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A B S T R A C T

Sand injectite complexes comprise kilometer-scale clastic intrusion networks that act as effective conduits for the
migration, accumulation and then recovery of hydrocarbons and other fluids. An equivalent continuum model is
constructed to represent a sand injectite reservoir, coupling stress and fluid flow in fractured rock using the
continuum simulator TOUGHREACT coupled with FLAC3D to follow deformation and fluid flow. A permeability
model, which uses staged percolation models, is proposed to improve permeability estimation of fracture net-
works by accommodating four different levels of fracture connectivity. This permeability model is confirmed
against field and laboratory data, corresponding to the different connectivities of fracture networks. The new
constitutive permeability model is incorporated into the coupled hydro-mechanical simulator framework and
applied to sand injectites with the analysis of permeability evolution mechanisms and mechanical sensitivity.
The results indicate that when the magnitudes of principal stresses increase in a constant ratio, normal closure is
the dominant mechanism in reducing fracture aperture and thereby permeability. Conversely, the evolution of
stress difference can accentuate aperture and permeability due to an increase in shear dilation for critically or
near-critically oriented fractures. Also, the evolution of aperture and related permeability of fractured rock are
more sensitive at lower stress states than at higher stress states due to the hyperbolic relationship between
normal stress and normal closure of the fractures.

1. Introduction

1.1. Geological background and significance

Sand injectite systems are increasingly common in outcrop and
subsurface studies of shallow crustal processes. They are typified by
complex geometries and can accommodate commercial volumes of
hydrocarbons.1,2 Such reservoirs are formed from sand, sourced from
an overpressured sandstone parent unit, remobilised as a fluidised
slurry and injected by hydraulic fracturing into an otherwise im-
permeable unit.3–5 One such reservoir is the Panoche Giant Injection
Complex (PGIC) within the San Joaquin Basin, California. Tectonically-
induced basin-scale fluid overpressures have propagated fractures up-
ward to form fracture networks.6,7 These fracture networks typically
communicate between reservoirs, sometimes separated by low perme-
ability seals spanning hundreds of meters8 and potentially destroying
seals and traps.9–11

In sand injectites, fractures with a lower dip generally have greater
initial lengths and apertures than fractures with a higher dip. Besides,
after the sand intruded into the fractures across horizontal formations,

the sand intrusions with a higher dip are relatively poorly sorted, more
tightly packed with low porosity than sand intrusions with a lower
dip.12 In contrast, the sand intrusions with a lower dip are usually
moderately sorted and loosely packed, and with moderate porosity.
These characteristics make the permeability pervasively lower for the
intruded fractures with a higher dip than those with a lower dip.
Overall, the average permeability of sand dikes in the PGIC is ~
220mD, whereas the sand dikes of higher (> 40°) and lower dips (≤
20°) have an average permeability of ~ 81mD and ~ 529mD, re-
spectively.12

Sand injectites are unique in which small-scale vertical permeability
often exceeds horizontal permeability, making thin pay zones very
productive.13 Basin-scale sand injectite complexes can significantly
change fluid migration routes and fluid flow behaviors. Hydraulic
fractures and sand dikes may dramatically increase field-scale vertical
permeability and enable regional-scale inter-reservoir communica-
tion.14 However, such positive effects of improved access to hydro-
carbons may be offset by deleterious impacts of early water break-
through.15 Therefore, it is important to investigate and improve the
estimation of fluid flow behaviors within fractured reservoirs.
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Each set of the intruded dykes / fractures are intersected with each
other at particular orientations. Due to the shallow sedimentary li-
thology formation including unconsolidated and consolidated layers, it
is very essential to develop a new permeability model, which includes
connectivity of dyke / fracture networks, with consideration of matrix
permeability influence. According to the proposed permeability model
developed in this work, it would be more accurate to assess the evo-
lution of permeability of sand injectites, and predict the flow path in the
dykes / fracture networks.

1.2. Applicable permeability models

Permeability models to represent the equivalent permeability of
fractured rock originally assumed ubiquitous fractures of infinite lateral
extent16,17 Such characterizations typically incorporate the cubic law18

with the presence of truncated fractures representing more reasonable
estimations of permeability.19 Ignoring fluid exchanges between frac-
tures and matrix20 renders estimated permeability lower than true
permeability where matrix permeability is significant.21 A variety of
approaches have refined permeability models for fractured
media.22,23,26,27 For fracture networks of nested scales, fractal char-
acteristics28 have been applied by representing fractal dimensions of
multiple physical parameters,29 including the implementation of
checkerboard approaches.30

None of those previously discussed references consider percolation.
Nevertheless, percolation theory31 is able to determine the degree of
connectivity of fracture networks. Permeability models based on per-
colation theory have been useful in analysing transport properties of
disordered systems.20,24,25 The classical concept of percolation theory
describes the percolation probability of connected clusters in a random
system. The concept of percolation theory for a fractured medium
makes extensive use of dimensionless density to quantify the degree of
fracture connectivity and increases permeability estimation32 in both
two and three dimensional fractured media with various local perme-
ability for fractures.24,25,37 Equivalent permeability is critically con-
trolled by fracture network connectivity33 with dimensionless densities
recovered from field data, e.g. outcrops.34

The onset of percolation of fracture networks greatly increases the
permeability of the fractured rock. This percolation threshold may be
estimated theoretically based on the fracture density, length, and shape
of fractures.35–37 With fracture geometry recovered from field data and
outcrops, fracture network permeability can be estimated analyti-
cally.32,38,39 Overall, after determining the dimensionless density,
density, fracture distribution and percolation threshold of fractured
rock, fracture network connectivity can be measured, and permeability
of fractured rock may be derived based on different connectivity levels
of the fracture networks – this is the approach followed later in this
work.

1.3. Coupled modeling approaches

Fractures increase the complexity of fluid flow behavior and stress
response within fractured media. To better represent the response of
fractured rock, constitutive relationships which couple stress and fluid
flow are crucial. For example, laboratory data and some field data have
found that aperture and subsequent permeability can be at least partly
controlled by in-situ stresses and fluid pressures,28 and that percolation
methods typically do not consider these effects. Thus, aperture model is
derived as a constitutive model depending on the in-situ stresses and
fluid pressures, which is then combined into percolation methods.
There are two primary approaches that are widely implemented for the
characterization of fractured rock, viz.: discontinuum and equivalent
continuum approaches.40

Discontinuum approaches assume that the rock mass consists of
individual blocks delimited by fractures. These fractures can be defined
either as explicit discrete elements by matrix blocks with interfaces

between them.41 The advantage of the discontinuum approach is that
this approach is more suitable in evaluating small-scale response in
detail and over the short term. However, the computational complexity
required for modeling flow in a dual system of fractures and matrix, and
the exchange between the two systems, demands more advanced soft-
ware and hardware configurations, and requires more computational
time.42

In contrast, the equivalent continuum approach seems more suitable
for long term simulation of large-scale fractured rock. The major as-
sumption of this approach is that the macroscopic behavior of fractured
rock and their constitutive relationships can be characterised by the
laws of continuum mechanics.40 Fracture properties are implicitly
embedded in the equivalent continuum model and included in modulus
parameters.

