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Abstract Rock masses exhibit strong anisotropy due

to the structure of fracture networks embedded within

the mass. We use a particulate discrete element

method to quantitatively investigate the effect of

spacing and inclination angle of the joints on

anisotropic strength under uniaxial compression. In

all of the numerical models, the intact rock masses are

represented by the bonded particle model, and the joint

planes are simulated by the smooth-joint model.

Observations are made of the evolving stress–strain

curves relative to the distribution and orientation of

micro fractures. Apparent from this is that: (1) for the

same fracture spacing, the strength and deformation

parameters of jointed rock masses change in a ‘‘U’’

shaped curve when plotted against an increase in the

inclination angle of the joints. The maximum value

occurs at the inclination angles of 0� and 90�, and the

minimum value occurs at an inclination angle of 40� or

50�; (2) for the same joint spacing, the failure mode of

the jointed rock mass with different joint inclinations

can be classified into three categories: splitting tensile

failure, shear sliding failure along the joint surface and

mixed failure of the two modes above; (3) for the same

joint inclination angle, the normalized compressive

strength and normalized elastic modulus both increase

with an increase of the normalized joint plane layer

spacing.

Keywords Uniaxial compression � Discrete element

method � Jointed rock masses � Anisotropy

1 Introduction

Anisotropy is one of the most distinct features that

must be considered in rock engineering because many

rocks exposed near the Earth’s surface show well-

defined fabric in terms of bedding,stratification, lay-

ering, foliation, fissuring, or jointing (e.g., Everitt and

Lajtai 2004; Duan and Kwok 2015). The mechanical

properties of a jointed rock mass are complex because

of its high textural anisotropy. The strength and

deformability of a jointed rock mass are heavily

influenced by the orientation and the distribution of the

joints, and the failure mode varies significantly with

the variation of the joint orientation (Hoek 2007).

Therefore, the mechanical behavior of a jointed

rock mass is an important topic in rock engineering.
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Numerous previous studies have investigated the

mechanical properties of a jointed rock mass through

uniaxial or triaxial compression tests (Yang et al.

1998). The uniaxial compression strength (UCS) and

Young’s modulus of the Danba schist at different dip

angles were studied via uniaxial compression tests

(Chu et al. 2013). The influence of joint orientation on

the fracture progression behavior of singly-jointed

sandstone under undrained triaxial conditions is

researched (Wasantha et al. 2015). The experimental

investigation of deformation and strength anisotropy

of Asan gneiss, Boryeong shale and Yeoncheon schist

in Korea give clear evidence of transverse isotropy

(Cho et al. 2012). Moreover, to systematically inves-

tigate the influence of the joint orientation, artificial

rock specimens have often been used to mimic the

response of natural rock (Kulatilake et al. 2001). In

addition to these experiments, Jaeger (1972) employed

stress superposition theory to predict the variation in

strength of a jointed rock mass with one or two sets of

joints. Various advanced models combined with either

empirical or theoretical formulae have been proposed

to explore the more complex phenomena of a rock

mass, such as the failure mode and the sliding behavior

between blocks. A method that incorporates the

deformation and the strength of intact rock and joints

is proposed such that the complete pre- and post-peak

deformation of rock mass can be obtained (Wang and

Huang 2009). Considering the unique stratigraphic

characteristics of salt rocks, a new Cosserat-like

medium constitutive model is proposed to facilitate

the efficient modeling of the mechanical behavior of

these formations (Li et al. 2009). These models could

be further incorporated within continuum numerical

analysis techniques based on the concept of an

equivalent continuum. The equivalent continuum

treats the rock mass as a homogeneous anisotropic

body, which superposes the intact rock properties and

the joint behavior at different orientations, to describe

the overall mechanical behavior of the rock mass.

Thus, using this concept, continuum numerical anal-

ysis can follow complex rock mass behavior.

However, jointed rock masses are discontinuous

and anisotropic, in which the fractures in the intact

rock interact with the sliding of an existing joint face.

To consider the sliding effect, certain studies have

used discrete element methods (DEM) to define failure

processes and resulting strength of the rock mass.

