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A B S T R A C T

History matching is normally used to predict the gas production and guide refracturing. This can be achieved
either through a mathematics-based approach such as decline curve fitting or through a physics-based approach
such as reservoir simulation. When applied to the case of shale gas, both approaches are not working well. In this
study, a Gaussian Decomposition Method (GDM), as an alternative approach, is developed and applied to the
investigation of shale gas production. In this approach, an auto-compute program is developed and applied to a
spectrum of scales from the core scale to the reservoir scale. Specific steps are as follows: (1) we use the ex-
perimental measurements to determine the initial gas content distribution; (2) we use the gas production history
to decompose the evolving contributions of different gas components in a shale gas reservoir; and (3) we extend
the history matching to predict the production of shale gas under similar extraction conditions. For the core
scale, we use the automatically decomposed Gaussian components to illustrate the evolving contributions of
different gas components including the free-phase gas in pores, the adsorbed gas and the diffused gas to the
overall gas production. In the reservoir study, GDM is applied to the production data history matching and real-
time prediction. Firstly, GMD is verified against a commercial software on daily, monthly and annual gas pro-
duction rates. Then a group of daily and monthly field data are history matched by GDM. Finally, GDM is applied
to predict the real-time gas production rate. Application results indicate: (a) the early gas production is mainly
from big pores/fractures while the late production is from kerogen/clay components; (b) The period of gas
production in the early stage is relatively short while the period in the late stage is long.

1. Introduction

The history matching and the real-time prediction of gas rate are the
two indispensable processes for the economic evaluation of a well. The
history match and real-time prediction methods of unconventional gas
production rates inherit from the conventional gas and are categorized
into mathematics-based approach and physics-based approach. The
mathematics-based approach, traced back to the 1920s [1], uses the
curve fitting to match the field data and gains lots of favor because of its
easy use. The most popular Arps curves [2] were classified into three
types depending on the decline exponent value (b): harmonic decline
(b=1), exponential decline (b=0) and hyperbolic decline (b > 0 and
b≠ 0). The traditional mathematics-based approach could bring huge
errors when applied to the shale gas well because of the multi-physics,

multi-time and multi-scale flow in shale reservoir [3]. Other mathe-
matical methods, such as Stretched-exponential Decline method [4,5],
Power-law Exponential Decline method [6,7] and Duong method [8],
are well developed in recent years. However, there are two factors
constraining their applications: (1) they have no rigorous theoretical
basis which would lead to large uncertainties in prediction; (2) they are
not necessarily related to the reservoir property and operating prac-
tices; thus, they work better for certain reservoirs but not for all cases
[9].

Contrary to the mathematics-based approach, the physics-based
approach has strict theoretical explanations establishing a set of Partial
Differential Equations (PDEs) to match the bottom hole pressure curve
or the gas production data curve. There are two categories of physics-
based approach: analytical method and numerical method. For the
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analytical method, the most popular one is the tri-linear flow model.
Three linear flow regimes [10,11] are taken into consideration in this
method: flow within the fracture, flow within the stimulated region and
flow within the un-stimulated region. The analytical method simplifies
the reservoir property to search for the analytical solution and the de-
tailed couplings between the gas flow and solid deformation are ig-
nored [12,13]. Moreover, most analytical methods are limited to single-
phase flow cases ignoring the impact of water.

The numerical method is popular with the development of com-
puting speed which can be categorized into continuous model and
discrete model [14]. For the continuous model, the dual-porosity
models and multi-porosity models are widely used [15–18] and in these
models the computational notes on the grid can represent different
physical meanings. Take as an example, Yan [19] presented an up-
scaled triple permeability simulator for fluid flow in shale reservoirs by
capturing the sequential flow in three separate porosity systems: or-
ganic matter (mainly kerogen), inorganic matter and natural fractures.
For the discrete model, the widely used method is Discrete Fracture
Network (DFN) where the fractures are directly modeled and the
computational notes represent either matrix or fracture [20,21]. A DFN
model was developed by Doe [22] to match the production data from
the Eagle Ford shale. In Yu’s work [23], a similar method was used to
match the production data from Barnett Shale and Marcellus Shale. The
numerical techniques represent the state-of-the-art in history match and
prediction of shale reservoir, but they are usually time and computing
resource consuming [16], and require data and information which are
not available in all wells [18].