In the work presented here, the continuum simulator TOUGHRE-
ACT43 is used to couple fluid flow with deformation response of the
rock mass represented by the code in FLAC3D.44 Constitutive models
used in the simulator represent the coupled mechanical deformation
and poroelastic response of the fractured rock, and characterize aper-
ture and permeability evolution.45

Based on the constitutive models, the workflow of the equivalent
continuum simulation begins with equilibration of temperature and
pore fluid pressure in TOUGHREACT. Then the fracture information,
such as fracture geometries and modulus, is input into a FORTRAN
executable. The composite fracture modulus with the equilibrium pore
fluid pressure are input into FLAC3D to perform the stress-strain si-
mulation. Then the revised pore fluid pressure field is redistributed
based on the dual porosity poromechanics.40,43 The stress-induced
permeability is investigated through two-way implicit coupling in the
code. The effective stress state of fractures is updated dynamically.
Based on the effective stress state, the fracture aperture will be calcu-
lated accordingly. Due to the modification of fracture aperture, the
composite modulus of fractured block is also updated simultaneously.
The two-way coupling could reflect the influence of mechanical prop-
erties evolution in changing pore pressure distribution and flow path.

1.4. Aims and objectives

Regionally-developed giant sand injectite systems affect subsurface
hydrocarbon volume and significantly influence fluid migration paths
by coupling hydro-mechanical processes. The big research picture is
reservoir characterization of sand injectites, which includes three
stages: 1. Estimate the permeability of the fracture / dike networks in
sand injectites; 2. Model fracture propagation; 3. Characterise sand
intrusion. This paper will focus on the fluid transport properties of
fracture networks assuming no fracture propagation and before the
onset of sand intrusion, which is the first stage for the research of re-
servoir characterization of the sand injectites. Hence, the implemented
assumptions and theory will be related to the permeability estimation
of fractured rocks with the background of sand injectites, before cou-
pling fracture propagation and sand intrusion in the future.

2. Permeability models

A model for fractured sand injectite systems is developed as an
equivalent continuum model. This equivalent continuum model couples
stress and fluid flow, and links constitutive relationships including
fracture aperture, porosity and permeability as key elements. The
concept of percolation theory is implemented to estimate the perme-
ability of the fractured reservoir where the fracture network con-
nectivity is classified by the degrees of percolation represented by di-
mensionless density. The permeability model is confirmed by
comparing its permeability magnitude against field and laboratory
data. Besides, the proposed permeability model, which is based on
percolation theory, enables us to account for the fracture connectivity,
network percolation and fluid exchange between fractures and matrix.
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These are essential in simulating fluid flow and permeability evolution
and to improve the accuracy of permeability estimation of sand in-
jectites. Finally, the permeability model is incorporated into the simu-
lator framework and applied to represent the response of sand injectites
via permeability evolution mechanisms and mechanical sensitivity.

2.1. Stress coupling

A cornerstone of the analysis is representing changes in fracture
apertures as driven by mechanical states and then relating this to per-
meability. The permeability calculations which will be discussed in the
later sections is derived using aperture. As aperture is stress-dependent
and updated by stress evolution in each simulation loop, permeability is
then regarded as stress-dependent as well, updated with the stress
change in each loop. The change in aperture is captured in the fol-
lowing equation:40,47
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where the final three terms refer to the magnitude of aperture change
induced by normal closure, shear dilation and fracture normal opening,
respectively. In this, b is the resulting fracture aperture, bini is the initial
aperture prior to the application of principal stresses and is determined
by21

= × −b l1.25 10ini
5 0.8 (2)

where l is the fracture length. ′Sn is the effective normal stress, Snc is the
critical normal stress which corresponds to the maximum aperture
closure, Ks is the critical shear stiffness of fracture, ϕd is fracture dilation
angle, τ is the fracture shear stress, τsc is the critical shear stress as
equivalent to the fracture shear stress when shear failure is triggered.

−P P( )f f 0 is the pore fluid pressure increase after tensile opening, G is
the shear modulus of the intact rock and r is the fracture half length.

The reasons to use Eq. (1) are that it combines the magnitudes of
aperture normal closure, shear dilation, and fracture opening to reflect
the stress effects on aperture evolution. Also, as fracture length evolu-
tion is not considered here, length-aperture scaling model is not applied
here.

2.2. Geometric network coupling

The estimation of permeability in fractured rock is based on mul-
tiple parameters. These include fracture aperture, length, fracture
density and connectivity of the fracture networks as the primary com-
ponents. One method for evaluating permeability is using the cubic
law18 ( =k wb

A12

3
where b is aperture, A is cross-sectional area of fracture,

and w is the fracture width), where stress-dependent aperture defined in
Eq. (1) may be directly correlated with fracture permeability. However,
the traditional cubic law method concerns itself only with an aperture –
transmissibility / permeability relationship for a single fracture. Aside
from aperture, the primary controlling parameter in estimating per-
meability of fractured systems is connectivity, measured by fracture
network properties such as fracture geometry distribution, density,
length.

Fracture density may be defined as

=ρ
N
V

f

(3)

where Nf is the number of fractures truncating within an element, and
V is the element volume. Dimensionless fracture density ′ρ is a para-
meter which is used extensively to quantify connectivity of fracture
networks. Dimensionless density ′ρ can be defined by using the ex-
cluded volume Vex , which is defined as the surrounding volume into
which the center of another object may not enter if overlap is to be
avoided.32

For a wide spectrum of fracture geometries, the expression of ex-
cluded volume is defined as,48

=
∑ 〈〈 〉〉
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where A is the fracture area; P is the fracture perimeter; R is the
fracture half length; Nf is the number of fractures; γij is the angle be-
tween the two fracture families; 〈〈 〉〉 = ∑γ f f γsin sini j ij in which f is the
fraction of fracture family i and j.