A PFC numerical model was able to reproduce the

damage zone observed in laboratory experiments

(Fakhimi et al. 2002). Investigation of the failure

evolution of simulated Lac du Bonnet granite has also

been performed, in which the number and type of

contact failures (micro cracks) are monitored (Wang

and Tonon 2009). To explore the effects of jointing on

strength, the fracture system is linked to PFC models.

Simulated Rock Mass (SRM) models containing

thousands of non-persistent joints can be virtually

fabricated and correspondence to standard laboratory

tests (UCS, triaxial loading, and direct tension tests) or

tested under a non-trivial stress paths used to represent

the behavior of the mass (Mas Ivars et al. 2011). A new

clumped-particle logic set of micro parameters was

used to predict the strength of the synthetic rock,

independent of the stress path (Cho et al. 2007).

In this study, a numerical technique combing a

bonded particle model with a smooth-joint model

(SJM) is proposed to represent the weak layers in

inherently anisotropic rocks. The influence of the dip

angle and spacing on strength and deformation of the

jointed rock mass is examined in detail. The numerical

results are quantitatively compared with previous

experimental and analytical results. The failure mode

and fracture direction are investigated.

2 Numerical models

Particle-flow code (PFC) models the movement and

interaction of circular particles using the DEM, as

described by Cundall and Strack (1979). PFC has three

advantages. First, PFC is potentially more efficient

because contact detection between circular objects is

much simpler than contact detection between angular

objects; second, there is essentially no limit to the extent

of displacement that can be modeled; and third, it is

possible for the blocks to break (because they are

composed of bonded particles). The constitutive behav-

ior of a material is simulated in PFC by associating a

contact model with each contact. In addition to the

contact model, there may be a bond model and a dashpot.

These three components, in their entirety, define the

contact force–displacement behavior (Itasca 2010).

2.1 Bonded model

Two basic bond models are provided in PFC: a

‘‘Contact Bond (CB) model’’ and a ‘‘Parallel Bond
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(PB) model’’. A CB model can be envisaged as a pair

of elastic springs with a constant normal and shear

stiffness acting at a point. A PB model approximates

the physical behavior of a cement-like substance

joining the two particles. The PB model establishes an

elastic interaction between particles that act in parallel

with the slip or contact-bond constitutive models.

Particles in the PFC are free to move in the normal and

shear direction and can rotate between particles. This

rotation may induce a moment between particles, but

the CB model cannot resist this moment. With the PB

model, however, bonding is activated over a finite

area; thus, this bonding can resist a moment.

2.2 Contact model

By default, all contacts are assigned either the linear or

Hertz model, depending on the properties of their two

contacting entities (ball–ball or ball-wall). The linear

model includes contact-bond behavior (i.e., the linear

model may be bonded or unbonded, and when bonded,

it behaves as a contact bond). Parallel-bond behavior

is implemented by adding a parallel-bond component

to a contact, and this component acts in parallel with

the other components at the contact. Before describing

the linear and Hertz models, we describe the compo-

nent behaviors that are provided by these models.

The SJM was first proposed to model the presence of

joints in fractured rock masses. The SJM simulates the

behavior of an interface, regardless of the local particle

contact orientation along the interface. The behavior of

a joint can be modeled by assigning smooth joint

models to all contacts between particles that lie on the

opposite side of the joint. The joint can be envisioned

as a set of elastic springs uniformly distributed over a

rectangular cross-section, centered at the contact point

and oriented parallel with the joint plane. A typical

smooth-joint contact in 2D is illustrated in Fig. 1.

The SJM provides the macroscopic behavior of a

linear elastic and either bonded or frictional interface

with dilation. The behavior of the bonded interface is

linear elastic until the strength limit is exceeded, at

which point the bond breaks, which causes the

interface to become unbonded. The behavior of an

unbonded interface is linear elastic and frictional with

dilation, with slip accommodated by imposing a

Coulomb limit on the shear force. The interface does

not resist relative rotation.

When the SJM is created, the parallel bond will be

deleted and replaced by the smooth joint contact

model. Particles intersected by a smooth-joint can pass

through each other by sliding along the pre-defined

joint surface rather than moving around one another.

