pnumð Þ2dΩ

� �1=2

Z
Ω
pexð Þ2dΩ

� �1=2
: (49)

The rate of convergence is given by the gradient of the log–log plot of the L2 error norm versus
the nodal spacing h. The rate of convergence obtained for the FM-XFEM scheme is 1.05. A log–log
plot of the L2 error norm versus the maximum nodal spacing h is shown in Figure 16.
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Figure 16. Convergence rate of FM-XFEM.
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13. CONCLUSION

A new scheme for coupled deformation and fluid flow that combines a new FM approach and the
XFEM has been presented. FM is used to account for the fluid flow interaction between the porous
matrix and existing fractures, whereas the XFEM handles the discontinuous displacement field that
exists across fractures. FM-XFEM is able to adequately determine the fluid flow and deformation in
porous media without the need to explicitly mesh fractures within the computational domain.
Although the method has been developed within a dual continuum framework, the flow through
individual fractures is captured through permeability mapping. The validation exercise performed
illustrates the method’s potential as a viable continuum approach for simulating coupled fluid flow
and deformation in fractured porous media including the propagation of individual fractures. The
method also performs very well on coarse meshes.

APPENDIX A

Keuu ¼ �
Z
Ω

BTDBdΩm; (50)

Keua ¼ �
Z
Ω

BTDBadΩm; (51)

Keub ¼ �
Z
Ω

BTDBbdΩm; (52)

Keau ¼ �
Z
Ω

BaTDBdΩm; (53)

Keaa ¼ �
Z
Ω

BaT

DBadΩm; (54)

Keab ¼ �
Z
Ω

BaT

DBbdΩm; (55)

Kebu ¼ �
Z
Ω

BbTDBdΩm; (56)
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Keba ¼ �
Z
Ω

BbTDBadΩm; (57)

Kebb ¼ �
Z
Ω

BbTDBbdΩm; (58)

L ¼
Z
Ω

BTmNpdΩm; (59)

La ¼
Z
Ω

BaT

mNp dΩm; (60)

Lb ¼
Z
Ω

BbTmNp dΩm; (61)

F ¼ �
Z
Ω

NT
u rg dΩm �

Z
Γ

NT
u t
�dΓm; (62)

Fa ¼ �
Z
Ω

HNT
urgdΩm �

Z
Γ

HNT
u t�dΓm; (63)

Fb ¼ �
Z
Ω

ΦgNT
u rgdΩm �

Z
Γ

ΦgNT
u t
�dΓm; (64)

Hm ¼
Z
Ω

rNp

� �T Km

mw
rNpdΩm; (65)

Hf ¼
Z
Ω

rNp

� �T Kf

mw
rNpdΩm; (66)

HTr ¼
Z
Ω

NT
p

�sKf

mw
NpdΩm&f ; (67)

Sm ¼
Z
Ω

NT
p

nm
Kw

NpdΩm; (68)

Sf ¼
Z
Ω

NT
p

nf
Kw

NpdΩf ; (69)

f� ¼
Z
Γqw

NT
p

Km

mw
rwg�n dΓm �

Z
Γqw

NT
p

qw
rw

dΓm; (70)
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B ¼ rsNu ¼

@

@x
0

0
@

@x
@

@y

@

@x

2
666664

3
777775 Nu; (71)

Ba ¼ rsN
>

u H f xð Þð Þ � H f xð Þð Þð Þ ¼

@

@x
0

0
@

@x
@

@y

@

@x

2
666664

3
777775 N

>

u H f xð Þð Þ � H f xð Þð Þð Þ; (72)

Bb ¼ rsN

>

u Φg xð Þ �Φg xKð Þ� � ¼
@

@x
0

0
@

@x
@

@y

@

@x

2
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3
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>

u Φg xð Þ �Φg xKð Þ� �
; (73)

rNp ¼
@

@x
Np

@

@y
Np

2
64

3
75: (74)
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