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A relation to predict the failure of 
materials and potential application 
to volcanic eruptions and landslides
Shengwang Hao1,2, Chao Liu1, Chunsheng Lu3 & Derek Elsworth4

A theoretical explanation of a time-to-failure relation is presented, with this relationship 
αΩΩ = ( − ) ( − )

−
 ̈ t t1 f

1  then used to describe the failure of materials. This provides the potential to 
predict timing (tf − t) immediately before failure by extrapolating the trajectory ΩΩ

−
 ̈ 1

 as it asymptotes 
to zero with no need to fit unknown exponents as previously proposed in critical power law behaviors. 
This generalized relation is verified by comparison with approaches to criticality for volcanic eruptions 
and creep failure. A new relation based on changes with stress is proposed as an alternative expression 
of Voight’s relation, which is widely used to describe the accelerating precursory signals before material 
failure and broadly applied to volcanic eruptions, landslides and other phenomena. The new generalized 
relation reduces to Voight’s relation if stress is limited to increase at a constant rate with time. This 
implies that the time-derivatives in Voight’s analysis may be a subset of a more general expression 
connecting stress derivatives, and thus provides a potential method for forecasting these events.

Predicting the time-to-failure of brittle materials is a long-standing problem. To describe the behavior of a mate-
rial in its terminal stage of failure, Voight1,2 proposed a simple relation between the first and second derivatives of 
an observable quantity Ω, that is

Ω Ω − =
α−

 ̈ A 0 (1)

where A and α are empirical constants2–4, and the superscripted dot refers to differentiation with respect to time.
This equation (1) has been applied to changes in precursory rates of seismic energy release, ground defor-

mation and seismic event rate1–8. It has been shown that volcanic dome-building episodes commonly exhibit 
acceleration in both effusive discharge rate and seismicity before explosive eruptions9,10. These kinds of acceler-
ating behaviors of strain and seismicity appear ahead of many failure phenomena from volcanoes2,5–8,11–13 and 
landslides14–17, to laboratory samples10,18,19 and suggest that these precursory signals could be the basis for the 
application of material-failure-forecasting methods (FFM)2,3,5,6,8,10–12,20–22.

In the general case of α ≠  1, solutions to equation (1) involving positive acceleration take the form of a 
power-law increase in the rate of precursory signals with time2,7,21. The exponent α is usually ~2, and α =  2 
represents a linear relation between the reciprocal rate and time. In practice, different mechanisms or loading 
conditions may cause recognizable changes in the reciprocal rate curve1 and observed values of α can also fall 
outside these narrow limits21. When the exponent α ranges between 1 and 23,4, the curve of the inverse velocity 
versus time is concave, otherwise it is convex (α >  2).

In the case of α  =  2 , the time of failure can be estimated by extrapolating the curve of the inverse rate versus 
time to the time at which the inverse rate is equal to zero2,7,20. For other values of α >  1, approximate predictions 
may be made by other graphical extrapolation methods20. The accuracy and precision of forecasts using this 
method based on model-fitting techniques have been widely discussed16,23–25.

Kilburn4,26 explained the emergence of Voight’s relation by applying statistical mechanics to rock fracture. 
Many models based on laboratory and field data have focused on precursory behavior during deformation under 
constant stress. Kilburn26 proposed a model to extend analyses to deformation under an increasing stress. This 
indicated that precursory signals are controlled by an increase in applied stress, rather than by creep deformation 
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under constant stress - thus providing an alternative to Voight’s expression, now accommodating changes with 
stress.

It is worth noting that it is usually required to fit the value of α to predict time of failure by using this empirical 
equation (1). However, the fluctuation of α usually has a significant influence on the accuracy and precision of 
forecasts. Also, the empirical equation (1) is usually restricted to describe stress-rate-dependent material failure, 
although it might also be suitable (at least approximately) to predominantly stress-rate-independent failure such 
as fatigue1. In this paper, we derive a relation to describe materials failure, and verify it by using data sets accom-
modating volcanic eruption and creep failure. The well-known fiber bundle model is applied to model a heteroge-
neous brittle stress-rate-independent material. This material is subject to a monotonically increasing stress, with 
the relation explored to gain insight into the conditions for material failure that are not immediately evident from 
using time variations alone. Based on this model, an asymptotic analysis and also Monte Carlo simulations are 
performed to confirm the relation close to failure.