Because the smooth-joint orientation is not aligned

with the contact normal, the relative displacement

increment is resolved into joint normal and shear

directions:

Dd ¼ Dd
_

nn̂j þ Dd
_

s ð1Þ

The accumulated normal and shear displacements

are updated as

d
_

n ¼ d
_

n � Dd
_

n

d
_

s ¼ d
_

s þ Dd
_

s

ð2Þ

The elastic portions of the normal Dd
_e

n and shear

displacement increments Dd
_e

s are determined based on

Fig. 1 Numerical model

used for modeling rock

joints

Geomech. Geophys. Geo-energ. Geo-resour. (2016) 2:11–24 13

123



the value of the gap: if they are bonded, then the entire

displacement increment is elastic; if they are not

bonded, then only the portion of the displacement

increment that occurs is elastic.

The force–displacement law for the SJM updates

the contact force:

Fc ¼ F; Mc � 0 ð3Þ

where is the smooth-joint force. The force is resolved

into normal and shear forces:

F ¼ �Fnn̂j þ Fs ð4Þ

The SJM has been successfully applied to the study

of fractured rock mass failure (Mas Ivars et al. 2011),

the scale effect (Zhang et al. 2011), anisotropic

behavior of jointed rock masses (Chiu et al. 2013)

and transversely isotropic rocks (Park and Min 2015).

3 Simulation of uniaxial compression of jointed

rock masses

The uniaxial or unconfined compressive strength

(UCS) of rock is an important and widely used

parameter in rock mechanics and rock engineering.

To determine the UCS, laboratory, in situ and numer-

ical compression tests are usually conducted. The PFC

uniaxial compression numerical test is shown in Fig. 2.

3.1 Generation of jointed rock masses model

The dimensions of the numerical model sample

(W 9 H = 0.05 m 9 0.1 m) are selected according

to the conventional indoor physical and mechanical

tests, the relevant mechanical properties of rock

masses and the method of determination. The particle

assembly in the sample was generated using the radius

expansion method. The particle size follows a uniform

distribution, with Rmin = 0.5 mm and Rmax/

Rmin = 1.66, as listed in Table 1. The generation of

a layered rock sample consists of two main steps: first,

performing particle assembly specified by using the

bonded particle model (BPM) contact model and the

corresponding micro-mechanical parameters to simu-

late the intact rock blocks; second, adding the weak

layers, which are specified using the SJM contact

model, and inputting the related micro-mechanical

parameters into the intact rock model.

3.2 Simulation procedure for uniaxial

compression numerical test

The PFC modeling process can be divided into the

following 4 steps.

1. Compact initial assembly of the particles

The compression tests are performed in a polyaxial

cell. The top and bottom walls act as loading platens,

and the velocities of the sidewalls are controlled by a

servomechanism to maintain a constant confining

stress. All of the side walls are removed for fully

unconfined tests, which are performed by setting the

stress w equal to a nonzero value. All walls are

frictionless, and the normal stiffness of the platen

walls and the confining walls are set equal to w the

average particle normal stiffness of the material. The

particle diameters satisfy a certain particle-size distri-

bution and are bounded by Dmin and Dmax.Fig. 2 Uniaxial compression numerical test

Table 1 Geometrical parameters of uniaxial compression test

sample

Geometrical parameters Value

Sample size (m) W 9 H = 0.05 9 0.1

Minimum particle size (m) Rmin = 0.0005

Particle size ratio r = 1.66

Porosity n = 0.15

Particle number N = 3311

Particle density (kg/m3) qpartical = 2900

Where qpartical ¼ q
1�n

and q is the macro density of the material
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2. Apply an initial confining stress

The compression test begins with a seating phase.

Axial and confining stresses are applied by activating the

servomechanism for all opposing w walls and then

cycling under control of the solver until either the stresses

are applied successfully or it is determined that w the

target stresses cannot be reached. The servomechanism

can be activated independently for each set of the

opposingwwalls. The servo behavior is controlled by the

wall-servo tolerance such w that the corresponding

velocity will be zero when the value is reached. After

the axial and confining stresses have been applied to the

specimen, the specimen dimensions at this stage are taken

as the initial dimensions to be used in the computation of

stresses and strains during the subsequent loading phase.