After the excluded volume is obtained, the dimensionless density ′ρ
for networks consist of disc-shaped fractures is defined as,37

∑= = 〈〈 〉〉ρ ρVex π
V

R γ’ 4 sin .3
(5)

If an element does not contain any fractures, then =ρ’ 0. When the
fractures form percolated paths, percolation threshold ′ρc of fracture
networks can be theoretically estimated. Percolation threshold of ani-
sotropic and heterogeneous networks (e.g. where the fracture orienta-
tions are arranged in several discrete families) do not strongly differ
from those of isotropic and uniform networks. Hence, as an analytical
approximation derived from a large number of numerical simulations,
the percolation threshold ( ′ =ρ 2.29c ) for isotropic and uniform networks
consist of disc-shaped fractures is applied as an approximation for an-
isotropic and heterogeneous model.65

Therefore, when ′ < ′ =ρ ρ 2.29c , the fracture network is non-perco-
lated, whereas when ′ ≥ ′ =ρ ρ 2.29c , the network is percolated with a
preferential flow path through two opposite sides of the medium. When
the fracture network is percolated, as permeability scales with the
fracture aperture via a square relationship, a small aperture change can
give rise to a significant permeability change.46 And permeability of the
percolated fractured rock increases with an increase in fracture density
and length.

Based on the degree of connectivity of fracture networks, quantified
by dimensionless density, we propose a permeability model subdivided
into four connectivity levels [e.g. Fig. 1 and 2], based on a wide range
of rigorous numerical studies, in which results match between numer-
ical and analytical models for each connectivity level. The classification
are non-percolating range ( ≤ ′ <ρ0 2.29), low percolation range
( ≤ ′ <ρ2.29 4), moderate percolation range ( ≤ ′ <ρ4 20), and highly
percolation range ( ′ ≥ρ 20).24,32,39 Each connectivity range corresponds
to a different permeability relation to provide the optimal estimates of
realistic behaviors of fluid flow in fractured rock.

2.2.1. Non-percolating range ( ≤ ′ <0 ρ 2.29)
This range corresponds to non-percolated fractured systems, where

fractures are isolated or spread in small disconnected clusters. Although
the rock matrix has a relatively low permeability, it still contributes to

Fig. 1. Permeability changes across different connectivity levels ( ′ρ ) (revised
from Lang et al.32).
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the flow. Consequently, the matrix may significantly control the mag-
nitude of permeability before percolation initiates, with the matrix
permeability representing the permeability of the ensemble fractured
system.

The derivation for equivalent permeability Kequ is based on an
implicit equation which accounts for the hydraulic influence between
fractures, formulated as,63

∑− =
+=

Kequ Km Kequ εi32
9 1i

n

Kequ
παKf i1
4

, (6)

where =α b
Ri2 , =εi ρ Ri i

3.
For fractured systems well below the percolation threshold with a

low fracture density, Eq. (6) assumes that the magnitude of equivalent
permeability is similar to the matrix permeability. The matrix perme-
ability dominates fluid flow across the fractured rock because the fluid
has to cross the rock almost through the matrix, with only local flow
disturbance between the fracture and matrix near the sparse fractures.
Hence, the intrinsic fracture permeability ( =Kf i, b

12

2
) alone is not ap-

propriate to characterize the permeability of this type of fractured
system. Another implicit assumption is that the fracture permeability is
much larger than matrix permeability ( ≈ ≪Kequ Km Kf i, ), approx-
imating the term Keff

παKf i
4

,
to zero. Also, some in-situ tests for the rock mass

with a low dimensionless density have demonstrated that although the
rock mass is not a strictly homogeneous isotropic fractured medium, if a
spherical radial flow is assumed, a fairly good estimate of water flow
can be given. Hence, it appears to be sound to assume this type of rock
mass as a continuous medium without much anisotropy in relatively
large scale measurements when the matrix permeability is assumed to
be isotropic.53

Therefore, the equivalent permeability of fractured rock mass with a
low dimensionless density is formulated as,62

=
−

≈
∑ =

Kequ Km Kequ Kave
1

( )
εi32

9
i
Nf

1
(7)

where isotropic equivalent permeability is assumed in this low di-
mensionless density range when the matrix permeability is assumed to

be isotropic. =εi ρ Ri i
3 for the ith fracture and Nf is the number of

fractures in the system.

2.2.2. Low percolation range ( ≤ ′ <2.29 ρ 4)
In the low percolation stage, the permeability of the facture net-

works begins to act as the dominant feature, with the evolution of
preferential fluid flow paths. When the matrix permeability Km is many
orders less than the permeability Kn of the fracture networks, the fluid
flow in the matrix can be sufficiently slow.49 In this way, fractures
become the preferential flow paths, and the equivalent permeability
Kequ of the rock mass is primarily determined by fracture network
permeability Kn. Though the fluid flow contributed from the matrix is
much smaller than the contribution from the percolated fracture net-
works, the matrix contribution is still included in calculating Kequ as it
may be influential depending on the application, for example, in nu-
clear waste repositories. The lower bound of equivalent permeability is
expressed in Eq. (8) when the equal sign is applied. The fluid exchanges
between fracture and matrix domains will only increase Kequ; however,
these fluid exchanges depend on the network geometry and hydraulic
properties and those are not easy to measure,37 which is a limitation.
Nonetheless, based on extensive numerical simulations, the influences
of the terms Kn and Km can be separated when ′ ≥ρ 4.37,39 However, as
this low percolation range is very narrow with a small number of nat-
ural fractured systems falling in this range, the lower bound expression
expressed by using the equal sign is implemented to obtain the con-
servative Kequ of this range.

≥ +Kequ Kn Km (8)

There is an important and practical expression for the permeability
of fracture networks with unspecified geometry distribution.37

∑= 〈 〉 − × ′′K ρ Aσ Kξ n n[ 2
3

( )]n
l

N

l l i jij
(9)

where N is the number of fracture sets; ρ is fracture spatial density; A is
the fracture area; σ is the fracture conductivity which is defined as

=σ b
12

3
when open fractures with parallel walls are assumed; 〈 〉Aσ is the

statistical average value of Aσ ; ξij is the Kronecker's delta; n is the unit
normal to the fracture plane.