Theoretical derivations
Equation (1) can be simplified by noting that Ω = −Ω Ω

−
 ̈ d dt/2 1 , so that, substituting for Ω̈ yields (supplementary 

information I)

α α
= −Ω Ω = − Ω Ω = −

−
Ω
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for α >  1, and

= −Ω Ω
−

 A d dt/ (3)1

for α =  1. The units of A show a dependence on the value of α . Noting that A =  − Ω−d dt/1  for α =  2 indicates that 
the parameter A has the units of Ω−d dt/1  and thus reflects a characteristic scale for Ω, which, in turn, is linked to 
the volume of rock deformed and so will change on a case-by-case basis. This can be illustrated by the three appli-
cation data sets presented by Voight2, which exhibit a uniform value of α =  2 but different A. Consequently, the 
parameter A represents the specific behavior of an event together with the prediction of failure time.

Since Ω =
α−

 0f
1  when α  >  1, Equation (2) can be integrated to yield

αΩ = − − −
α−

 A t t(1 )( ) (4)f
1

which, substituting for A into Equation (1) yields

αΩ Ω = − −
−

 ̈ t t( 1)( ) (5)f
1

for α   >  1, where tf  is the failure time. When α  =  1, Equation (1) leads directly to Ω Ω =
−

 ̈ A1/1 .
Equation (4) is verified by the nearly linear behavior of Ω α−



1  with time and close to failure for different obser-
vations from one eruption2 at Bezymyanny Volcano, USSR, 1960, and for creep failures2,28 shown in Fig. 1. 

Figure 1. Relation between Ω
−α



1
 and time nearby failure. (a) Seismic energy release2 before eruption time 

(te), Bezymyanny Vocano, 1960. Ω =  cumulative strain release in units of 103 J1/2. (b) Creep strain of soils 
(Hanley clay) in compression1,28.
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Equation (5) indicates that ΩΩ− ̈ 1 linearly decreases with time with a slope α −  1. The time of failure can be pre-
dicted by extrapolating the line of ΩΩ− ̈ 1 against time to a point at which ΩΩ− ̈ 1 is equal to zero, as for the three 
events shown in Fig. 2. It is of particular interest that this gives a method to predict failure time before failure 
without fitting the values of α and A, for α  >  1.

Model analysis. In this section, a model is developed to show an alternative expression for Voight’s relation 
(1) based on changes with stress for a “stress-rate independent” material defined as the case where stress in the 
material is independent of the strain rate.

Model. We consider a statistical fiber-bundle model with N fibers connected in parallel, clamped by a rigid 
yoke at both ends, and extended by an applied longitudinal stress. Here, a global load-sharing criterion is enforced 
by the rigid yoke, requiring redistribution of load between remaining fibers following the failure of one or more 
of the fibers. In this form some closed form analytic results can be obtained.

For a continuous case (or in the limit of infinite N), the constitutive relationship can be expressed as27 
(Supplementary Information, II)

σ ε= − .DE(1 ) (6)

Here σ =  applied stress, E =  Young’s Modulus, ε = strain. The damage fraction, D, ranges from zero to unity. For 
quasistatic failure or the case where stress is independent of the strain-rate, the damage variable D can be 
expressed uniquely by the distribution of strain (or stress) thresholds of elements. This can be described by a 
uniform distribution D(ε) =  ε between 0 and 1 for the purposes of explicit calculations, or a Weibull distribution 
of the form ε = − ε−D e( ) 1

m
. This latter form is widely used to describe how local breaking strengths are distrib-

uted within a material29 and is convenient in the analysis, due to its versatility (Supplementary Information, III).

Analytic derivation. For a stress-rate-independent material, the relative change of measurable responses 
such as damage D and strain ε, with respect to the controlling variable σ, are most useful in its application. The 
first and second derivatives of damage D and strain ε are calculated with respect to the controlling variable σ: 
dε/dσ (or dD/dσ) and d2ε/dσ2 (or d2D/dσ2), and are shown in Fig. 3. The fiber system will fail completely when 
the load reaches the maximum stress, so the critical failure stress σ σ=f max and can be analytically derived by 
using the condition of dσ/dε|f =  0. For example, this gives σf =  1/4 for the uniform distribution and σf =  (me)−1/m 
for the Weibull distribution.