3. Apply constant strain rate

The specimen is loaded by moving the platens

toward one another at a final velocity, which is

determined by specifying the strain rate. The platen

acceleration at the start of loading is controlled by

specifying the appropriate values. The platen velocity

will be adjusted to reach a final value in a sequence of

stages. Note that a value of strain rate thatw is sufficient

to produce quasi-static loading on a specimen of initial

length value will most likely not produce quasi-static

loading on a specimen of a different length.

4. Loading process

The loading phase continues until the specified test-

termination criterion is reached. The deviatoric stress

is monitored, and the maximum value is recorded.

During a typical test on a bonded material, this value

of the deviatoric stress will increase to some maximum

and then decrease as the specimen fails, and the test

can be terminated when the deviatoric stress is less

than a tolerance value.

4 Effect of joints on the mechanical properties

of rock masses

4.1 Effect of joint inclination

4.1.1 Numerical test schemes

The uniaxial compression numerical tests are based on

the shale (selected from a project), whose parameters

are shown in Table 2, and the calculation scheme is

shown in Table 3. The inclination angle is ‘‘positive’’

when the joint plane rotates counterclockwise from the

horizontal plane, changing uniformly from 0� to 90� at

a 10� interval. A total of 10 rock samples were tested,

with all of joint plane spacing taken as 0.01 m and all

of the joints distributed throughout the model. The

rock samples of inclination angles of 0�, 30�, 60� and

90� are shown in Fig. 3.

4.1.2 Stress–strain curve

Uniaxial compression numerical tests of the various

rock samples were performed in accordance with the

procedure described in Sect. 3.2; the axial stress–

strain curves of the samples are shown in Fig. 4. The

stress–strain curves of rock samples with different

Table 2 Mesoscopic parameters of the BPM and the SJM

BPM SJM

Rmin/m 0.05 kn/GPa/m 4000

Rmax/Rmin 1.66 ks/GPa/m 500

q/kg/m3 2600 k 1.0

L 0.7 L 0.8

Ec/GPa 15.0 w/� 0

kn/ks 4.0 M 3

kpB 1.0 rc/MPa 12.0

Ec/GPa 10.0 cb/MPa 6.0

rc/MPa 28 ub/� 0

sc/MPa 28

k
n
=k

s 4.0

Table 3 Numerical test scheme and results of rock masses

with different joint inclination angles

Sample number Inclination angle/h� E r

1# 0 0.86 0.96

2# 10 0.82 0.95

3# 20 0.77 0.94

4# 30 0.70 0.88

5# 40 0.67 0.47

6# 50 0.67 0.38

7# 60 0.71 0.38

8# 70 0.79 0.49

9# 80 0.86 0.72

10# 90 0.90 0.91
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inclination angles show clear differences, and the

elastic modulus and compressive strength of the

samples both initially decrease and then increase with

the increase of the inclination angle from 0� to 90�.
After the peak axial stress, all of the axial stress curves

decrease rapidly with nearly the same slope, which

illustrates that under the same joint spacing of 0.01 m,

the rock samples with different joint inclination angles

exhibit the similar brittle nature.

4.1.3 Crack distributions

1. Propagation of micro cracks

The crack distributions of rock samples with

different joint inclination angles are shown in Fig. 5,

and the failure mode of the rock samples can be

classified into three categories:

Splitting-mode splitting tensile failure along the

longitudinal direction (e.g., at 0� and 90�), which can

be confirmed from the distribution of micro-cracks in

the rock samples.

Sliding-mode shear sliding failure along the joint

planes (e.g., at 40� and 70�). Because of the low bond

strength of the joints, shear sliding failure tends to

occur along the joint planes in the rock masses and is

accompanied by the generation of micro-cracks near

the joint planes.

Mixed-mode mixed failure of the two modes above

(e.g., at 20� and 30�). The breakage occurs in intact

rock, and stepped failure is generated through the local

adjacent joint planes.