The decomposition of Eq. (9) split the permeability expression into
two parts: the first part is the dimensional permeability tensor which is
proportional to the volumetric fracture area and independent of the
fracture shape; the second part ′′K defined in Eq. (10) is a dimensionless
term which accounts for the influence of the degree of connectivity of
the network.37

′′ =
′ − ′

′ + ′ − ′
K

β ρ ρ
ρ β ρ ρ

( )
[1 ( )]

c

c

2

(10)

As there is no β value for disc-shaped fractures, the most close shape
(hexagons) with an available value of β =0.18 is used here. Therefore,
when a fractured system is in the low percolation range with ≫K Kn m,
the equivalent permeability of fractured systems is eventually expressed
as,

∑= + 〈 〉 − ×
′ −

′ + ′ −
Kequ K π ρ R b

ρ
ρ ρ

ξ n n[ ( )]
( 2.29)

[100 18( 2.29)]m
l

N

l l i jij
2 3

2

(11)

2.2.3. Moderate percolation range ( ≤ ′ <4 ρ 20)
When ′ ≥ρ 4, more than 98% of the fractures are connected to the

percolating fracture clusters.50 To quantify the dimensionless term ′′′K
which describe the influence of the degree of connectivity of the frac-
ture networks of moderate and high percolation ranges, a ratio ω39 is
introduced and revised assuming disc-shaped and open fractures with
parallel walls,

Fig. 2. Schematic representation of four connectivity levels of fracture net-
works quantified by dimensionless density ′ρ . (1) Non-percolating range. (2)
Low percolation range. (3) Moderate percolation range. (4) High percolation
range.
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With a large number of numerical analysis, Eq. (12) is approximated
as a single curve formulate when ′ ≥ρ 4, which can be approximated as
a heuristic and successful model (Eq. (13)), where fluid exchange is
expressed by ′ −σ7

3
( 0.7).

≈
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3
. Combining Eq. (12) with Eq. (13) gives ′′′K as,
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Substituting ′′K by ′′′K to account for the influence of network
connectivity for moderate and high percolation ranges, the fracture
network permeability Kn which is suitable for ′ ≥ρ 4 is expressed as,

∑= 〈 〉 − × ′′′K ρ Aσ Kξ n n[ 2
3

( )] .n
l

N

l l i jij
(15)

Then incorporating Eqs. (13), (8) and (9), the equivalent perme-
ability of the fractured systems Kequ is formulated as,
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where N is the number of total fracture sets; ξij is the Kronecker's delta;
n is the unit normal to the fracture plane.

2.2.4. High percolation range ( ′ ≥ ′ ≫ρ ρ20 ( 10))
This percolation range indicates a highly percolated fractured

system, and is rare in nature. Nonetheless, to cover the entire con-
nectivity range, this range is still included. For very dense fracture
networks, the heuristic analytical expression of ′′K is revised as,37
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for disc-shaped fractures.
Substituting of Eq. (18) into Eq. (17), ′′′K is transformed as,
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Combining Eq. (19) into Eq. (15) gives the permeability of fracture
network as,
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As ′ ≫ ′ρ ρc , Eq. (20) can be approximated as,
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Eventually, combining Eqs. (21) and (8), the expression of the
equivalent permeability of a highly percolated fractured system is for-
mulated as,
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3. Confirmation of permeability model

We take the models for permeability evolution of fractured rock and
confirm these against observations of permeability and fracture geo-
metry recovered from various underground research laboratories. The
use of underground laboratories has the advantage of being closer to in-
situ stress conditions with limited weathering compared to the surface
outcrops. In-situ parameters are used in the verification, including
apertures. As the magnitudes of apertures and other parameters result
from in-situ stress effects at the time of measurement, permeability
which is derived from those parameters demonstrates the corre-
sponding in-situ magnitude at the measurement moment. Different
from the dynamic simulation loops in which the stress states and stress-
dependent parameters are updated in each loop, these verification
processes are static and are similar to the calculation within one si-
mulation loop in which the permeability is related to the stress states
and stress-dependent parameters of this loop.

3.1. Non-percolating range ( ≤ ′ <0 ρ 2.29)

Field and laboratory data from the Stripa Mine are used to confirm
the permeability in the non-percolated range. An in situ experiment at
the Stripa underground research laboratory measured the hydrologic
parameters of the fractured rock mass by monitoring seepage into a
ventilation drift of dimensions of × ×5m 5m 33m (equivalent to a cir-
cular cross section with a radius of 2.8 m) at a depth of 335m.51 Water
temperature was °C20 ; matrix permeability Km of the Stripa Mine
granite is 4.09 × 10–18 m2. The ‘matrix’ rock selected in the test site for
the matrix permeability test in the Stripa Mine was identified as uni-
form and consisted mainly of an even-grained granite with a granite
texture. The selected granite was identified as homogeneous with few

Table 1
Summary of the permeability model.

Fracture network connectivity levels Permeability expressions
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fractures, though it was not intended to imply the granite was totally
free of fractures. The matrix permeability was tested using circulated
warm water. The water flow-rate from the ring holes towards the center
hole was measured at a certain overpressure in the ring holes, with and
without counter-pressure at the center hole. These are approximations
of the reality as unidentified fractures may influence water flow al-
though a fairly good estimate of this water flow was obtained to derive
matrix permeability.53

There is an average of 15–20 fractures embedded in every 5m in-
terval along the 33m drift, indicating that this drift has ~ 90–120
fractures. Hence, it is assumed that the drift has an average of 100
fractures.

According to the in situ investigation, the fractures comprise four
orientation sets. The percentage of each set of fractures is f1= 20% (set
1), f2= 25% (set 2), f3= 20% (set 3) and f4=35% (set 4).53 Table 2
and Fig. 3 summarise the fracture data collected from this monitored
drift. The fracture lengths are the mean values of the original lengths
distribution estimated by the lognormal length distribution of each
fracture family, with truncation bias corrected.51 Thus, the fractured
rock is assumed to be comprised of four monodisperse families of
fractures. The fracture aperture value was from in-situ injection tests at
the test site using the standard assumption of smooth parallel fractures
walls. The apertures were log-normal distributed with a computed

mean of 8.3 µm and a standard deviation of 5.7 µm.64 Due to a lack of
more detailed aperture information, the mean in-situ fracture aperture
(b = 8.3 µm) is applied.

To calculate dimensionless density of this case, first,

∑〈〈 〉〉 = =γ f f γsin sin 0.67i j ij (23)

Then, the dimensionless density of this fractured rock sample is
derived as (Eq. (5)),

∑= = 〈〈 〉〉 =ρ ρVex π
V

R γ’ 4 sin 0.733
(24)

Permeability can be calculated from Snow's model, Oda's model and
the applied model as shown below. Then the permeability results from
the three models are compared with the laboratory results.