From the review above, it can be concluded that when applied to the
case of shale gas production, both approaches are not working well: the
mathematical approach has better applicability but would bring huge
errors because of lacking the physical background, on the other con-
trary the physical approach can obtain a good result but cannot be
widespread used because of its complexity.

Previous studies have shown that the reservoir properties such as
the initial gas distribution have significant impacts on the gas produc-
tion [18,23–25]. In common, the gas exists as three major forms in
shale reservoir: (1) free gas in big pores, fractures and nanopores, (2)
absorbed gas on the nanopores surface, (3) dissolved gas in kerogen/

clay and water [24,26,27]. Various methods are proposed to calculate
initial gas distribution in unconventional gas area. In Ross and Bustin
[28] viewpoint, only free gas flows at the early stage until the reservoir
pressure is depleted to CDP (critical desorption pressure). Yang and Li
[29] incorporated an artificial component subdivision in their numer-
ical simulator to investigate the behavior of the original free gas and the
adsorbed gas. Only distinguishing free gas and adsorbed gas is in-
sufficient for shale reservoir due to its high heterogeneous properties.
Etminan [30] developed a batch pressure decay (BPD) method to si-
multaneously measure the shale gas capacity from each source based on
the distinctive changing of pressure decline curve slope. Javadpour
[31] developed a method to calculate the gas diffusion coefficient in
kerogen/clays offering an alternative way to calculate the proportion
from each source.

In this study, a Gaussian Decomposition Method (GDM) is devel-
oped and applied to the prediction of shale gas production. The gas flow
in the shale block is a multi-time, multi-scale and multi-physics process
due to the diversity in minerals component and pore structure. GDM is
proposed as an alternative approach to history matching and real-time
prediction, and applied to decompose the evolving contributions of
different gas components (free gas, adsorbed gas and dissolved gas),
and applied to a spectrum of scales from laboratory scale to the field
scale.

2. Development of a Gaussian Decomposition Method

2.1. Multi-time, multi-scale and multi-physics gas flow

Due to the ultra-low permeability, the horizon well and hydraulic
fracture are the two essential processes for shale gas production. In this
paper, the shale block defined as the shale matrix in the middle of the
hydraulic fractures is investigated, shown in Fig. 1(a). As the SEM
image shown (Fig. 1(b) [32]), the shale matrix is a typical porous
medium which consists of nanotubes, kerogen and other minerals. The
gas stores in the shale as (1) the free gas in nanotube, (2) the adsorbed
gas on nanotube surface and (3) the dissolved gas in kerogen [3,57]. A
cell tube can be used to characterize the heterogeneity of shale struc-
ture and gas storage as illustrated in Fig. 1(c) [26]. The gas flow in the

(a)

(b) (c)
Fig. 1. (a) Schematic illustration of stimulated reservoir volume, (b) SEM image of shale matrix and (c) distribution of gas contents in a controlled volume.
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shale block is a multi-time, multi-scale and multi-physics process due to
the diversity in minerals component and pore structure. Once the
production commences, the gas flow in shale block occurs in four se-
quential steps [31,33,34]. In the first step, the depleted gas is attributed
to big pores and fractures present. The gas rate is usually high in this
stage because of the high conductivity of the fractures but does not last
long enough. Then, the free gas in nanopores moves toward the fracture
or the big pores due to the gas pressure difference. In the third step, the

gas pressure drops leading the gas to strip from its adsorbed state on the
nanopores surface to the free phase. Finally, the dissolved gas in
kerogen/clay diffuses to the matrix-pore interface because of the con-
centration gradient between two systems. The sequential flow in shale
reservoir is showed in Fig. 2.

The flow regimes and the associated probability density functions
(PDFs) are varied with the storage term. The gas rate curve obtained
from experiment or field is the superposition of different probability
density functions (PDFs).

2.2. Probability density functions

Taking the depletion process of free gas in a nanopore as an example
shown in Fig. 3(a), the gas mass having a length of Ls flows in the na-
notube which has a length of Lr and a radius of R. There are three
factors controlling the dispersion of the gas mass: 1. Axial diffusion due
to the concentration gradient in axial direction; 2. Convective disper-
sion that changes the gas mass zone; 3. Radial diffusion due to the ra-
dial concentration gradient caused by the parabolic shape of gas mass.
Some characteristics can be deduced: 1. The flow velocity u is

(a)                (b)               (c)                   (d) 
Fig. 2. Sequential depletion of shale gas: (a) Gas flow in big pores and fractures, (b) Gas flow in nanopores, (c) Gas desorption and (d) Molecules diffusion. The black arrows represent the
gas flow direction.