Fig. 3 Rock samples of

different joint inclination

angles

Fig. 4 Stress–strain curves

of the rock samples with

different inclination angles
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Therefore, when the inclination angle is between

40� and 70�, the damage area distribution of the

sample is easily affected by joints, whereas the joints

have little effect on the damage area distribution when

the joint plane is nearly parallel or vertical to the axial

stress direction.

Under different joint inclination angles, the curves

of the cumulative crack number-axial strain rate in

rock samples under uniaxial numerical compression

are shown in Fig. 6. The cumulative crack number is

the total number of microcracks induced by the

loading—and defined as particle–particle detach-

ments. The development of cumulative crack number

with the axial strain rate in each sample model can be

divided into three stages. In Stage 1, micro-cracks

rarely occur at the initial stage before the axial strain

reaches 0.15 % (note that it was 0.2 % for the uniaxial

compression test) (Duan and Kwok 2015); in Stage 2,

first, the number of micro-cracks increases slowly to a

certain value and then increases rapidly until the

model is destroyed; and in Stage 3, the number of

micro-cracks tends to be stable and no longer changes.

As shown in Fig. 7, different stages of the micro-

crack distribution occur during the uniaxial compres-

sion test process. During the test, the breaking of

smooth joint contacts first induces micro-cracks, and

then the parallel bonds break to generate micro-cracks

sequentially; as a result, there are two periods of rapid

growth in the second stage in the curve.

2. Orientation of the micro-cracks

Figure 8 illustrates the rose diagrams of the incli-

nation angle of the micro-cracks in the ultimate failure

state. The inclination angle of a micro-crack is

‘‘positive’’ when the crack rotates counterclockwise

from the horizontal plane, which is consistent with the

‘‘positive’’ direction of the joint plane. To simplify the

statistics, the following equation is used in the process

of statistical processing of the crack inclination angle:

where h is the real inclination angle and hs is the

statistical inclination angle. As shown in Fig. 8, the

radial length of each bin indicates the number of

micro-cracks oriented within the angles defined by the

bin. The cracks are found to have a preferential

vertical orientation, which is parallel to the direction

of the joint plane. This preference is mainly due to the

low bond strength of the joints, which are easy to break

under the action of axial stress and lead to the

formation of micro-cracks. The micro-cracks extend

along the joint plane and eventually run through the

entire sample model, thus leading to the failure of the

model.

Fig. 5 Crack distributions of rock samples with different joint

inclination angles

hs ¼
ð10mÞ� ð10m� 5Þ� � h\ð10mþ 5ÞÞ�;�8�m� 8;m 2 Z

�90� �90� � h\� 85�

90� 85� � h� 90�

8
<

:
ð5Þ
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4.1.4 Simulation results of the elastic modulus

and the compressive strength

According to the curves in Fig. 4, the uniaxial elastic

modulus and the compressive strength of each rock

sample can be calculated. The normalized compres-

sive strength r and normalized elastic modulus E can

be obtained as follows:

r ¼ rjR
riR

E ¼ EjR

EiR

ð6Þ

where rjR and riR are the uniaxial compressive

strength of jointed rock masses and intact rock masses,

respectively, and the elastic modulus of jointed rock

masses and intact rock masses are EjR and EiR,

respectively. The value of the normalized elastic

modulus and the compressive strength are less than 1,

which reflects the weakening influence of the joints on

the strength and deformation properties of the rock

masses.

The values of the normalized elastic modulus and

compressive strength calculated according to Eqs. 7

and 8, respectively, are listed in Table 3. The curves of

the normalized elastic modulus and the compressive

strength versus the inclination angle are shown in

Figs. 9 and 10, respectively. The analytical solution of

the elastic modulus with an inclination angle of h (Eh)

can be calculated by (Amadei 1982):

1

Eh
¼ 1

EiR

þ cos2 h
cos2 h

knd
þ sin2 h

ksd

� �

ð7Þ

where EiR is the elastic modulus of intact rock masses,

kn and ks respectively are the normal stiffness and

Fig. 6 Cumulative crack

number-axial strain rate for

different joint inclination

angles

Fig. 7 Micro-crack

distribution at different

stages (30�)