3.1.1. Snow's model16

One form of Snow's model for permeability tensor can be expressed
as

∑= −
=

k
b

s
ξ n n

12
( )ij

j

n
j

j
i jij

1

3

(25)

where kij is the permeability tensor in the i = x,y,z and j = x,y,z di-
rections; n is the number of fracture sets; b is the fracture aperture and s
is the fracture spacing of each fracture set. And the direction component

−ξ n n( )i jij is calculated as
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where n1,2,3 is the unit normal to the fracture plane in the x, y and z
directions, respectively:

= ° − − ° = ° −

− ° = − ° −
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Then permeability tensor are calculated following,
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Finally, the average permeability is calculated as

= + + = × −k k k k m( )/3 2.26 10ave 11 22 33
16 2 (29)

3.1.2. Oda's model19

The permeability tensor kij is defined as

∑= −k P Pξ1
12

( )ij

N

kk ijij

f

(30)

where Nf is the number of fractures, = ∑ =
=P ρ l b n n f( )ij

π
m
m N

i j m4 1
2 3f ,

= + +P P P Pkk 11 22 33, and f is the fraction of the unit normal to the
fractures. Then permeability tensor can be are calculated following,

∑ ∑ ∑= + = + = +k P P k P P k P P1
12

( ), 1
12

( ), 1
12

( )
N N N

11 22 33 22 11 33 33 11 22

f f f

(31)

Thus, the average permeability is calculated as = + +k k k(ave 11 22
= × −k m)/3 1.82 1033

16 2.

3.1.3. The applied model
The model is expressed as (Eq. (7)):

Table 2
Geometric characterization of fractures in the monitored drift.51

Fracture set i Length l
(m)

Dip (degrees) Strike
(degrees)

Spacing s
(m)

Fraction fi

Set 1 2.19 76 113 0.93 0.20
Set 2 1.11 85 173 0.36 0.25
Set 3 1.61 53 8 0.79 0.20
Set 4 1.38 12 245 0.51 0.35

Fig. 3. Pole diagram for all the fracture planes measured in the ventilation
drift.51
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where ∑ = + + + == εi ρ R ρ R ρ R ρ R 0.064i
N

1 1 1
3

2 2
3

3 3
3

4 4
3f . Thu,s the equiva-

lent permeability of the fractured rock mass is calculated as
× − m5.31 10 18 2.
Table 3 shows the accuracy of this model in estimating equivalent

permeability, by comparing against other models. Taking the in situ
laboratory results as a reference, the proposed model yields the closest
estimations of permeability with the least errors (Table 3). This com-
parison confirms the proposed model in improving the estimation of
permeability for fractured rock.

3.2. Low percolation range ( ≤ ′ <2.29 ρ 4)

Field and laboratory data from the Fanay Augeres uranium granite
mine in France is used to confirm the permeability model in this low
percolation range. This mine consists of a complex series of excavations
which extend from 40m to 320m in depth over an area of around
20 km2. The dimensions of the monitored drift is 3 m in diameter (D =
3m) and 80m in length (L = 80m). Thus, the drift volume V f or a
cylindrical cavity is ~ 565m3.

Permeability estimates are based on in situ hydraulic tests. The
matrix permeability of the granite Km is ~4 × 10–23 m2. An estimate of
the in-situ apertures which were lognormal distributed for each fracture
set was made by assuming that the apertures of fractures intersecting a
well test zone were proportional to the fracture opening observed in the
core. The trace lengths which were lognormal distributed were re-
corded as well as the location distribution of the center of observable
trace. The mean fracture length and aperture were used as the means of
the length and aperture distributions, respectively, for each fracture set

from geostatistical analysis with censoring error corrected. 56 Gros54

identified five major sets of fractures by their orientations (Fig. 4).
Under the assumption that the fractures were sufficiently open,

hydraulic tests with packers were performed. Parameters for the con-
ductive fractures are summarised in Table 4. Then 〈〈 〉〉γsin is calcu-
lated as

∑〈〈 〉〉 = =γ f f γsin sin 0.61i j ij (33)

Then, the dimensionless density is derived as67

∑= = 〈〈 〉〉 =ρ ρVex π
V

R γ’ 4 sin 2.923
(34)

Similar to the previous confirmation case, Snow's model, Oda's
model and the applied model are implemented here for results com-
parison.

3.2.1. Snow's model16

As fracture spacing data was not available for this rock mass, an-
other form of Snow's model which does not include fracture spacing
term is applied and shown as,

∑= −k ρAσ ξ n n( ) ( )ij
m

N

m i j mij

f

(35)

where Nf is the number of fractures; A is the fracture plane area; σ is the
fracture conductivity; ρ is the fracture density. Then the permeability
calculation follows,
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And the average permeability is calculated as = +k k(ave 11
+ = × −k k m)/3 2.3 1022 33

9 2.

Table 3
The equivalent permeability of the monitored fractured drift from different models and laboratory.

Models Permeability of fractured rock
mass (m2)

Relative error of permeability

( = −εk
klab k el

klab
mod )

Conductivity of fractured rock
mass (m/s)

Relative error of conductivity

( = −εσ
σlab σ el

σlab
mod )

Snow16 2.26 × 10–16 25.5 1.97 × 10−9 19.1
Oda19 1.82 × 10–16 20.4 1.58 × 10−9 15.1
Applied Model 5.31 × 10–18 0.38 4.62 × 10–11 0.53
Laboratory52 8.52 × 10–18 9.80 × 10–11

Fig. 4. Definition of sets and poles of fractures mapped in the 80m section of
drift wall.55

Table 4
Laboratory results of the monitored fractured drift in the Fanay Augeres
Mine.55,66

Fracture
set m

Fracture
length li m( )

Fracture
number Nf i,

Aperture bi
m( )

Dipa

(degree)
Strikeb

(degree)

1 0.71 599 2.84 ×
10−4

− 2.95 231

2 1.14 102 3.07 ×
10−4

0.27 250

3 0.69 185 3.02 ×
10−4

1.5 66

4 0.53 436 3.21 ×
10−4

80.6 1

5 0.82 1098 2.96 ×
10−4

88 276

a Dips are measured counter-clockwise from horizontal.
b These are standard spherical coordinates with positive x-axis pointing

north and positive y-axis pointing to the west. Mean strikes after geostatistical
analysis are listed.
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3.2.2. Oda's model19

The permeability tensor kij is defined as,

∑= −k P Pξ1
12

( )ij

N

kk ijij

f

(37)

where Nf is the number of fractures, = ∑ =
=P ρ l b n n f( )ij

π
m
m N

i j m4 1
2 3f ,

= + +P P P Pkk 11 22 33, and f is the fraction of the unit normal to the
fractures. Then permeability tensor can be are calculated following,

∑ ∑ ∑= + = + = +k P P k P P k P P1
12
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12

( ), 1
12

( )
N N N

11 22 33 22 11 33 33 11 22

f f f

(38)

Thus, the average permeability is calculated as, = +k k(ave 11

+ = × −k k m)/3 2.14 1022 33
9 2.