(a)                                      (b)

Fig. 3. The flow process of gas mass in nanopores during gas depletion process. (a) The initial state. R is the inner radius of sample tube, Ls is the length of gas mass, Lr is the length of flow
path; At time t= 0, the gas mass is located at x= 0, and (b) the depletion process (t=T), the gas mass flows through a path of Lr and a parabolic-shape gradient forms within the
nanotube.
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Fig. 4. The illustration and parameter meanings of (a) Moderate overlap curve and (b) second derivative curve.
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determined by the pressure gradient and permeability; 2. The Axial
diffusion affect the gas mass shape 3. The concentration curve mea-
sured at the output is affected by the convection flow and axial diffu-
sion, and some intrinsic properties can be inferred if the curve con-
centration at the detector is known.

The general equation of flow process is firstly investigated by Taylor
[35,36] which can be written as:
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where the Dm is the molecular diffusion coefficient. For the case where
the gas mass has a very small slug of length of Ls and the flow path Lr is
relative long (Ls≪ Lr), the equation can be written as [37]:
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Initial value, lower and upper boundaries for strong overlap [49].

Parameter Value Lower boundary Upper boundary

Retention time b0 bl bu
Standard deviation − + + −b b a a t t n(( 2 1)) ‖ 1 / 2‖ ( 2 1) / 2 4

3
⎧

⎨

⎪⎪

⎩
⎪
⎪

′−
− ′

⎫

⎬

⎪⎪

⎭
⎪
⎪

−

b b
b b

a amin ‖ / ‖

R

R

t t
n

2

1

1 2
2 1
2 4

⎧

⎨

⎪⎪

⎩
⎪
⎪

′−
− ′

⎫

⎬

⎪⎪

⎭
⎪
⎪

−

b b
b b

b bmax ‖ / ‖

R

R

t t
n

2

1

1 2
2 1
2 4

Peak height +a a0,max 0,min
2

0 a1

(a) (b)
Fig. 5. The illustration and parameter meanings (a) strong overlap curve and (b) second derivative curve.

Fig. 6. Apparatus of coupled shale gas desorption-diffusion-flow experiment [58].
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where θ, X, C are the dimensionless time, axial distance and con-
centration, =P uLr D/e m is the Peclet number which characterizes the
dispersion properties of flow system. The general solution is [38]:

= ⎧
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where a is the dimensionless length of the initial gas mass. If the gas
mass is very small compared to the tube volume which can be ap-
proximated by an ideal delta-function input, the solution is
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which has a Gaussian shape, shown in Fig. 3(b). The mean velocity is
described by =U Lr

tmax
in which the tmax is the time when the maximum

concentration occurs.
In our work, we assume that the displacement between initial places

to the output occurs at a constant speed thus the X can be expressed as
the liner function with time θ. Such assumption leads to the final ex-
pression of concertration which is written in the general form:

= − −c t ae( ) t b c( )/2 2 (5)

where a, b, and c are the curve parameters controlling the shape of the
Gaussian function. a is the height of the curve at the maximum, b is the
value of time where the maximum concentration occurs, and c controls
the width of the curve. For the gas depletion process in field scale and
experiment scale, the concentration curve measured at output is con-
sidered to be a mixture of several components whose concentration is
given by Eq. (5). The total concentration at output is the sum of all the i-

component:
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Practically, Javadpour [31] used the integral of Gaussian function to
fit the gas desorption volume curve and obtained a good fitness.
Mathematically, Goshtasby and Oneill [39] had proven that a sequence
of spaced points with associated data values could be fitted by a sum of
Gaussian function. In fact, the Gaussian function has been widely used
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Table 3
The initial values and lower/upper boundaries of parameters.