18 Geomech. Geophys. Geo-energ. Geo-resour. (2016) 2:11–24

123



shear stiffness of joint plane, respectively, and d is the

joint spacing. The uniaxial compressive strength of

rock masses can be expressed as a function of friction

angle (/w), cohesion (c) and the inclination angle (h)

of the joint plane, as shown below (Jaeger et al. 2007):

rh ¼
2c

ð1 � tan/w cot hÞ sin 2h
ð8Þ

As shown in Figs. 9 and 10, the normalized elastic

modulus and compressive strength both change in a

‘‘U’’ type curve with an increase of the inclination

angle of the joints. When the inclination angle is

between 40� and 70�, the shear stress along the joint

plane is so much larger that the sample easily

undergoes shearing slip failure along the joint plane

Fig. 8 Distribution of

orientations of the micro-

cracks
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under the action of axial stress; thus, both the elastic

modulus and compressive strength reach the minimum

accordingly. In contrast, when the inclination angle is

0� or 90�, the micro cracks are mainly caused by the

breaking of parallel bonds in the rock block; therefore,

the strength and deformation properties of the rock

masses are weakened slightly by the joints.

As observed from Table 3, the normalized elastic

modulus decreases from 0.86 to the minimum value of

0.67 with the inclination angle increasing from 0� to

40� and then increases with the increase of inclination

angle. With the increase in the inclination angle, the

normalized compressive strength decreases first and

then increases, with the minimum value reached at

50�. Both the normalized elastic modulus and the

compressive strength reach the maximum when the

angle is 0� or 90�, which indicates that the weakening

degree of the horizontal or vertical joints on the

strength and deformation properties of rock masses is

the smallest. The ratios of the maximum and minimum

values of the elastic modulus and compressive

strength are 1.34 and 2.53, respectively. This result

shows that the anisotropic influence of joint inclina-

tion angle on the strength and deformation of rock

masses is significant.

4.2 Effect of joint spacing

4.2.1 Numerical test schemes

The joint spacing in rock masses reflects the intensity

of structural deformation and is another factor that

affects the engineering rock deformation and strength.

The computational solution for uniaxial compression

of the jointed rock mass is shown in Table 4, where the

joint spacing varies uniformly from 0.005 to 0.025 m,

with an interval every 0.005 m. For three different

failure modes, three types of joint inclinations are

selected: 30� (mixed mode), 60� (sliding mode), and

90� (split mode); each model has five samples.

4.2.2 Stress–strain curve

As shown in Fig. 11, the stress–strain curve trends are

consistent: initially, linear growth occurs, which is

followed by a sharp decline after the curve reaches a

peak; the rock mass does not undergo rapid brittle

failure until the stress value reduces to the residual

Fig. 9 Variation of the normalized elastic modulus with the

joint inclination angle

Fig. 10 Variation of the normalized compressive strength with

the joint inclination angle

Table 4 The number of the numerical test and the result under

different joint spacings

Sample number Inclination angle/h� S r E

1# 30 0.20 0.77 0.54

2# 30 0.40 0.88 0.70

3# 30 0.60 0.96 0.78

4# 30 0.80 0.92 0.82

5# 30 1.00 0.98 0.86

6# 60 0.20 0.37 0.55

7# 60 0.40 0.38 0.71

8# 60 0.60 0.40 0.79

9# 60 0.80 0.44 0.82

10# 60 1.00 0.43 0.86

11# 90 0.20 0.73 0.82

12# 90 0.40 0.91 0.90

13# 90 0.60 0.98 0.94

14# 90 0.80 0.93 0.94

15# 90 1.00 0.99 0.98
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strength. Among the three groups of samples (30�, 60�
and 90�), both the compressive strength and the elastic

modulus increase with an increase in joint spacing, but

the growth rates of the compressive strength and the

elastic modulus are different.

4.2.3 Distribution of cracks

Under different joint spacings, when the rock mass

samples are broken, the propagation of micro-cracks is

shown in Fig. 12, 13 and 14. The failure modes of

samples are not observed to change with an increase of

joint spacing. Thus, the joint inclination has a

significant influence on the propagation modes of

micro-cracks, but the different joint spacings have

little influence.