3.2.3. The applied model
The model is expressed as (Eq. (11)),

∑= + 〈 〉 − ×
′ −

′ + ′ −
Kequ K π ρ R b

ρ
ρ ρ

ξ n n[ ]( )
( 2.29)

[100 18( 2.29)]m

N

i jij
2 3

2f

(39)

where 〈 〉R b2 3 is the average of R b2 3, Nf is the number of fractures, R is
the fracture half length, b is fracture aperture, and ′ρ =2.92. The per-
meability can be calculated as

= × = × = ×− − −k m k m k m5.02 10 , 3.35 10 , 3.97 1011
14 2

22
14 2

33
14 2 (40)

The average permeability is obtained as = +k k(ave 11
+ = × −k k m)/3 4.11 1022 33

14 2.
Table 5 shows the accuracy of this model in estimating equivalent

permeability, by comparing against other models. Therefore, taking the
in situ laboratory results as a reference, the proposed model is con-
firmed by rendering the relatively most reasonable estimates of per-
meability of fractured rock falling in this connectivity range, with the
least errors when compared with Snow's and Oda's models.

3.3. Moderate to high percolation range ( ≤ ′ <4 ρ 20)

Data from a fractured Hercynian granite in La Peyratte, France is
used for confirmation in this connectivity range. This granite sample is
fine grained and crosscut by numerous fractures. A granite sample
52 cm×35 cm ×36 cm was sawn into nine parallel prisms of identical
thickness of 4 cm each. Nine trace maps were drawn from the nine
prismatic samples (Fig. 5) with each fracture trace in each plate labeled,
and traces from the same fracture were labeled identically.56 Fracture
patterns were primarily composed of two families oriented at about
± °30 from the vertical (y-) direction.

From the previous measurements, parameters necessary to estimate
the equivalent permeability of the fractured rock are summarised as
below and in the Table 6. The volume of the sample was =V cm65520 3;
the sample contained =N 90f fractures; the total fracture area was
measured as =S m2.05 2, corresponding to an average fracture length

=l m0.17 ; the average aperture was measured as = × −b m2.5 10 6 . Due
to the absence of enough information, this mean fracture aperture value
will be applied. The matrix permeability Km was measured as
~ × − m9 10 18 2. In this case, the fracture networks contribute over-
whelmingly to fluid flow and the fracture network permeability is

primarily calculated.
From these parameters, fracture spatial density is evaluated as

= −ρ m1364 3. Then 〈〈 〉〉γsin can be calculated as
〈〈 〉〉 = ∑ =γ f f γsin sin 0.36i j ij . Using these above parameters, the ex-
cluded volume is calculated as,

=
∑

〈〈 〉〉 =Vex π
l

N
γ m4

( /2)
sin 0.0072

f

3
3

(41)

Hence, the dimensionless density is derived as

= =
∑

〈〈 〉〉 ==ρ ρVex πρ
l

N
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( /2)
sin 9.8i

N

f

1
3f

(42)

Next, Snow's model, Oda's model and the applied model are adopted
to calculate the permeability of this fractured rock, respectively.

3.3.1. Snow's model16

According to the available data, the formulae of Snow's model is

∑= −k ρAσ ξ n n( ) ( )ij
m

N

m i j mij

f

(43)

where Nf is the number of fractures; A is the fracture plane area; σ is the
fracture conductivity; ρ is the fracture density. Then the permeability is
calculated as,
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And the average permeability is calculated as = +k k(ave 11
+ = × −k k m)/3 2.47 1022 33

15 2.

3.3.2. Oda's model19

The permeability tensor kij is defined as

∑= −k P Pξ1
12

( )ij

N

kk ijij

f

(45)

where Nf is the number of fractures, = ∑ =
=P ρ l b n n f( )ij

π
m
m N

i j m4 1
2 3f ,

= + +P P P Pkk 11 22 33, and f is the fraction of the unit normal to the
fractures. Then permeability tensor can be are calculated as
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Thus, the average permeability is calculated as = +k k(ave 11
+ = × −k k m)/3 1.32 1022 33

15 2.

3.3.3. The applied model
The model is expressed as (Eq. (16))
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where 〈 〉R b2 3 is the average of R b2 3, Nf is the number of fractures, R is

the fracture half length, b is fracture aperture, and ′ =σ b
K R12 m max

3
. The

dimensionless density is ′ρ =9.8. The permeability can be calculated as,

Table 5
The equivalent permeability of the monitored fractured drift from different
models and laboratory.

Models Permeability of fractured rock mass (m2)

Snow16 2.3 × 10−9

Oda19 2.14 × 10−9

Applied Model 4.11 × 10–14

Laboratory55 From 10–14 to 10–13
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= × = × = ×− − −k m k m k m2.18 10 , 2.02 10 , 0.58 1011
17 2

22
17 2

33
17 2 (48)

The average permeability is obtained as = +k k(ave 11

+ = × −k k m)/3 1.59 1022 33
17 2.

Table 7 shows the accuracy of this model in estimating equivalent
permeability, by comparing against other models. Therefore, compared
with the reference permeability, the applied model is confirmed by
providing the relatively closest estimate of permeability of fractured
rock of this connectivity range, when compared with Snow's and Oda's
models.

4. Application in sand injectite systems

In contrast to homogeneous permeability systems, fracture patterns
in sand injectite systems may form heterogeneous fluid flow behaviors,
which lead to heterogeneous fluid flow behaviors with preferential fluid

migration paths. These fracture patterns makes sand injectites a het-
erogeneous permeability system, facilitating the migration of fluid
throughout the reservoir, redistributing pore pressure fields, and in-
fluencing the evolution of aperture and thereby permeability.

At the current research stage which is the first step for the reservoir
characterization of the sand injectites, it aims to estimate the perme-
ability of the fractured sand injectites. A static geological model is first
constructed based on the targeted PGIC outcrops, which is then in-
corporated into the constitutive simulator framework. Thereafter, the
proposed permeability model is applied to the sand injectites, followed
by some analysis of permeability evolution mechanisms before coupling
fracture propagation and sand intrusion in the future.