PDF Gaussian Function Parameter

a0 b0 c0

A Initial Value 9.74 0 4.90
Lower Boundary 1.20 0 0
Upper Boundary 18.28 4 7.81

B Initial Value 12.31 13.58 2.76
Lower Boundary 6.32 13 0.58
Upper Boundary 18.29 17 4

C Initial Value 4.09 34.35 16.41
Lower Boundary 0.15 31 3.35
Upper Boundary 8.03 40 28.34

D Initial Value 1.15 240 98.37
Lower Boundary 0.30 190 50
Upper Boundary 2.02 300 141.77
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in other fields such as flow injection analysis [40,41], chromatographic
analysis [42] and thermal diffusion separation [43], and good results
are obtained. Thus, the Gaussian function is selected as probability
density function. The gas rate curve obtained from experiment or field
is the superposition of different probability density functions (PDFs)
and the flow regimes and the associated probability density functions
(PDFs) are varied with the storage term. There are four probability
density functions (PDFs) in this study: PDF A (gas flow in large pores
and fracture), PDF B (gas flow in nanopores), PDF C (gas desorption
from the nanopores walls) and PDF D (gas diffusion in the kerogen/
clay).

2.3. Development of Gaussian Decomposition Method

In this section, a Gaussian Decomposition Method (GDM) is devel-
oped to get the expression of each PDF and the work flow of auto-
compute program is introduced as follows.

2.3.1. Noise cancellation
The data obtained from experiment or filed is always contaminated

by noises or errors and even small noises may lead to significant de-
viation in the data processing. The noises should be removed or reduced
firstly before further processing [44]. The Wavelet Transform (WT)
method is selected in our work because it works well for the analysis of
non-periodic data [45,46]. After WT, the wavelet coefficient obtained
from real data has a bigger amplitude than that obtained from noises.
Based on that, an appropriate threshold on different scale is selected
and suppress or eliminate the coefficient below the threshold. Finally,
the denoised data is obtained through the inverse Wavelet Transform.

2.3.2. Data derivative
The data derivative is helpful for the case where the important in-

formation is hard to extract from the original data. In our work the data
derivation especially the 2nd derivation is the basic of peak detection.
The Gaussian Convolution method [47] is proposed to calculate the
fractional order differentiation and also obtains a good result when
applied to integer order differentiation. The process of Gaussian Con-
volution method is presented as follows.

The Gaussian convolution of data c(t) can be presented as [48]:
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= ∗f t c t g t( ) ( ) ( ) (7)

where * denotes the convolution operation, f(t) is the convolution result
and g(t) is the Gaussian function. Based on the property of convolution,
the nth-order derivative of the data s(t) can be computed as following:

= ∗ = ∗f t c t g t c t g t( ) ( ) ( ) ( ) ( )n n n( ) ( ) ( ) (8)

From Eq. (8), we notice that there is no difference whether the
derivative operation is applied before or after the convolution.

According to the property of the order differentiation, there holds

= =+ +c t c t c t( ) ( ) ( )v v v v v( ) ( ) ( ) ( )1 2 1 2 (9)

in which v=v1+v2. Eq. (9) shows the vth-order derivative of the data c
(t) can be implemented by the v2th-order derivative of c(v1) (t). This
character gives us a method to calculate the 2nd or 3rd derivative based
on the 1st derivative.

2.3.3. Initial iteration value determination
The identification of peaks and determination of the initial values

(height ai, centers bi, tails ci) for algorithm iteration are conducted with
the derivative value. As mentioned above, the PDFs may overlap with
each other thus a judgment criterion is proposed to determine whether
a case is moderate overlap or strong overlap. A case would be classified
as a moderate overlap situation, if the following condition is fulfilled
and strong overlap if is not fulfilled:

⩽ +n n2 13 2 (10)

where n3 is the number of change in sign of the 3rd derivative and n2 is
the number of significant negative regions found in 2nd derivative. The
determinations of initial iteration for moderate overlap and strong
overlap require different ways.

2.3.3.1. Moderate overlap. Table 1 shows the calculations needed to
obtain the initial values and the upper/lower boundaries for each
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parameter in the case of moderate overlap. Fig. 4 indicates the values of
b0, bl, bu, a1 and a2. a1 is the value of the input data at x= b0, b0 is
calculated by finding the minimum of the second derivative, bl and bu
are the times where the second derivative is zero, and a2 is the value of
the second derivative at x= b0.