The relation between (dε)/(dσ)((d2ε)/(dσ2))−1 and stress becomes linear as failure is approached (see Fig. 3a) 
and shows a relation (dε)/(dσ)((d2ε)/(dσ2))−1 =  2(σf −  σ), which is similar to equation (5). A slope of 2 indicates 
that the critical exponent is 3, which is consistent with the results shown in Fig. 3b. Based on an observed linear 
dependence (the right portion of the curves in Fig. 3b), the increase in response ahead of failure can be described 
as d2ε/dσ2 =  k(dε/dσ)β or d2D/dσ2 =  k(dD/dσ)β with β =  3. For both the Weibull distribution with different shape 
parameters m and for the uniform distribution, all cases present the same exponent of 3 but exhibit different 

Figure 2. Relation between Ω Ω
−

 ̈ 1
 and time near failure. (a) Seismic energy release, Bezymyanny Volcano, 

shown in Fig. 1a. (b) Creep strains of Hanley clay shown in Fig. 1b.
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values of k (see Fig. 3b). Furthermore, for the Weibull distribution, a larger Weibull index m represents a larger 
value of k. These imply that the power exponent exhibits a common characteristic during the failure process. 
However, the parameter k reflects their sample-specific behavior.

We now present an analytic derivation of these relations. The stress-strain equation (6) implies that the stress 
σ can be expressed as a function of strain: σ(ε) = E[1 −  D(ε)]ε, and that therefore
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The analogous procedure for expressing stress as a function of damage: σ =  σ(D) leads to
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This confirms that the critical parameters are β =  3 and k =  − (d2σ/dε2)f  near failure.
To clearly demonstrate the characteristics of equations (7) or (8) and the tendencies of parameters k and β, we 

turn to the expansion of σ(ε) as a function of ε in the vicinity of the failure point σf. That is
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Substituting (dσ/dε)f  =  0 into equation (9), we get
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An analogous procedure may be applied to calibrate in terms of damage D by noting that strain can be 
expressed as a function of D, for example ε =  D for a uniform distribution and ε =  [− log(1− D)]1/m for a Weibull 
distribution. This also leads to
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Thus, equations (11) and (12) give a similar expression to Voight’s relation (1), i.e.

Figure 3. Analytical results of strain and damage evolution. (a) Relation between ((dε)/(dσ))((d2ε)/(dσ2))−1 
and stress nearby failure for a Weibull distribution with m =  3 and 4. The approximately linear relation with 
a slope 2 =  β −  1 verifies relation (5). Insert for m =  3 is to show the tendency of ((dε)/(dσ))((d2ε)/(dσ2))−1 
evolving to failure. (b) The relation between dε/dσ (or dD/dσ) and d2ε/dσ2 (or d2D/dσ2). dε/dσ (or dD/dσ) and 
d2ε/dσ2 (or d2D/dσ2) are the first and second derivatives of strain (or damage) with respect to stress, respectively. 
The straight red line represents a uniform strength distribution and has a slope of 3, with the remaining relations 
corresponding to a Weibull distribution with m =  3, 4, and 6, respectively.
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where R represents the corresponding response variable such as strain and damage in this paper when the system 
is loaded by controlling stress, k =  − ((d2σ)/(dR2))f. Here, the critical exponent of 3 is independent of the specific 
expression σ = σ (ε), but k is determined by the specific stress-strain relationship of a sample. For the uniform 
strength distribution, k =  2 and for the Weibull strength distribution, the parameter k =  m1+1/me−1/m is a function 
of the Weibull index m. It should be mentioned that, if (d2σ/dR2)f  tends to infinity or zero, equations (9)–(13) 
give β less than 3. So, β =  3 should be the upper limit of β. It is not evident that equations (13) and (1) should be 
equivalent, because they were determined for different sets of loading conditions26. In this paper, we focus on a 
load condition with increasing stress. Thus, we use the symbol β other than α in Voight’s original relation (1) to 
represent the critical exponent.

By performing the first and second differentiation on expression (10) and rearranging, we obtain a similar 
expression to equation (5) as
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This confirms the linear relation of (dR)/(dσ)((d2R)/(dσ2))−1 with σ nearby failure, as shown in Fig. 3b.