4.2.4 Elastic modulus and the compressive strength

According to the stress–strain curve, the compressive

strength and elastic modulus of the rock mass samples

can be calculated, and then the compressive strength,

elastic modulus and joint spacing may be normalized

as follows:

S ¼ Si

maxðSiÞ
ð4Þ

where Si is the i-th joint spacing, and according to

Eqs. 2 and 4, the normalized compressive strength and

normalized elastic modulus can be calculated for

different joint spacings—for joint inclinations for 30�,
60�, and 90�, as shown in Table 4. The normalized

compressive strength may be evaluated against spac-

ing s (Fig. 15) and likewise the normalized elastic

modulus (Fig. 16).

According to Figs. 15 and 16, the change in the

normalized compressive strength and the normalized

elastic modulus versus joint spacing follow similar

trends, i.e., they increase slightly with joint spacing.

Figure 15 clearly shows that the compressive strength

changes with the joint spacing for joint inclinations of

30� and 90�, but not 60�. Mainly because the intact

rock fails in tensile failure in the case of the joint

inclination of 30� and 90�, the smaller joint spacing

means that more weak planes occur along the lateral

direction and that more joints are therefore opened

under load. The joint spacing has a clear effect on the

compressive strength in this situation. However, the

rock mass mainly undergoes shear slip failure along

several joint planes in the case of the joint inclination

at 60�, and the change of the joint spacing does not

make the number of shear slip failure plane increase

significantly. Thus the joint spacing has only a small

effect on the compressive strength in this case. From

Fig. 16, it can be observed that the variation of elastic

modulus with joint spacing is relatively similar to the

case of rock mass strength.

Both the uniaxial compressive strength and the

normalized elastic modulus with the normalized joint

Fig. 11 Stress-strain curves of rock samples with different joint

spacings
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spacing are in accordance with a quadratic polynomial

function, and the elastic modulus of the rock mass with

different joint inclinations increases with increasing

joint spacing. The maximum difference ratio of

compressive strength and elastic modulus is 1.36 and

1.59, respectively under different joint spacings. In

addition, Figs. 15 and 16 show that the normalized

compressive strength is minimum under a joint

inclination of 60� but maximum under a joint incli-

nation of 90�.

5 Conclusion

In this paper, the characteristics of rock mass

anisotropy and its impact on strength and deformation

has been evaluated using particulate DEM. Based on

different arrangements of dip angle and spacing of a

set of joints, a series of numerical experiments of

uniaxial compression has been completed to study the

effect of the joint plane angle and spacing on the rock

mass deformation and strength.

Fig. 12 Distribution of the

cracks of rock samples with

different joint spacings (30�)

Fig. 13 Distribution of the

cracks of rock samples with

different joint spacings (60�)

Fig. 14 Distribution of the

cracks of rock samples with

different joint spacings (90�)
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According to the complete stress strain curve

recovered from the different numerical experiments

of uniaxial compression for different joint dip angles,

the distribution features of the micro-cracks, the

number of micro-cracks and the rose diagram of the

micro-cracks have all been analyzed. The resulting

failure mode of jointed rock masses is found to be

divided into three categories: splitting mode, sliding

mode, and mixed mode. The strength and deformation

of the rock mass presents an approximately ‘‘U’’

shaped curve against dip angle. The maximum value

of the strength and deformation parameters of the rock

mass is obtained when the dip of the fractures is 0� or

90�; the minimum value is obtained when the angle is

40�–50�. The ratio of the maximum and minimum

values of the compressive strength and the elastic

modulus are 1.34 and 2.53, respectively.

In view of the three types of failure modes, the dip

angles of 30�, 60� and 90�, and five different joint

spacings for each set are selected for uniaxial

compression tests. The results show that the charac-

teristics of the distribution of cracks are greatly

influenced by the joint surface inclination, whereas

different joint spacings have little influence. The

largest difference ratio of the UCS and the elastic

modulus are 1.36 and 1.59, respectively, in the

condition of different joint spacings and the same

dip angle.

Fig. 15 Variation of the

normalized compressive

strength with the normalized

joint spacing

Fig. 16 Variation of the

normalized elastic modulus

with the normalized joint

spacing
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