2.3.3.2. Strong overlap. Table 2 gives the calculation for each
parameter of strong overlap case and Fig. 5 gives the value of each
parameter needed for the calculation. The main modification is the
inclusion of the approximation (t2-t1)/2n4, where n4 is given by:
n4= ((nc− 1)/2) +1, nc is the number of changes in sign of third
derivative in the time range where second derivative is negative, and t2,
t1 are the time where second derivative is zero if it has the negative
region.

2.3.4. Data fitting
The data fitting algorithm can be divided into two categories. One is

the traditional iteration method such as Levenberg–Marquardt method
[50,51], Gauss–Newton method [52] and the other is recently devel-
oped stochastic optimization algorithm like Particle Swarm Optimiza-
tion (PSO) and Ant Colony Optimization (ACO) [53,54]. In this work
the Particle Swarm Optimization (PSO) algorithm is introduced which
was first proposed by Kennedy and Eberhart [55,56].

Consider the following general unconstrained function optimization
problem:

…
→

f x x x
f R R

minimize ( , , )
where :
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N

1 2
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The iteration for PSO algorithm is:
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where Vi=[Vi1,Vi2,…,ViN] is the velocity for particle i; xi=[xi1,xi2,
…,xiN] is the position of particle i;φ1d andφ2d are uniformly distributed
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Fig. 14. Monthly gas rate comparison of commercial software with GDM.
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Fig. 15. Annual gas rate comparison of commercial software with GDM.
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Fig. 16. The fitting correlation coefficient (R2) of GDM at different time resolutions.

Table 4
Details of daily gas rate cases.

Data
Type

Time Span Well Location Well Tag Fitting
Goodness

Case 1 Daily 200 days Marcellus shale – 0.99
Case 2 Daily 20 years Antrim Shale – 0.97
Case 3 Daily 250 days Eagle Ford – 0.99
Case 4 Daily 800 days Barnett Shale Gas Well 1 0.96
Case 5 Daily 6 years Barnett Shale Gas Well 2 0.98
Case 6 Daily 7 years Barnett Shale Gas Well 3 0.83
Case 7 Daily 5.5 years Barnett Shale Gas Well 4 0.95
Case 8 Daily 6.5 years Barnett Shale Gas Well 5 0.96

Note: The case 8 differs from the previous examples in a way that the production data is
collected two years later after well completion. In this case, the gas rate is composed by
three Gaussian functions.
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Fig. 17. Daily gas rate comparison-results from the field and GDM.
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random number and generated independently for each dimension;
Pi=[Pi1,Pi2,…,PiN] is the best position found by particle i; Gi=[Gi1,Gi2,
…,GiN] is the best position found by the entire population; N is the
dimension of the search space and k is the iteration number. When a
particle position is updated, the global best solution is replaced by the
new solution if f(xi) < f(Gi). Thus, when a particle is updated, it has the
opportunity to learn from all particles previously updated and this
process results in a high convergence rate. The iterative process will
continue until a stop criterion is satisfied, and this forms the basic
iterative process of a standard PSO algorithm.

For the standard PSO algorithm, each particle position is random
and the initial values of the entire best position are arbitrary [56,48]
which easily lead to local optimal solution. To solve this, Vid is con-
strained to be bounded between Vmin and Vmax where Vmin and Vmax are
the lower boundary and upper boundary calculated in the previous
step, and the initial value obtained from the second derivative is set as
the initial value of entire best position in PSO algorithm.

3. Application to core scale

3.1. Coupled desorption-diffusion-flow experiment

As demonstrated by other researches [18,23–25], the gas content
and its initial distribution play an important role on the gas production
performance. The measurement of gas content for shale reservoir can be
conducted by using the desorption canister testing [57]. In this method,
the gas content includes three portions: escaped gas, desorption gas and
residual gas. However, the method has two shortages: (a) the escaped
gas calculation would bring errors as it cannot be measured directly; (b)
the residual gas measurement differs from the real gas production
condition. Furthermore, the gas content obtained from the desorption
canister testing is the Original Gas in Place (OGIP) rather than Tech-
nically Recoverable Resources (TRR).