Numerical analysis. It is important to note that the preceding analytical derivations are exact only in the 
limit for a continuous case where the total number of fibers, N, is infinite. To further examine the response of 
equations (13–15) and the critical parameters for the non-continuous (discrete) case, Monte Carlo simulations of 
the failure process were performed. For simplicity, the Young’s modulus E is set to unity, with all stresses normal-
ized by E. As the load on a bundle of N fibers monotonically increases, simulations of the failure process proceed 
as follows:

1. Breaking thresholds are randomly chosen according to a probability distribution with the thresholds 
arranged in increasing order.

2. Load is applied and incremented with each step by the minimum required to break the next fiber. Each 
broken fiber sheds its load that is then redistributed equally to all surviving fibers.

3. The revised load on all surviving fibers as well as the nominal strain is recalculated.
4. This process is repeated until the actual load on all surviving fibers is less than their individual thresholds.
5. Return to step (1) and repeat the process until the entire bundle fails.

In all simulations, (Δ R)/(Δ σ)((Δ 2R)/(Δ σ2))−1 presents a common linear relationship with stress as failure 
is approached (see Fig. 4b), although individual failure stresses are different (see Fig. 4a). In the case of discrete 
simulations, the discrete derivative operator “∆ ” is substituted for the continuous derivative operator “d”.

Figure 4. Simulation results of σ–ε curves and critical behaviors of ((Δε)/(Δσ))((Δ2ε)/(Δσ2))−1. Weibull 
distributions with m =  2 and N =  104 fibers are used in each sample. (a) Numerical curves of the nominal stress 
versus strain. (b) Almost linear relations between ((Δ ε)/(Δ σ))((Δ 2ε)/(Δ σ2))−1 and stress nearby failure shown 
for all samples.
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A linear relationship in the terminal stage of failure, shown in Fig. 5, validates the proportionality between the 
logarithm of σ∆ ∆R/2 2 and the logarithm of Δ R/Δ σ. The continuous case has a highest maximum stress (see 
Fig. 4a) and a smaller value k in comparison to the discrete cases, but all samples exhibit the same exponent of 
β =  3 (see Fig. 5). It is worth noting that samples in the discrete case have a different value of k even for an identi-
cal Weibull index (m =  2). A lower peak stress implies a lower value of  k, suggesting that k reflects sample-specific 
behavior, whereas the exponent β is universal.

For the continuous case, the load condition is analogous to a load increasing at a constant rate. In the numer-
ical analysis, the load increment applied at each step is the minimum required to break the next fiber, and the 
load rate does not need to be constant. Thus these relationships are actually independent on any particular style 
of loading rate and are functionally loading-rate-independent. This indicates that equation (13) can be applied to 
a broader suite of monotonic loading conditions than merely a linearly increasing load.

Discussion and Conclusions
Based on Voight’s relation Ω Ω − =

α−
 ̈ A 0, a new relation αΩΩ = − −

−
 ̈ t t( 1) ( )f

1  is proposed by a general 
derivation for α  >  1. The revised relation yields a new method for forecasting the time of failure by linearly extrap-
olating ΩΩ− ̈ 1 with time to zero, without the need to fit the exponent α. In application of this method, it is both 
feasible and preferable that the two methods are used together to check that the trend inferred from one method 
is confirmed by the other.

Equation (13) describes the failure of a material, in which the stress is fully independent of the strain rate. 
This is equivalent to Voight’s relation (1) if the stress is increased at a constant rate with time, such that dR/dσ ∝ 
dR/dt. Thus, this result suggests that the time-derivatives in Voight’s analysis might be a subset of a more general 
expression connecting stress derivatives. In the present paper, this general relation can be expressed as ((dR)/
(dσ))−β((d2R)/(dσ2)) =  k (R represents dependent variables such as damage and strain in this paper or could be 
analogous parameters as seismic activity (e.g. RSAM))5. This implies that Voight’s original relation (1) does not 
hold for any chosen parameter26, for example equation (13) can only work for those which can be directly related 
to dR/dσ. In some cases for eruptions26, the precursory trends were controlled by an increase in applied stress, 
rather than creep failure. So, the present results provide an alternative relation ((dR)/(dσ))−β((d2R)/(dσ2)) =  k to 
describe the failure by using changes with stress and thus a potential way for forecasting these events.

In equation (13), the parameter k changes for different samples (e.g., different size, or constitutive parameters) 
even if it has a same expression of k. For example, the calculated cases for a Weibull distribution of strengths 
exhibit different k values even though these calculation samples have the same Weibull modulus m and k has the 
same expression k =  − d2σ/dR2.
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