4.1. Model setting

From the PGIC outcrop, the thickness of the mudstone caprock is ~
476m, overlaying the ~ 224m thick sandstone formation. Fracture
networks are developed in the mudstone when the pore fluid pressure
builds up in the sandstone parent unit to a value where fracturing of the
overburden mudstone occurs.58 The fracture networks consist of two
sets of fractures which are oriented at approximately− 20° (below) and
+70° (above) the horizontal (Fig. 6). The average length of the sub-
horizontal fracture set (set 1) is larger than the sub-vertical fracture set
(set 2). The fractures are assumed as disc-shaped, and the percolation
threshold ( ′ =ρ 2.29c ) discussed in Section 2.2 is used.65 The initial
apertures are determined from the initial fracture lengths (Eq. (2)).21

Fracture propagation is not considered at the current stage while
apertures are updated with stress states in each simulation loop. The
simulation is block-wised, thus parameters like the fracture spatial
density and dimensionless density are determined element by element.
Hence, different elements may have different dimensionless densities.
Then the selection of the permeability formulae from Table 1 for each
element is determined by the dimensionless density of each element.

A reservoir model for the representation of the PGIC outcrops is
constructed in which the fracture locations and lengths are transferred
from the outcrops to represent the reservoir. The injection well is

Fig. 5. Fracture trace maps of the nine parallel prismatic samples.56,57

Table 6
Fracture parameters of the fractured rock.56

Fracture set Dipa (degree) Strikeb (degree) Fraction

A − 30 45 0.65
B 30 110 0.35

a Dips are measured counter-clockwise from horizontal.
b The strike of fracture set A ranges from 30 to 60°. The average strike is

applied.

Table 7
The equivalent permeability of the monitored fractured drift from different
models and laboratory.

Models Permeability of fractured rock mass (m2)

Snow16 2.47 × 10–15

Oda19 1.32 × 10–15

Applied Model 1.59 × 10–17

Laboratory55 2.32 × 10–17
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located at the bottom left-side of the complex (Fig. 7) within the
sandstone formation at coordinates (460,168). The pre-stressed frac-
tures are in initial equilibrium under the applied boundary stresses and
pore pressure.

Initial reservoir properties are summarised in Table 8. Parameters in
Tables 8 and 9 are chosen to demonstrate the significance of stress-
dependent behavior for aperture and permeability in the model and do
not necessarily reflect the exact in situ conditions of the model. The
impact of temperature in the simulator is that the temperature influ-
ences the compressibility of reservoir fluids. Isothermal injection is
assumed in this work.

4.2. Effect of applied stress

In situ stresses have a direct impact on the potential for fracture
shear failure, the evolution of stress-dependent aperture and the cor-
responding evolution of permeability. Two scenarios are proposed to
examine the effects of different stress states and the mechanical sensi-
tivity of the evolution of aperture and permeability (Table 9). The
fracture failure criterion is based on the Mohr-Coulomb failure criterion
in which fluid pressurisation initially reduces normal closure of aper-
ture due to the reduction of the effective normal stress of the fractures.
When the effective normal stress is reduced enough to touch the Cou-
lomb failure envelope, shear failure occurs and the shear dilation
magnitude in the aperture model begins to be larger than zero. The
continuous fluid pressurisation keeps the fracture aperture open

4.2.1. Scenario one: constant stress ratio (Szz / Sxx = 0.82)
When the applied principal stresses increase proportionally, fracture

aperture and permeability correspondingly decrease (Figs. 8 and 9a).
The initial aperture is defined from the initial fracture length (Eq. (2)).
When the horizontal principal stress Sxx is increased from 30MPa to
60MPa, permeability of the fractured rock mass on the 115th day is
reduced to one seventh the magnitude of the permeability at 30MPa,
dropping from ~ 7×10–15 m2 to ~ 1×10–15 m2 (Fig. 9b). This is in
response to normal closure of fractures, dominating the evolution of
fracture permeability.

4.2.2. Scenario two: influence of stress difference
This scenario explores the influences of deviatoric stress on the

evolution of aperture and permeability. The horizontal principal stress
(Sxx) is increased as the vertical principal stress (Szz) is held constant.
Based on the Mohr-Coulomb failure criterion, the critical orientation of
a fracture is calculated as,61

= − +φ
φ

90 (45
2

)critical
friction

(49)

Fig. 6. Geological setting of a fractured sand injectite reservoir in the Panoche Giant Injection Complex (PGIC).59 This image is shown in the x-axis (positive right)
and z-axis (positive upward) directions.

Fig. 7. A simplified reservoir model for the representation of the PGIC with a
distribution of fracture starting and ending points. Sides A and B have roller
boundaries. Sides C and D are stress boundaries of base case magnitudes with a
horizontal principal stress (Sxx) applied to boundary C and a vertical principal
stress (Szz) applied to boundary D.

Table 8
Initial reservoir properties.45,60

Parameter (unit) Magnitude

Bulk modulus (GPa) 25
Poisson's ratio (ν) 0.25
Sandstone matrix permeability (m2) 4.80× 10–14

Mudstone matrix permeability (m2) 1.00× 10–16

Sandstone matrix porosity 0.25
Mudstone matrix porosity 0.05
Biot coefficient 0.88
Water viscosity (cP) 3.55× 10−4

Fluid compressibility (1/MPa) 4.20× 10−4

Reservoir temperature (°C) 50
Pore pressure (MPa) 12
Injection pressure (MPa) 22
Fracture friction angle (degree) 27
Fracture dilation angle (degree) 3
Fracture cohesion (MPa) 0
Sandstone cohesion (MPa) 1.00× 106

Mudstone cohesion (MPa) 3.00× 106

Table 9
Sensitivity tests of the effects of applied boundary stresses on the evolution of
aperture and permeability.

Scenario settings Sxx (MPa) Szz (MPa)

Scenario 1 Stresses of constant ratio (Szz/Sxx = 0.82) 30 24.6
40 32.8
60 49.2

Scenario 2 Deviatoric stresses 23 24.6
24.6 24.6
30 24.6
32 24.6
34 24.6
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where fracture friction angle φfriction=27° (Table 8). Hence, the critical
failure orientation is derived as = ± °φ 31.5critical relative to the orienta-
tion of the maximum principal stress. As shear failure and dilation may
result in critically or near critically oriented fractures, critical orienta-
tion can be used to judge which fracture set will preferentially dilate:
only the (near) critically oriented fractures will dilate, while fractures
that are far from critically-oriented are less likely to fail and are
dominated by normal closure. Hence, when the maximum principal
stress is horizontal, the sub-horizontal fracture set (set 1) which is or-
iented at − 20° below the horizontal is near critically oriented. Con-
versely, when the maximum principal stress is vertical, the sub-vertical
fracture set (set 2) which is oriented at 70° is near-critically oriented.