A coupled gas desorption-diffusion-flow experiment was conducted
to measure the TRR [58]. The core sample was collected from the lower
Silurian Longmaxi Formation of Sichuan Basin, South China and the
depth is 1048m. The porosity is 0.4% and the permeability is about
2× 10−20 m2. The experiment process was summarized as following:
(1) Sample preparation. The sample was measured and put in the core
holder; (2) Reservoir simulation. The axis and confining pressure were
applied on the holder to simulate the formation pressure. Also, the
methane gas cylinders were connected to both sides of holder to satu-
rate sample. The saturation process lasted 240 days to make sure the
fully saturation state; (3) Production simulation. The gas cylinders were
removed when the core sample was fully saturated. Then a pressure
drawdown was applied on the holder to simulate the gas production
situation. The gas pressure and rate were recorded. The experiment
apparatus is showed in Fig. 6.

3.2. Data analysis procedure

3.2.1. Noise cancellation result
Fig. 7 shows the comparisons of original data obtained from Guo’s

experiment with the denoising result conducted by WT. Obviously, the
wavelet method is suitable for both the short period (0 < T < 100)
and long period (100 < T < 600).

3.2.2. Data derivative result
Fig. 8 shows the results of 1st and 2nd derivative conducted by

Gaussian Convolution method. The values between 100 and 600 days
are strong oscillation and the WT is used again for denoising for long
period (100 < T < 600).

3.2.3. Initial value determination and curve fitting results
In the following, the 1st and 2nd derivatives are used to determine

the initial value and the lower/upper limit of the Gaussian function
parameter as listed in Table 3.

The experiment data and the fitting results are shown in Fig. 9. For
comparisons, we also use the Power-law Exponential Decline method
[6,7] and Duong method [8] to curve fit the experiment data. The fit-
ting curve generated by the Power-law Exponential Decline method
decreases monotonically as shown in Fig. 9 and the fitting correlation
coefficient is 0.9216. The fitting curve generated by the Duong method
increases firstly then decreases as shown in Fig. 9 and the fitting cor-
relation coefficient is 0.9736. While both methods cannot match the
early data well because of the strong oscillation and the matching long-
term data is lower than the experiment data. The fitting curve gener-
ated by the Gaussian Decomposition Method can match the whole-
period data well and the fitting correlation coefficient is 0.9921.

3.3. Initial gas content distribution

The intensity of each PDF with time is showed in Fig. 10(a). PDF A,
B, C and D represent the moving of free gas in the large pores/fractures,
the flowing of free gas in nanopores, the desorption of adsorbed gas on
the nanopores surface and the diffusion of dissolved gas in kerogen/
clay, respectively. The experiment data in literature [31] are also pro-
cessed for comparisons, showed in Fig. 10(b). The great discrepancy of
two experiments is that in Javadpour’s experiment the sample had al-
ready been cut into fragments before testing [31].

Two remarkable common points exist as shown in Fig. 10: (a) the
function A is strong at first then falls to zero rapidly; (b) the function D
is the only function existing in the last period. Two associated proper-
ties can be deduced: (a) the free gas in big pores/fractures moves out
firstly and is characterized with high gas rate once the gas production
commences; (b) the dissolved gas in kerogen/clay takes the full pro-
portion of the last period.

The discrepancies exist in the early period of the gas flow process:
the intensity of function D is zero for Javadpour’s experiment while is
not for Guo’s experiment. Also, the intensity of function B in
Javadpour’s experiment is smaller than that in Guo’s experiment. The
reason may be that big pores/fractures were well connected in
Javadpour’s experiment as the sample was cut into pieces and the free
gas were easily moving out compared with the intact sample in Guo’s
experiment.

The proportions of PDFs varying with time in both experiments are
shown in Fig.11. Two distinct features can be distinguished: the func-
tion A takes the great proportion in early period and the function D
takes the full proportion in the last period. We can deduce that early
period is the free gas in big pores/fracture dominant and the last period
is the dissolved gas in kerogen/clay dominant.

The proportions of different gas storage terms to the whole volume
are calculated. For Guo’s experiment, the proportions of free gas in big
pores/fractures (PDF A), free gas in nanopores (PDF B), the absorbed
gas on nanopores surface (PDF C), and dissolved gas in kerogen/clay

Table 5
Details of monthly gas rate cases.

Data Type Time Span Well Location Well Tag Fitting
Coefficient

Case 1 Monthly 40months Barnett shale – 0.97
Case 2 Monthly 40months Fayetteville

shale
– 0.99

Case 3 Monthly 37months Haynesville
shale

– 0.98

Case 4 Monthly 43months Woodford shale – 0.97
Case 5 Monthly 4 years Marcellus Shale #10125 0.97
Case 6 Monthly 2 years Marcellus Shale #10096 0.97
Case 7 Monthly 3 years Marcellus Shale #10103 0.95
Case 8 Monthly 2 years Marcellus Shale #10032 0.98
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Fig. 18. Monthly gas production comparison-results from the field and GDM.
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Fig. 19. The proportions of represented daily gas rate.
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(PDF D) are 5.8%, 24.9%, 4.1%, 65.2% and for Javadpour’s experiment
the values are 31.4%, 19.2%, 38.3%, 10.6%, respectively. The dis-
crepancy is enormous. The reasons may be included but not limited to:
(a) For the Javadpour’s experiment, the shale sample was cut into
fragments and the equilibrium state was disturbed before measurement.
During this process, gas in nanopores and kerogen/clay had moved into

big pore/fractures acting as free gas. (b) Long time is needed for the
dissolved gas in kerogen/clay diffusion. But for Javadpour experiment,
it only lasted 60 hours and most gas may be still in kerogen. For Guo’s
experiment, it took almost 600 days and gas desorbed fully. In these two
aspects, the Guo’s experiment is closer to the real shale production
condition. (c) The geological condition difference may be another
reason. Guo’s sample was collected from Sichuan Province in China and
Javadpour’s sample was collected from North America.

4. Application to reservoir scale

4.1. Validation with commercial software

Three series of production data at hydraulic fracture level with
different time resolutions (daily for the first two months, monthly for
the first 5 years and annual for 100 years of production) developed by a
commercial software in Kalantari-Dahaghi’s work [59] are used to fully
verify the Gaussian Decomposition Method (GDM). In his work, one of
the pads (called WVU pad) in Marcellus shale with six horizontal lat-
erals is selected for verification and the location is showed in Fig. 12.

4.1.1. Daily gas rate
In all figures, the blue upper triangular dots represent the daily gas

rate developed by a commercial software while the red lines with
hollow circles represent the matching result from the GDM. Fig. 13
shows the examples of the comparison of commercial software simu-
lation with the matched one by GDM. The fitting correlation coefficient

Table 6
Proportion of each PDF.

Well Tag Time Span Proportion

Function A Function B Function C Function D

Eagle Ford 250 days 0.11 0.21 0.14 0.54
Barnett Shale

Well 1
800 days 0.17 0.31 0.26 0.26

Barnett Shale
Well 2

6 years 0.06 0.17 0.14 0.63

Barnett Shale
Well 3

7 years 0.12 0.18 0.01 0.69

Fayetteville
shale

40months 0.20 0.32 0.10 0.38

Haynesville
shale

37months 0.21 0.30 0.30 0.19

Marcellus
Shale
#10125

4 years 0.05 0.14 0.46 0.35

Marcellus
Shale
#10096

2 years 0.07 0.46 0.18 0.29
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Fig. 21. The prediction results of short-term field data conducted by GDM.
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(R2) is shown as the black rectangle dots in Fig. 16. The results are self-
descriptive enough to show the capability of GDM in the history match
of daily gas production profile.

4.1.2. Monthly gas rate
Similarly, the monthly gas rate (Mscf/Mon) for the first five years in

Kalantari-Dahaghi’s work [59] are used for the validation of GDM.
Fig. 14 shows the comparison of commercial software simulations with
results of GDM. In all cases, the fitting correlation coefficient (R2) is
above 0.99 (the red dot in [16]) indicating the successful application of
GDM. The fitting result of monthly gas production data is better than
that of daily gas production data.

4.1.3. Annual gas rate validation
The yearly gas rate profiles developed by the commercial numerical

simulator for the 100 years of gas production are successfully re-
generated by GDM as showed in Fig.15 and the green upper triangular
dots in [16]. As discussed above, the GDM plays well for verification of
daily, monthly and annual gas rate. The only defect is that the GDM
could not fully capture the case where the daily gas rate firstly increases
then declines as the WUV3-3 case in Fig. 13.

4.2. History match with field data

In this section, the GDM is applied for the history match of the shale
gas rate. Eight daily and monthly gas rates in literature [3,16,60,61] are
presented.