For the comparison of the two fracture sets, Fig. 10a and b de-
monstrate that under varying horizontal principal stresses, the sub-
vertical fracture set (set 2) displays a wider aperture distribution than
sub-horizontal fracture set (set 1) does. This is because fracture set (set
2) is near perpendicular to the increasing horizontal principal stress,
thus the aperture is more sensitive to normal closure.

4.3. Mechanisms for evolution of aperture and permeability

We characterize the principal mechanisms controlling the magni-
tudes and rates of augmentation / reduction of fracture aperture and
permeability, by examining the stress states and failure process for each
set of fractures. The principal mechanisms for aperture and perme-
ability evolution are summarised in Table 10. This table indicates that
the evolution under elevated stress states may be dominated by normal
closure and absent shear failure, while at elevated deviatoric stress
differences the potential for fracture shear failure is increased.

As this work focuses on the fluid transport properties of fracture
networks with the background of sand injectites, this work is related to
some mechanisms of permeability evolution shown with the applied
permeability model, though the value added by the applied perme-
ability model is discussed in previous sections.

Fig. 11 illustrates the evolution of aperture and permeability with
time for the three stress states which generate normal closure but
without shear failure. During the simulation, and as a result of fluid
pressurisation, effective normal stresses and related normal closure

Fig. 8. Fracture aperture distributions for the two perpendicular sets of fractures under the influence of normal closure on the 115th day. Larger stress states induce
smaller apertures for both sets of fractures resulting from increased normal closure.

Fig. 9. (a) Evolution of fracture aperture with
time. (b) Corresponding evolution of the per-
meability of fractured rock with time near the
injector. The stress ratio is maintained constant
for 1.0×107 s (~ 115 days). The blue arrows
indicate that the reductions in aperture and
permeability are due to the decreasing fracture
failure potential and the dominance of in-
creasing normal closure with the increase in
stress states.
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decrease gradually, resulting in an increase in aperture and perme-
ability. Reduced boundary stresses correspond to a greater evolution
rate of permeability with time, due to the larger fraction of the pore

pressure on the total stresses. This results in greater sensitivity to
changes in aperture and permeability at lower stress states than at
higher stress states, due to the non-linear relationships between normal
stress and normal closure of fractures (Eq. (1)).

Conversely, Fig. 12 illustrates stress states that meet the critical
conditions to trigger shear failure and shear dilation. Since the max-
imum principal stress is horizontal, the sub-horizontal fracture set (set
1) is near-critically oriented and is more prone to fail than the sub-
vertical fracture set (set 2).

Fig. 12 also demonstrates that the aperture initially closes in normal
mode but then drastically increases with the onset of shear failure.
Before shear failure initiates, a higher stress state induces a larger
normal closure, yielding a smaller aperture and reduced permeability.
However, when fracture shear failure is triggered, critically oriented

Fig. 10. (a) Aperture evolution of fracture set (set 1) with time. (b) Aperture evolution of fracture set (set 2) with time. (c) Evolution of the permeability of a fractured
medium with time.

Table 10
Shear failure state of fractures and mechanisms for aperture evolution.

Evolution mechanisms Sxx ~ Szz
(MPa)

Shear failure status of
fractures

Normal closure 24.6 ~ 24.6 No fracture failure
40 ~ 32.8
60 ~ 49.2

Normal closure and shear
dilation

23 ~ 24.6 Fracture set 2 fails
30 ~ 24.6 Fracture set 1 fails

Fig. 11. Three stress states where evolution is dominated by normal closure: (a) Evolution of fracture aperture with time. (b) Evolution of permeability of the
fractured rock with time.
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fractures dilate to increase the aperture. A larger stress difference in-
ducing a larger shear dilation. Additionally, a higher stress difference
enhances the potential for fracture failure by moving the Mohr circle
closer to the Coulomb failure envelope, and thereby inducing earlier
shear failure. The shear dilation and permeability increase are irre-
versible under the constant fluid pressurisation, preserving the pre-
ferential flow paths along the failed and dilated fractures.

5. Conclusions

We present a systematic development, confirmation then applica-
tion of a coupled hydro-mechanical permeability model based on per-
colation theory that is used to investigate the evolution mechanisms
and mechanical sensitivity of permeability in fractured sand injectite
systems. As sand injectites systems contain shallow sedimentary li-
thology formation which may consist of unconsolidated and con-
solidated layers, the permeability model that includes the connectivity
of fracture networks, with consideration of matrix permeability influ-
ence would be essential to assess the evolution of permeability and
predict the flow path within sand injectites.

The proposed permeability model (Table 1) is developed using
staged percolation models, based on the degree of connectivity of
fracture networks quantified by a dimensionless fracture density ′ρ . The
implementation of staged percolation models for the permeability es-
timation enables reasonable characterization of different connectivity
levels of fracture networks in the framework of continuum simulator.
Development of different permeability relations which correspond to
each connectivity range allows to provide the optimal estimates of
realistic behaviors of fluid flow in fractured rock using percolation
theory.

Then the permeability model is incorporated into an existing cou-
pled hydro-mechanical simulator and applied to a sand injectite re-
servoir to investigate the evolution mechanisms and mechanical sen-
sitivity of permeability. Before the onset of fracture shear failure,
elevated stress states that accentuate normal closure result in reduced
aperture and permeability. Aperture and permeability evolve with
greater sensitivity at lower effective stress states than at higher stress
states because of the hyperbolic behavior of the normal stress and
normal closure relationship of the fractures (Eq. (1)). After the onset of
shear failure, permeability evolution is dominated by first normal clo-
sure and shear dilation. Larger stress differences trigger an earlier onset
of shear failure and a larger magnitude of shear dilation, which can
form preferential fluid migration paths, thus, increasing the perme-
ability at reservoir scale. Therefore, larger stress difference may sig-
nificantly alter permeability anisotropy due to the larger shear dilation
in critically oriented fractures: when the maximum principal stress is
horizontal (e.g. thrust regime), horizontal permeability may sig-
nificantly exceed vertical permeability of the fractured rock mass.
Conversely, when the maximum principal stress is vertical (e.g. normal

faulting), the vertical permeability of the fractured rock mass may be-
come dominant.
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