4.2.1. History match of daily gas rate
Eight daily gas production rates from Marcellus shale [16], Antrim
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Fig. 22. The prediction results by using GDM.
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shale [16], Eagle Ford shale [16] and Barnett shale [60] are history
matched. The details are shown in Table 4.

The history match results and fitting correlation coefficients of eight
cases are shown in Fig. 17 and Table 4. A good agreement is obtained.
Among the eight cases, the case 6 (Well 3 of Barnett Shale) gets the
poorest fitting correlation coefficient (only around 0.83) which is due to
the fluctuation of early data. For other cases, the fitting correlation
coefficients are greater than 0.95 indicating a good performance.

4.2.2. History match of monthly gas rates
Similarly, eight monthly gas rate cases from Barnett shale [3],

Fayetteville shale [3], Haynesville shale [3], Woodford shale [3] and
Marcellus shale [61] are history matched. The details are shown in
Table 5. Here the dimensionless gas production rates of Marcellus shale
reservoir are used.

The history match results and fitting correlation coefficients of
monthly gas production rate are shown in Fig. 18 and Table 5, re-
spectively. Generally, the fitting result of monthly gas rate is better than
the daily data fitting result as the fitting coefficients are all above 0.95.

4.3. Contributions of different gas components

The contributions of different gas components to the whole quantity
are also investigated by GDM. The evolving contributions of different
gas components for represented daily and monthly gas rates are shown
in Fig. 19 and Fig.20, respectively. As illustrated above, PDF A, B, C and
D represent the free gas in the large pores/fractures, the free gas in
nanopores, the adsorbed gas on the nanopores surface and the dissolved
gas in kerogen/clay.

Similar to the core scale analysis, two important properties can be
deduced: (a) the free gas in the large pores/fractures takes great pro-
portion during the early time but falls to zero rapidly; (b) the dissolved
gas in kerogen/clay takes the significant proportion of the last period
and if the time lasts long enough the dissolved gas will take full pro-
portion.

The proportion of each PDF for the represented daily and monthly
gas rate is shown in Table 6. Obviously, the proportion of each PDF is
varied with the different geological conditions and the time span. The
gas in big pores/fractures (Function A) takes small accounts in each
well. For the same shale reservoir, the proportion of the dissolved gas in
kerogen/clay (Function D) increases as production time continues.

4.4. Prediction of field gas production

4.4.1. Prediction of short-term field gas production
As discussed above, the GDM can match the data developed by the

commercial software and the data obtained from field data. In this
section, the GDM is applied to the prediction of field gas production.
Firstly, the GDM is applied to the prediction of short-term field gas
production. The process is conducted in two steps as follows: (1) the
PDFs are calculated based on the existing production data; (2) the gas
rate in next time period is predicted based on the calculated PDFs in
first step. These two steps are repeated once the new production data is
obtained. Two daily gas rates from Biswas [16] work, and two monthly
gas rates from Esmaili [61] work are used for short-term gas rate pre-
diction. In this section, the field data is divided into two parts: the first
part is used to generate the probability density functions while the
second part is applied to the comparison with the data obtained from
GDM. The prediction results are showed in Fig. 21 and a good result is
obtained.

4.4.2. Prediction of long-term field gas production
In this section, the GDM is applied to the prediction of long-term

field gas production. Two daily gas rates from Clarkson [9] and Frantz
[62] work, and four monthly gas rates from Esmaili [61] work are used
for long-term gas rate prediction. The prediction results are shown in

Fig. 22 and a good result is obtained.

5. Conclusions

The conventional decline curve approaches cannot consider the
unconventional multiple contribution mechanisms to the prediction of
shale gas production. In this work, the Gaussian Decomposition Method
(GDM) as an alternative is developed to overcome the shortcomings of
the conventional decline curve methods. Based on the results of ap-
plications to both the core scale and the field scale, the following
conclusions can be drawn:

a) The unique features of multi-physics and multi-scale flow in shale
gas reservoirs can be defined by a series of the Gaussian functions.
Compared with other methods, the Gaussian Decomposition Method
(GDM) can achieve better results for fitting the experiment data and
field data, and GDM can calculate contributions of different gas
components.

b) When applied to the core scale, GDM can fit the desorption ex-
periment curve and calculate the volume of each storage term.
When applied to the reservoir scale, GDM can be used for both the
history matching and the real-time prediction.
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